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Abstract

Here we advocate an approach to learning hardware
based on induction of finite state machines from temporal
logic constraints. The method involves training on
examples, constraints solving, determinization, state
machine minimization, structural mapping, functional
decomposition of multi-valued logic functions and
relations, and finally, FPGA mapping. In our approach,
learning takes place on the level of constraint acquisition
and functional decomposition rather than on the lower
level of programming binary switches. Our learning
strategy is based on the principle of Occam's Razor,
facilitating generalization and discovery. We implemented
several learning algorithms using DEC-PERLE-1 FPGA
board.

1 Evolving in hardware versus learning in
hardware

In recent years the scientific community has witnessed
rapid developments in the area of Soft Computing. These
approaches include Artificial Neural Nets (ANNs),
Cellular Neural Nets (CNNs), Fuzzy Logic, Rough Sets,
Genetic Algorithms (GAs), Genetic and Evolutionary
Programming.

Several mixed approaches have also been created. In
different ways, they combine elements of these areas with
the goal of solving complex and poorly defined problems
that could not be tackled by earlier, analytic models. What
is common to all these approaches is that they propose a
way of automatic learning by the system. The computer is
taught by examples rather than completely programmed
(instructed) in what to do. This philosophy also dominates
areas of Artificial Life, solving problems by analogy to

nature, decision making, knowledge acquisition, and new
approaches to intelligent robotics. Machine Learning thus
becomes a new and general system design paradigm
unifying these previously disconnected research areas. It
starts to become a new hardware construction paradigm as
well.

Recently, the term Evolvable Hardware (EHW) has been
coined [15] which means the realization of genetic
algorithm (GA) in reconfigurable hardware. It is
exemplified by Brain Builder CBM [15]. The EHW
approach to computing has raised considerable interest and
enthusiasm among some researchers, but scepticism
among others. One may ask: "Why genetic algorithm"?
Our experience prompts us to question the usefulness of
GA as a sole learning method to reconfigure binary
FPGAs. Instead, we propose the Learning Hardware
approach, which consists in using feedback from the
environment (for instance, positive and negative examples
from the trainer) to create a sequential network and
subsequently realizing this network in FPGAs.

Our approach of Universal Logic Machine [35, 40, 38,
24, 37, 45] proposes the creation of a learning machine
based on logic principles, in particular, temporal logic [32,
4, 5, 6, 7], constructive induction [2, 11, 27, 28], and
rough set theory [34].

Our software algorithms require fast operations on
complex logic expressions and the ability to solve NP-
complete problems such as satisfiability. They should be
realized in hardware to obtain the necessary speed-ups.
Using a fast prototyping tool, the DEC-PERLE-1 board
based on an array of Xilinx FPGAs, we are developing
software/configware processors that accelerate the
acquisition, synthesis, and optimization of Reactive State
Machines.

While GA is a simple and practically blind mechanism of
Nature, it can be easily realizable in hardware. We believe
that this mechanism alone cannot produce good results.



(Although it is relatively easy to do crossover and mutation
in hardware, the fitness function evaluation is difficult). In
contrast, logic algorithms that draw upon human
knowledge are optimal and mathematically sophisticated.
They lead to high quality learning results: knowledge
generalization, discovery, no overfitting, small learning
errors [47, 1, 26, 20, 21]. Their software realizations,
however, use such complex data structures and controls
that it is difficult to realize them in hardware.

When we refer to Learning Hardware, we define the
term "learning" very broadly, as any mechanism that leads
to the improvement of operation; evolution-based learning
is therefore included. Although specific learning concepts
and their formalities differ from one learning approach to
another, what is common is that, in the process of
learning, a network (combinational or sequential) is
constructed that stores the knowledge acquired in the
learning phase. The learned network is next run on old or
new data. Responses may be correct or erroneous. The
network's behavior is then evaluated by some fitness (cost)
functions and the learning and running phases are
alternated.

The process of solving problems consists of two phases:
the phase of learning, which involves constructing and
tuning the network, and the phase of acting. The second
stage means using knowledge, that is, running the network
for data sets. Compared to the process of developing and
using a computer, the first stage can be likened to the
entire process of conceptualizing, designing, and
optimizing a computer, and the second stage to using this
computer to perform calculations. You cannot redesign
standard computer hardware, however, when it cannot
solve a problem correctly. The Learning Hardware will
redesign itself automatically using the new learning
examples provided to it.

2 Logic rather than evolutionary methods for
learning

Our ULM approach is based on FPGA technology and
associated logic development methods (called Logic
Synthesis by the design automation community and
Constructive Induction by the Machine Learning
community) rather than neural or genetic algorithms.
Michie [29] makes a distinction between black-box and
knowledge-oriented concept learning systems by
introducing concepts of weak and strong criteria. The
system satisfies a weak criterium if it uses sample data to
generate an updated basis for improved performance on
subsequent data. A strong criterion is satisfied if the
system communicates concepts learned in symbolic form
[28].

Let us observe that ANNs, CNNs, and similar
approaches satisfy only the weak criterium while our
approach satisfies the strong criterium. We believe that the
results of the learning process, and even the process itself,
should be rational. They should be similar to those of
teaching humans, based on symbolic logic and not on the
methods of Nature. Human thinking consists in abstract
use of symbols, rather than assigning numeric weights to
neurons. Our approach operates on higher and more
natural symbolic representation levels. The built-in
mathematical optimization techniques (such as graph
coloring or satisfiability) support the principle of Occam's
Razor, offering  solutions that are provably good in the
sense of Computational Learning Theory (COLT) [1. 47].
Thus, learning on a symbolic level is the first main
point of our approach.

In our past research, we have used and compared in
software, various network structures for learning: two-level
AND/OR (Sum-of-Products (SOP), or Disjunctive-Normal-
Forms (DNF)) [33], decision trees (C4.5), and multi-level
decomposition structures [20, 21, 36, 53, 44], as well as
various logic, non-logic and mixed optimization methods:
search [37], rule-based, set-covering, graph-coloring,
genetic algorithm [16, 18] (including mixtures of logic and
GA approaches), genetic programming [17], artificial
neural nets, and simulated annealing. We compared the
resulting complexity of our networks (Occam's Razor), as
well as various ways of controlling the number of errors in
the learning process [20, 21, 26]. The Decomposed
Function Cardinality (DFC) and its extensions for MV
logic [1, 20, 21, 44] were used as common measures of
complexity, because of their strong theoretically proven
properties [1, 47]. Our conclusion, based on these
investigations, is that logic approaches and especially the
MV decomposition techniques, combined with smart
heuristic strategies and good data representations, are
usually superior to other approaches due to smaller net
complexity and fewer learning errors.

In our experience, especially poor results are obtained
using genetic algorithms [16, 17, 18]. GA may perform
well in other applications, but from both our experience
and the literature we could not find a single problem
domain in which a GA-based algorithm was superior to a
hand-crafted algorithm in the  design of  a binary or multi-
valued logic network. This is perhaps because researchers
have long experience in creating efficient logic
minimization algorithms (for instance, more papers have
been written on SOP minimization than perhaps on any
other engineering topic). In our approach we want to make
use of this accumulated human experience, rather than to
"reinvent" algorithms using GA.



3 Learning hardware approach in universal
logic machines

Developers of evolvable and learning systems agree that,
realized with current software or even parallel
programming technologies, the learning phase and/or the
execution phase are too slow for real-life problems,
especially real-time problems. The situation is essentially
the same regardless of whether the exhaustive
combinatorial search, simulated annealing, or evolutionary
algorithms that involve millions of populations are used.
Thus, the researchers proposed to speed-up some phases by
migrating from software to hardware.

Many ambitious projects based on ANNs, cellular logic,
DNA, simulated evolution and biologically motivated
hardware have been proposed that will perhaps be
successful in the future, when realized on molecular or
quantum levels. However, many of them are quite
impractical in current technologies.

Most of the approaches to evolvable hardware use binary
Field Programmable Gate Arrays, because now there is
simply no other mass-scale hardware reconfigurable
(reprogrammable) and relatively inexpensive technology
widely available. Since in binary FPGAs everything is
realized on the level of binary logic gates and flip-flops, in
our opinion, the learning process should be performed on
this level also. Thus, learning on the level of logic gates
and flip-flops is the second main point of our approach.

We believe that the learning level of sequential logic nets
is more natural than the higher level of arithmetic
operations of ANNs or Fuzzy Logic functions, or the lower
level of routing FPGA connection paths. Once we decide to
realize the network using logic gates in FPGA, we should
apply efficient logic design algorithms and realize them in
hardware for speedup. We believe also that all methods
that exist in VLSI design, and especially, the powerful
EDA (Electronic Design Automation) tools, should be re-
used in their entirety, rather than duplicated by naive low-
level evolutionary algorithms. Engineers spent many years
developing such tools in the area of digital design
automation; especially for reconfigurable computers: state
machines, logic synthesis, technology mapping, placement
and routing, partitioning, timing analysis, etc. Their use
will facilitate creation of Learning Hardware. Occam
Razor principle should also be used because only it leads to
meaningful discoveries and explainable results.

In conclusion, we do not believe that the "purist
strategies" for evolutionary hardware are practically
acceptable for most commercial applications of Learning
Hardware. Therefore, we propose the concept of Learning
Hardware based on previous human problem-solving
experience and application of mathematical algorithms and
problem-solving strategies rather than relying on two basic

methods to Evolvable Hardware: ANNs and GA.
Learning/evolution will remain as the main principle of
building new generation hardware, but it should be
restricted to higher, abstract levels rather than lowest level
FPGA resources. The variant evaluation/selection should
also be performed on abstract levels, before mapping to
low-level field-programmable resources, for which
chromosomes are extremely long and the GA is very
inefficient.

The proposed ULM approach to Learning Hardware can
be summarized as follows:

1. Based on sets of examples specified in our input
language L, we create a Reactive State Machine
(RSM), in particular, a (combinational) function or a
relation with no temporal variables. The description
consists in input-output specification, initial state
specifications and global environment constraints.
This machine is usually non-deterministic, but is state-
minimal from construction [4, 5, 6, 7]. with respect to
all its variables as state variables.

2. The machine can be determinized (converted from
non-deterministic  to deterministic form). Next the
machine is state-minimized (with respect to the new
set of state variables, which are a subset of initial
input/output variables). We plan also to develop a
method to get a state-minimal determinization right
away.

3. The machine is mapped to constrained structural
resources which we call Regular Automata (RA). It
assumes some regular structure, such as a counter,
shift register, cellular automaton, or any local-
connection based sequential network, and checks for
the maximum isomorphism between the autonomous
state transition graph of this network and the RSM
graph. (The new methods of mapping a state machine
to a counter or a shift register are both part of our
methodology).

4. The time-based MV logic expressions of Regular
Automata are decomposed. We use the algorithm
which is our generalization of the functional
Ashenhurst-Curtis decomposition [36, 44]. The timed
variables, and the multi-valued variables, are
converted to new binary variables.

5. The (quasi)optimally constructed network is logically
mapped to standard FPGA CLBs and realized using
standard partitioning, placement, and routing with the
help of EDA tools from Xilinx or other companies.
Thus, each RSM is converted to a binary pattern of
programming switches in FPGA.

6. The knowledge of the machine is stored in binary
memory patterns representing final FPGA
reconfigurable information. Under supervision of the
software program, the hardware switches between a
number of evolved circuits, depending on rules that



can also be acquired automatically. This phase is
therefore similar to the CBM approach of DeGaris.

7. As the network solves new problems, the new data sets
and training decisions are accumulated and the
network is repeatedly redesigned. An old network can
serve as a redesign plan for a new network, or the
latter is "designed from scratch" to avoid any bias.

Thus, we replace the process of creating high level
behaviors by evolving on low level used in EHW, with the
ULM model of learning at high level and next compiling
to low level using standard FPGA-based tools. Observe
also that the same physical FPGA resources are
multiplexed to implement the virtual human-designed
learning hardware and the automatically learned data
hardware. While the "learning hardware" is designed
once and cannot be changed, the "data hardware" can be
modified indefinitely.

4 Induction of reactive state machines from
temporal logic constraints

Because decompositions of combinational logic have
been already explained in detail in our previous papers [20,
21, 26, 32], here we concentrate on Reactive State
Machines. As explained in the previous section, when the
expression (set of examples) in the input language has
been created, the problem is closed and becomes that of
designing the minimal state machine using regular binary
resources of lookup-tables and flip-flops. Our state
machine design integrates methods developed in USA and
former USSR. We introduce new efficient and practical
methods for specification and synthesis of state machines
[4, 5, 6, 7, 32] that can significantly improve the solutions
currently used in the United States. Developed in the major
computer centers of the former Soviet Union, these
methods were never published in English or presented to
American audience.

Theoretically, any FSM-based EDA tools can be used to
solve these tasks. There are, however, some specifics of our
approach, which make it different in practice. These
differences are related to two issues: (1) The use of
temporal logic as the input specification. (2) The use of
Regular Automata for structural design.

4.1 Temporal logic

While the temporal logic has been used in the West for
verification, there are no papers on its applications in
synthesis. At the same time, this logic was used in former
USSR for synthesis as well [4, 5, 6, 7, 32]. In addition, to
make it compatible with our decomposer, we extend this
logic to multi-valued logic data.

In contrast to logic circuit design, the learning data are
extremely weakly specified, it is common to have a

function or a machine with 99,999% of don't cares.
Current EDA software cannot handle such data well, if at
all. This fact affects all synthesis algorithms.

Also, we are not familiar with tools that would create a
non-deterministic FSM first, and next convert it to a
deterministic one. So far, such tools were used only for
verification(reachability analysis). Also, state minimization
is now an important part of  synthesis of strongly
unspecified FSMs.

4.2 Regular  automata

To convert a deterministic or non-deterministic machine
to sequential network from CLBs (lookup tables and flip-
flops), instead of a standard state assignment/
minimization-factorization/ FPGA mapping process, we
use the structural synthesis mapping approach based on
Regular Automata (RA) design and functional
decomposition. Because it is oriented towards lookup-
tables, mapping from our RA intermediate format to real
chip resources is relatively easy. Good decomposition leads
to feature extraction (discovery) and generalization.

This approach is well suited to geometrical constraints
imposed on sequential logic, thus it is called the Regular
Automata approach. Regular Automata include Cellular
Automata as their special case, but every automaton in the
array can be different, the connections can be to many
nodes, not only to closest geometrical neighbours, etc.
More specifically, by Regular Automata we understand
sequential netlists placed on a two-dimensional grid in
such a way that most of the connections are local, it means,
they are to cell's neighbors only, plus there are some global
buses and collectors. Every cell  may include a number of
flip-flops and programmable gates and be connected to
two, three, four, eight, twelve, etc neighbors and buses. For
instance, there are four neighbors, two vertical and two
horizontal buses in the Concurrent Logic Inc. (now
ATMEL) architecture [9], which is a special case of our
previous model of Regular Layout [41, 42, 43, 49, 50].
Regular Layout is extended to Regular Automata by just
adding flip-flops to cells. Flip-flops can be: standard (D, T,
JK); and non-standard (half of JK, and START, or logic
differentiation [10]). In addition to vertical and horizontal
buses, we allow also for diagonal buses. Other examples of
Regular Automata are Iterative circuits, Lattice Diagrams,
Cellular Automata, counters, shifters, and similar circuits.
Practical realizations of Regular Automata are also: the
ILU of the CCM [40], and the satisfiability/ESOP
minimization machine from [37].

Our methods can preserve partially the structure defined
by the original specification and facilitate the design flow
that is transparent for the designer (graphs of RSMs and
autonomous machines are visualized - Fig. 1). The latter is



able to supervise the process and influence it when
necessary, for example, by changing state encoding or
ensuring the proper timing properties. In this way, the
designer is not faced with the ready-made results of
synthesis as in some of the modern high-level synthesis
tools, which mostly rely on incremental synthesis, but is
able to quickly produce the effective designs. An
interesting aspect is ability to  modify the constraints when
the designer is not sure of his intention: he experiments
with constraints and verifies his ideas on the graphs.

5 Input language to represent learning data

Because we want the system to learn on a higher level
than that of elementary gates and their connections, we
need first to develop a higher-level language, in which
expressions, the virtual nets, will be automatically created,
evaluated, selected and optimized, in order to be realized
as hardware FPGA nets by top-down automatic design
methods. Since in the learning phase we want to operate
on elements of this language in hardware, our choices are
limited because of the necessity of operations that are
easily realizable in hardware.

Several such languages have been created in the past,
mostly for applications in logic synthesis, automatic
theorem-proving, data base theory, and Information
Engineering, and we adopted some of them for hardware
representation. They include: temporal logic, regular
expressions, Petri nets, state machine tables, tabular
representation of data [8], binary and multi-valued cube
calculus [12, 40], decision tables, rough sets [34], rough
partitions [25], and labeled rough partitions [22].

Table 1. Multi-valued multi-output (combinational) relation
in tabular form

x1 x2 y1 y2

a 0, 2 1 — 2

b 0, 1 0 0, 2 1

c 2 0 1, 2 0

d 1 1 1, 2 2

A universal language to specify MV combinational logic
is a two-dimensional tabular representation, as shown in
Table 1. Rows correspond to objects (examples, samples)
a,b,c and d and columns to input variables (attributes) x1

and x2, and  output variables y1 and y2. Symbol y1 denotes a
relation output. Inputs x1 and x2 together with output y1

specify an (oriented) relation. Relation can be used to
express such facts as: this color is red or white but not
yellow or black. Symbol y2 denotes a function output; y2

(x1 x2). Rows c and d have only one value for each
attribute, so they are minterms. Rows a and b have more
than one value for attributes, so they are cubes. Eeach row
can be thought of as a record from a data base, or their set,
or a collection of image features after image preprocessing.

Observe, however, that although such language is quite
powerful for machine learning, data mining and
knowledge discovery from data bases applications, it
cannot specify time, it is thus too poor to describe state
machines, regular expressions, Petri nets, path expressions,
sequential netlists, grammars and other models, that are
used in speech and image recognition, robotics, and other
areas. Extension of this language can be done by
introducing variables that depend on discrete time. For
instance, the example a (row a) from Table 1 can be
rewritten to our language as follows:

x1[0,2](t) & x2[1](t) => y2[2](t),

because both input variables x1(t), x2(t) and the output
variable y2(t) are defined in the same moment of time.
By allowing previous or next ticks of time, for instance:

x1[0,2](t-2) & x2[1](t-3) => y2[2](t+3),

we can specify arbitrary regular grammars, regular
expressions, sequential netlists, or state machines with
multi-valued inputs and outputs. Timed binary variables
are next internally converted to standard binary variables,
for instance, x(t)=>x, ~x(t-1)=>x', x(t-2)=>x",
etc. Similarly, timed MV variables are internally converted
to standard binary variables. Various binary encodings of
MV symbols can be used.

To understand the power of our language, we
successfully described problems, such as "cannibals and
missionaries", "man, wolf, goat and cabbage", "dining
philosophers", models of Pavlov's behaviors, various real-
time protocols, and other problems specified by temporal
logic constraints. We noticed for MV logic only two simple
generalizations are needed: (1) adding time moments to
logic variables and (2) allowing the formulation of
equations not only in an explicit way (the output variables
as the functions of the input variables) but also as non-
explicit, convoluted MV equations involving input, output,
and auxiliary (state, constraint) variables. These allow us
to create a language of high expressive power which is also
quite natural. The language allows specification of
temporal and logic constraints, such as "the man cannot be
lazy, he has to move the animal or the item to another
shore of the river", "cannibals cannot row", or "only three
people can be in the boat").

Let us consider one example of temporal logic
specification used in our methodology. This is the well-
known problem of the man, the wolf, the goat, and the
cabbage. At the beginning, all of them are on the left bank



of the river, and the man should transport them to the right
bank. The wolf and the goat, as well as the goat and the
cabbage, cannot be left alone on the same bank without
man. The boat is navigated by the man, who can take only
one object with him.

All the boolean variables are first-order predicates
depending on discrete time. M(t) is true when the man in
the left bank and false when the man in on the right bank.
The same applies to variables W(t), G(t), C(t), which
denote the wolf, the goat, and the cabbage respectively.

Here is the temporal logic specification of constraints for
this problem.

1 The wolf and the goat cannot stay on the left bank and
on the right bank without the man:

(  W(t) &  G(t) ) => M(t).
( ~W(t) & ~G(t) ) => M(t).

The goat and the cabbage cannot stay on the left bank
and on the right bank without the man:

(  G(t) &  C(t) ) => M(t).
( ~G(t) & ~C(t) ) => M(t).

2 If the wolf is on the left (right) bank, it means that
either the wolf stayed there or the man has brought it there
from the right (left) bank one unit of time before:

 W(t) =>( W(t-1) |~W(t-1)&~M(t-1)& M(t) ).
~W(t) =>(~W(t-1) | W(t-1)& M(t-1)&~M(t) ).

The same for the goat and the cabbage:

 G(t) =>( G(t-1) |~G(t-1)&~M(t-1)& M(t) ).
~G(t) =>(~G(t-1) | G(t-1)& M(t-1)&~M(t) ).
 C(t) =>( C(t-1) |~C(t-1)&~M(t-1)& M(t) ).
~C(t) =>(~C(t-1) | C(t-1)& M(t-1)&~M(t) ).

3 Any two objects cannot be brought across the river at
the same time:

 (W(t) <=> W(t-1)) | (G(t) <=> G(t-1)).
 (W(t) <=> W(t-1)) | (C(t) <=> C(t-1)).
 (G(t) <=> G(t-1)) | (C(t) <=> C(t-1)).

4 The man is always on the move:

 M(t-1) <=> ~M(t).

Here the symbols ~, &, |, =>, and <=> designate
complemented variable, logic AND, logic OR, logic
implication (~a& b), and logic equivalence (a&b |~a&~b),
respectively.

The result of synthesis from this specification using our
software system DUAL is shown in Figure 1. The state
transition graph given in dotted lines corresponds to the
non-deterministic algorithm, which the man should follow
to safely transport all the objects to the right bank. This
algorithm consists of seven steps, with two possible
variations, depending on whether he chooses to take the
cabbage or the wolf when the goat is already trasported to

the right bank. Observe that the designer (the  supervisor,
the environment), who gives the  language L expressions
to the learning system, does not know the state machine,
he only specifies constraints on the behavior of the system
or sample sequences of input and output values.

6 DEC-PERLE-1 board for fast prototyping

The DEC-PERLE-1 board [52] is organized around a
central computational matrix made up of 16 Xilinx
XC3090 LCAs1, surrounded by four 1MB RAM banks, and
7 other LCAs to implement switching and controlling
functions. We modeled our algorithms in software. We
also realized the first version of ULM, called Cube
Calculus Machine (CCM) on DEC-PERLE [24, 37, 38].
These were very useful learning experiences. The DEC-
PERLE-1 board, similar  to other FPGA boards, advocates
regular design styles without many control signals. It is
then good for small SIMD processors, pipelining, systolic
processors, Cellular Automata or complex (decomposed)
Boolean functions. The basic design principle is the
following: map two-dimensional tables to two-
dimensional logic resource arrays, leading to the
introduction of the concept of Regular Automata. The
design can be developed incrementally thanks to its easy
memory access, host interface with FIFOs, and the clock
debugging modes and tags. Based on these principles, we
next developed a new variant of the Cube Calculus
Machine and evaluated its speed-up. The goal is now to
map software algorithms such as binate covering used in
FSM minimization or unate covering used in
decomposition to efficient hardware algorithms. This can
be done by checking satisfiability [35, 45].

7 Demonstration of learning hardware in
robotics, or “improved Furby"

Similar to DeGaris and his ROBOKONEKO robot-
kitten, we need a real-life environment to demonstrate the
practicality of our ideas. We have chosen the humanoid
arms/head robot: a software/hardware machine connected
to an inexpensive robot (OWI kits) and a solid-state
camera.

Mechanically, the robot will be built from two OWI
robotic arms as two hands, and a modified OWI arm as a
head. More motors and gears from Robix and LEGO
Mindstorms kits will be used for eyes, brows, and ear
movements. Thus an upper body of a human puppet will be
assembled, controlled by a total of 3 * 5 + 4 * 2 = 23
motors. There will also be several sensors on each hand
and the face: temperature, touch, infrared, and others. The

                                                       
1 LCA stands for Logic Cell Arrays



Figure 1. DUAL interface for RSM specification and synthesis ("man, wolf, goat, and cabbage" problem)

signals from them will be converted in A/D converters to
multi-valued input signals of the reactive state machines.

The robot will perform simple programmable movements
such as: MOTOR-1-UP, MOTOR-2-DOWN, MOTOR-3-
LEFT, PICK, RELEASE. They correspond to states of
output variables. For each OVI arm there are 5 motors,
each in 3 states (left, right, none). All signals are
programmed as multi-valued. Timing information is
added.

At first, we follow the standard "learning from
supervisor" approach,  with the human as supervisor. He
creates all sequences and constraints for the reactive state
machine. It is as if the parent teaches the child by directly
re-wiring his brain using positive and negative examples.
Thus, learning is done with the human as the feedback
loop. The set of sequences is incomplete, so the machine
performs the generalization automatically. Adding or
removing new rules, by the human supervisor or
automatically/randomly, will change the behavior. What
obstacles can the robot's arm encounter? How to react to

them? How should the robot react to or mimick the
human's behaviors seen by the camera? A lengthy process
of trial and error is necessary to answer these questions.
The goal of this project is to design a system that reacts to
sound, temperature, touch, words (text) from speech
recognition [51], simplified images [39], changes of light,
etc.

Our interest is to design a system similar to the Furby
toy, but capable of real learning. Let us first discuss how
Furby works. It can be observed that Furby's internal states
are prespecified, its learning is only transiting to
prespecified new states in the labyrinth of its possible
"states of emotions and knowledge" (sleeps, plays games,
sings, is ill/healthy, etc). Appropriate learning patterns
(such as petting the head twice and then the back once)
lead to displays of appropriate behaviors pre-stored in the
toy's memory, and are only hidden from the user by not
entering some internal states earlier.



Table 2. Brain Builder versus Universal Logic Machine

Approach to learning hardware
Aspect of comparison

Brain Builder Universal Logic Machine

Model of learning Artificial neural net (ANN) Reactive state machines (RSMs)

Training data Sample vectors Multi-valued temporal logic constraint language L

How the net is constructed Genetic algorithm, AAN training RSM construction and minimization, MV logic
synthesis

Intermediate representation Cellular automata (CA) Regular automata (RA)

What is learned CA tables Binary sequential logic nets

Implementation Hardware (intrinsic EHW) Hardware and software

Mapped to Array of binary FPGAs Array of binary FPGAs

Hardware platform Xilinx 6000 series CBM Xilinx 3090, on-board memory, DEC-PERLE-1
board, DEC workstation

Although this is not real learning, it is perceived as
astounding by people who observe this toy. Now, we want
to create a toy similar in sensor/actuator
Pavlovian/Skinnerian learning model, but capable of
building its own "world model" and internal model with
unlimited behaviors. The new states corresponding to
changed behavior will be created using our RSM approach.

The demonstration illustrates an approach to
programming robots based on learning from examples.
Robot control units (i.e. RSMs) are constructed as a
hierarchy of behavior modules concurrently running in a
multi-tasking environment. As a result, the robot will
exhibit simple actions to which more sophisticated
behavior patterns can be added by adding higher-level
control. This way of organizing a hierarchy of control
modules is known as subsumption architecture. This is a
concrete way of introducing multi-tasking and concepts of
real-time control to electrical engineering students as it is
done at MIT, CMU etc. What is new about our approach,
is that the RSM is synthesized (evolved) automatically
from input/output relationships specified in our concurrent
constraint language.

8 Conclusion

Within the Learning Hardware general philosphy, we
have been pursuing the approach called the Universal
Logic Machine (ULM).  Table 2 shows a comparison
between Brain Builder CAM-Brain Machine (CBM) and
ULM approaches.   We presented an overview of our past
and current research as well as the goals of the entire ULM
project. Our presentation includes a demonstration of the
RSM software.
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