
THEORY OF COMPLEXITY CLASSES

VOLUME 1

Chee Keng Yap

Courant Institute of Mathematical Sciences

New York University

251 Mercer Street

New York, NY 10012

September 29, 1998

Copyright: This book will be published by Oxford University Press. This prelim-

inary version may be freely copied, in part or wholly, and distributed for private

or class use, provided this copyright page is kept intact with each copy. Such users

may contact the author for the on-going changes to the manuscript. The reader

is kindly requested to inform the author of any errors, typographical or otherwise.

Suggestions welcome. Electronic mail: yap@cs.nyu.edu.

i

PREFACE

Complexity Theory is a thriving and growing subject. Its claim to a central

position in computer science comes from the fact that algorithms permeate every

application of computers. For instance, the term NP-completeness is by now in

the vocabulary of the general computer science community. Complexity Theory

has evolved considerably within the last decade. Yet there are few books that

systematically present the broad sweep of the subject to a prospective student from

a ‘modern’ point of view, that is, the subject as a practitioner sees it. The few

available treatments are embedded in volumes that tended to treat it as a subfield

of related and older subjects such as formal language theory, automata theory,

computability and recursive function theory. There are good historical reasons for

this, for our legacy lies in these subjects. Today, such an approach would not do

justice to the subject – we might say that Complexity Theory has come-of-age. So

one goal of this book is to present the subject fully on its own merits.

Complexity Theory can be practiced at several levels, so to speak. At one ex-

treme we have analysis of algorithms and concrete complexity. Complexity Theory

at this low level is highly model-dependent. At the other end, we encounter ax-

iomatic complexity, recursive function theory and beyond. At this very high level,

the situation becomes quite abstract (which is also one of its beauties); the main

tools here center around diagonalization and the results often concern somewhat

pathological properties of complexity classes. So what we mean by Complexity

Theory in this book might be termed medium level. Here diagonalization remains

an effective tool but powerful combinatorial arguments are also available. To dis-

tinguish the subject matter of this book from these closely related areas, I have

tried to emphasize what I perceive to be our central theme: Complexity Theory is

ultimately about the relationships among complexity classes. Of course, there are

reasonable alternative themes from which to choose. For instance, one can construe

Complexity Theory to be the theory of various models of computation – indeed, this

seems to be the older point of view. But note that our chosen view-point is more

abstract than this: models of computation define complexity classes, not vice-versa.

How Complexity Theory arrives at such an abstract theme may be of interest:

hopefully such evidence is scattered throughout the entire book. But for a practi-

tioner in the field, perhaps the most cogent argument is that most of the major open

problems in the subject can be posed in the form: “Is J included in K?” where J

and K are complexity classes. This certainly includes the P versus NP , the DLOG

versus NLOG and the LBA questions. Other questions which prima facie are not

about complexity classes (e.g. space versus time, determinism versus nondetermin-

ism) can be translated into the above form. Even investigations about individual

ii

languages (e.g. complete languages) can be viewed as attempts to answer questions

about complexity classes or to place the language into a well-known complexity class

(e.g., is graph isomorphism in P?). Of course, these by no means exhaust all the

work in Complexity Theory but their centrality cannot be denied.

As for the student of complexity, some basic questions are more immediate: for

a phenomenon as complex as complexity (no tautology intended) it is no surprise

that the theory contains many assumptions, not all of which can be rigorously or

even convincingly justified. We can only offer heuristic arguments and evidence.

This is the burden of chapter one which presents the methodological assumptions of

Complexity Theory. It comes from my attempt to distill what practitioners in this

field had been (subconsciously or otherwise) cultivating in the past twenty years or

more. By making them explicit (though by no means to our total satisfaction), it

is hoped that they will speedup the entry of novitiates into the field. Indeed, this

is out of self-interest: a field thrives with fresh ideas from each new generation of

practitioners. Another possible result of explicating the underlying assumptions is

renewed criticisms of them, leading to alternative foundations: again, this is most

healthy for the field and certainly welcome. In any case, once these assumptions are

accepted, we hope the student will discover a powerful and beautiful theory that

offers much insight into the phenomenon of complexity. This is enough to justify

the present theory (though not to exclude others).

There are several notable features of this book:

(a) We have avoided traditional entry-points to Complexity Theory, such as au-

tomata theory, recursive function theory or formal language theory. Indeed,

none of these topics are treated except where they illuminate our immediate

concern.

(b) The notion of computational modes is introduced early to emphasize its cen-

trality in the modern view of Complexity Theory. For instance, it allows

us to formulate a polynomial analogue of Church’s thesis. Many of us are

brought up on the sequential-deterministic mode of computation, called here

the fundamental mode. Other computational modes include nondeterministic,

probabilistic, parallel, and alternating, to name the main ones. These modes

tend to be viewed with suspicion by non-practitioners (this is understandable

since most actual computers operate in the fundamental mode). However, it

is important to wean students from the fundamental mode as early as possi-

ble, for several reasons: Not only are the other modes theoretically important,

the technological promise of economical and vast quantities of hardware have

stirred considerable practical interest in parallel and other modes of compu-

tation. The student will also come to appreciate the fact that computational

iii

modes such as represented in proof systems or grammars in formal language

theory are valid concepts of computation. On the other hand, these alterna-

tive computational modes have distinct complexity properties which is in fact

what makes the subject so rich.

(c) Traditionally, the computational resources of time and space have been em-

phasized (other resources are more or less curiosities). The recent discovery

of the importance and generality of the computational resource of reversals

is stressed from the beginning of the book. Of course, the number of results

we currently have on reversals is meager compared to the number of papers

devoted time and space; indeed through the writing of this book I am con-

vinced that this imbalance should be remedied. (Paucity of results of other

sorts are also evident: in the chapters on reducibilities, diagonalization and

relative classes, we see no results for modes other than the fundamental and

nondeterministic modes. It is very likely that the filling of these gaps will

require new techniques). It is my strong belief that the new triumvirate of

time-space-reversal gives us a more complete picture of computational com-

plexity. We also treat simultaneous resource bounds, such as simultaneous

time-space. Again this approach gives us a more rounded view of complexity.

It is also a topic of increasing importance.

(d) I believe an important contribution of this book is the theory of valuations

and choice machines. Besides its unifying and simplifying appeal, it addresses

many foundational questions raised by the newer notions of computation such

as interactive proofs. Researchers were able to simply ignore some of these

questions in the past because they focused on “nice” situations such as poly-

nomial time. But once the proper foundation is introduced, new issues arise on

their own right. For instance, the use of interval algebra exposes new subtleties

in the concepts of error. We hope that this inquiry is only the beginning.

(e) In attempting to give a coherent treatment of the subject, it is necessary

to unify the widely varying notations and definitions found in the literature.

Thus, many results on space complexity are proved using a version of Turing

machine different from that used in time complexity. Yet a common machine

model must be used if we want to study simultaneous time-space complex-

ity. We choose the off-line multitape Turing machines. Another case where

uniformity is badly needed is something so basic as the definition of “time

complexity”: to say that a nondeterministic machine accepts within t steps,

some definitions require all paths to halt within this time bound; others are

satisfied if some accepting path halt within this bound. We distinguish them

iv

as running time and accepting time, respectively. Generalizing this distinc-

tion to other measures, we hence speak of running complexity versus accepting

complexity. How comparable are these results? By and large, we would prefer

to stick to accepting complexity because it seems more fundamental and afford

simpler proofs. This we manage to do for most of the first half of the book.

Unfortunately (or fortunately?), the corpus of known results seems rich enough

to defeat any artificial attempt to impose uniformity in this respect. This is

most evident in probabilistic computations where running complexity seems

to be the more fruitful concept. A final example is the disparate notations

for reducibilities. From the diverse possibilities, a unifying choice appears to

be ≤c

t
where t indicates the type of reduction (many-one, Turing-reducibility,

etc) and c indicates the complexity considerations (polynomial time, log-space,

etc). Or again, for a complexity class K, we prefer to say that a language is

“K-complete under ≤-reducibility” rather than “≤-complete for K”: here the

choice is driven by the wide currency of the term “NP -complete language”.

We are aware of the dark side of the grand unification impulse, which can

rapidly lead to unwieldy notations: it is hoped that a reasonable compromise

has been made within the scope of this book.

(f) In selecting results (many appearing in book-form for the first time) for inclu-

sion in this book, I have tried to avoid those results that are essentially about

particular machine models. This is consistent with our book’s theme. The

main exception is chapter two where it is necessary to dispose of well-known

technical results concerning the Turing model of computation.

Finally, this book is seen as a self-contained and complete (though clearly non-

exhaustive) introduction to the subject. It is written so as to be usable as a textbook

for an advanced undergraduate course or an introductory graduate course. The

didactic intent should be evident in the early chapters of this book: for instance, we

may offer competing definitions (running complexity versus acceptance complexity,

one-way oracle machines versus two-way oracle machines) even when we eventually

only need one of them. By exposing students to such definitional undercurrents, we

hope they will appreciate better the choices (which most experts make without a

fuss) that are actually made. The later part of the book, especially volume two, is

intended more as a reference and the treatment is necessarily more condensed.

A quick synopsis of this two-volume book is as follows: There are twenty chap-

ters, with ten in each volume. Chapter 1 attempts to uncover the foundations

and presuppositions of the enterprise called Complexity Theory. Chapter 2 estab-

lishes the basic machinery for discussing Complexity Theory; we try to confine most

model-dependent results to this chapter. Chapter 3 on the class NP is really the

v

introduction to the heart this book: a large portion of the remainder of the book

is either an elaboration of motifs begun here, or can be traced back to attempts to

answer questions raised here. Chapters 4 to 6, is a study of the tools that might

be termed ‘classical’ if this is appropriate for such a young field as ours: reducibili-

ties, complete languages, diagonalization and translation techniques for separating

complexity classes. Chapters 7 and 8 consider two important computational modes:

probabilism and alternation. Although these two modes are seldom viewed as closely

related, we choose the unusual approach of introducing them in a common machine

model. One advantage is that some results known for one mode can be strength-

ened to their combination; also, contrasts between the two modes become accented.

Chapter 9 is about the polynomial-time hierarchy and its cognates. Chapter 10

introduces circuit complexity: superficially, this is an unlikely topic since circuits

describe finite functions. Traditionally, the interest here comes from the hope that

combinatorial techniques may yield non-linear lower bounds for circuit complex-

ity which in turn translates into non-trivial lower bounds for machine complexity.

This hope has (as yet) not borne out but circuit complexity has yielded other un-

expected insights into our main subject. Two other topics which we would have

liked in volume 1 to round up what we regard as the core topics of the field are

relativized classes and parallel computation. Unfortunately we must defer them to

volume 2. The rest of volume 2 covers topics that are somewhat esoteric as well as

some directions that are actively being pursued: randomness, structural approaches

to complexity, alternative models of computation (storage modification machines,

auxilliary Turing machines, etc), alternative complexity theories (such as Kolgo-

morov complexity, optimization problems, Levin’s average complexity), specialized

approaches to complexity (such as mathematical logic), and complexity of some

classes of languages that have inherent interest (such context-free languages, theory

of real addition, etc).

Ideally, Complexity Theory should be taught in a two course sequence; this is

probably a luxury that many Computer Science curriculum cannot support. For a

one course sequence, I suggest selections from the first 7 chapters and perhaps some

advanced topics; preferably such a course should come after a more traditional course

on the theory of automata and computability.

The reader is kindly requested to inform the author of any errors of commission

as well as of omission. Since much of our material is organized in this manner for the

first time, there will be inevitable rough spots; we ask for the readers’ indulgence.

All suggestions and comments are welcome.

I have variously taught from this material since 1981 at the Courant Institute

in New York University, and most recently, at the University of British Columbia.

vi

As expected, this ten-year old manuscript has evolved considerably over time, some

parts beyond recognition. Although many individuals, students and colleagues,

have given me many thoughtful feedback over the years, it is clear that the most

recent readers have the greatest visible impact on the book. Nevertheless, I am very

grateful to all of the following names, arranged somewhat chronologically: Norman

Schulman, Lou Salkind, Jian-er Chen, Jim Cox, Colm Ó’Dúnlaing, Richard Cole,

Bud Mishra, Martin Davis, Albert Meyer, Dexter Kozen, Fritz Henglein and Richard

Beigel. The extensive comments of Professors Michael Loui and Eric Allender, and

most recently, Professors Jim Cox and Kenneth Regan, from their use of these

notes in classes are specially appreciated. Finally, I am grateful to Professor David

Kirkpatrick’s hospitality and for the facilities at the University of British Columbia

while completing the final portions of the book.

C.K.Y.

New York, New York

March, 1991

Contents

vii

Chapter 1

Initiation to Complexity Theory

January 16, 2001

This book presumes no background in Complexity Theory. However, “general mathematical maturity”
and rudiments of automata and computability theory would be useful. This introductory chapter explores
the assumptions of Complexity Theory: here, we occasionally refer to familiar ideas from the theory of
computability in order to show the rationale for some critical decisions. Even without such a background
the reader will be able to understand the essential thrusts of this informal chapter.

The rest of the book does not depend on this chapter except for the asymptotic notations of section
3.

This chapter has an appendix that establishes the largely standard notation and terminology of naive
set theory and formal language theory. It should serve as a general reference.

1.1 Central Questions

Most disciplines center around some basic phenomenon, the understanding of which is either intrinsically
interesting or could lead to practical benefits. For us, the phenomenon is the intuitive notion of complexity

of computational problems as it arises in Computer Science. The understanding of what makes a problem
(computationally) complex is one cornerstone of the art and science of algorithm design. The stress in
‘complexity of computational problems’ is on ‘complexity’; the concept of ‘computational problem’, is
generally relegated to the background.1

To set the frame of mind, we examine some rather natural questions. A main motivation of our
subject is to provide satisfactory answers to questions such as:

(1) Is multiplication harder than addition?

The appeal of this question, first asked by Cobham [5], is that it relates to what are probably the two
most widely known non-trivial algorithms in the world: the so-called high school algorithms for addition
and multiplication. To add (resp. multiply) two n-digit numbers using the high school algorithm takes
linear (resp. quadratic) time. More precisely, the addition (resp. multiplication) algorithm takes at most
c1n (resp. c2n

2) steps, for some positive constants c1 and c2. Here a ‘step’ is a basic arithmetic operation
(+,−,×,÷) on single digit numbers. So a simple but unsatisfactory answer to (1) is ‘yes’ because c2n

2

dominates c1n when n gets large enough. It is unsatisfactory because the answer only says something

1There is no general theory of computational problems except in special cases. Such a theory should study the logical
structure of problems, their taxonomy and inter-relationships. Instead, complexity theory obliterates all natural structures
in computational problems by certain sweeping assumptions we will come to.

1

2 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

about particular methods of adding and multiplying. To provide a more satisfactory answer, we probe
deeper.

It is intuitively clear that one cannot hope to do additions in less than n steps. This is because any
algorithm must at least read all the n input digits. So the high school method for addition is optimal –
note that here and throughout the book, optimality is taken up to some multiplicative constant factor. The
situation is less clear with multiplication: Is there any algorithm for multiplication that is asymptotically
faster than the high school method? The answer turns out to be ‘yes’; in 1971 (culminating a series of
developments) Schönhage and Strassen [30] discovered what is today asymptotically the fastest known
multiplication algorithm. Their algorithm takes c3n log n log log n steps2 on a Turing machine (to be
introduced in Chapter 2). Since a Turing machine turns out to be more primitive than any real-world
computer, this means the same time bound is achievable on actual computers. However, the large constant
c3 in the Schönhage-Strassen algorithm renders it slower than other methods for practical values of n.
For now, let us just accept that Turing machines are indeed fundamental and thus statements about
computations by Turing machine are intrinsically important. But is the Schönhage-Strassen algorithm
the best possible? More precisely,

(2) Must every Turing machine that multiplies, in worst-case, use at least cn log n log log n

steps, for some c > 0 and for infinitely many values of n? Here c may depend on the
Turing machine.

This is an important open problem in Complexity Theory. A negative answer to question (2) typically
means that we explicitly show an algorithm that is faster than that of Schönhage-Strassen. For instance,
an algorithm with running time of n log n will do. We say such an algorithm shows an upper bound of
n log n on the complexity of multiplication. (It is also conceivable that the negative answer comes from
showing the existence of a faster algorithm, but no algorithm is exhibited in the proof3.) On the other
hand, answering question (2) in the affirmative means showing a lower bound of cn log n log log n on the
complexity of multiplication. Such a result would evidently be very deep: it says something about all

possible Turing machines that multiply! Combining such a result with the result of Schönhage-Strassen,
we would then say that the intrinsic complexity of multiplication is n log n log log n. In general, when
the upper and lower bounds on the complexity of any problem P meet (up to a constant multiplicative
factor) we have obtained a bound which is intrinsic4 to P . We may now (satisfactorily) interpret question
(1) as asking whether the intrinsic complexity of multiplication is greater than the intrinsic complexity
of addition. Since the intrinsic complexity of addition is easily seen to be linear, Cobham’s question
amounts to asking whether multiplication is intrinsically non-linear in complexity. (Most practitioners in
the field believe it is.) Generally, for any problem P , we may ask

(3) What is the intrinsic complexity of P?

It turns out that there is another very natural model of computers called Storage Modification Ma-

chines (see §5) which can multiply in linear time. This shows that complexity is relative to a given model
of computation. The student may recall that as far as the theory of computability goes, all reasonable
models of computation are equivalent: this is known as Church’s Thesis. But simplistic attempts to
formulate analogous statements in Complexity Theory would fail. For instance, there are problems which
can be solved in linear time in one model but provably take cn

2 (for some c > 0, for infinitely many n)
in another model. So a fundamental question is:

(4) Which model of computation is appropriate for Complexity Theory?
2Unless otherwise indicated, the reader may always take logarithms to the base 2. We shall see that the choice of the

base is inconsequential.
3Such proofs are known but are rare. For instance, the recent work of Robertson and Seymour on graph minors leads to

precisely such conclusions (see for example [18]). Indeed the situation could be more complicated because there are degrees
of explicitness.

4See section 8 for more discussion of this.

1.1. CENTRAL QUESTIONS 3

Perhaps there is no uniquely appropriate model of computation for Complexity Theory. This suggests
that we examine various models and discover their inter-relations. We shall see in section 7 that we can
recover some version of Church’s Thesis in Complexity Theory if we take some care in selecting models
and classifying them according to their ‘computational mode’.

This question about intrinsic complexity of a problem P begs another question:

(5) How should the input and output values of problems be encoded?

For instance, we have implicitly assumed that the multiplication problem has its inputs and outputs
as binary numbers. But other representations of numbers are conceivable and this choice can be shown
to affect the answer to (3). In section 4, we discuss this in more detail (it turns out that without a
proper theory of problems, few precise statements can be made about choice of encodings and we are
stuck with assumptions such as in the case of multiplication: each problem P comes equipped with a
definite encoding).

The discussion of the complexity of multiplication so far centers around speed of computation or
time. Time is an instance5 of a computational resource. We measure complexity in terms of the amount
of computational resources used up during a computation. Another natural resource is memory size or
space . (The high-school algorithm is seen to take quadratic space with usual hand-calculation but it can
easily be reduced to linear space.) We can imagine composite resources that combine time and space, for
instance.

(6) What are other natural computational resources and their inter-relations?

It is seen that time and space are related: assuming each step can access one new unit of space, the
amount of space used by an algorithm is no more than the amount of time consumed. However, there is a
fundamental difference between time and space: space, but not time, is reusable. There can be trade-offs
between time and space in the sense that an algorithm can run in less time only at the (unavoidable)
cost of using more space. Up to a degree, resources depends on the computational model.

The high-school multiplication algorithm exhibits an interesting feature not generally true of algo-
rithms: for all inputs of a given size, the algorithm executes the same number of steps. This is because
it has no ‘decision’ steps (e.g. ‘if x = 0 then · · · else · · ·’).6 The variety of well-known sorting algorithms
are examples of decision-making algorithms. For such algorithms the running time may vary for different
inputs of the same size. Then one has the choice of measuring the worst-case or the average-case time.
In other words, the method of aggregating the total resources used by the algorithm is an issue to be
decided in measuring complexity.

Another issue arises when we consider probabilistic computations where the algorithm makes random
decisions by ‘tossing a coin’. For a fixed input, different runs of the algorithm may produce different
outputs. We are then faced with defining a suitable notion of the ‘correct output’: this is not formidable
once we realize that the output can be a random variable.

We summarize the above discussion by saying that the complexity measure is a function of (a) the
model of computation, (b) the computational resources of interest, (c) the method of aggregating the re-
source usage and (d) the definition of the algorithm’s output (not to be confused with encoding the output
of a computation problem). Thus question (6) translates into a question about complexity measures.

The theory in this book will address these and other related questions. In the rest of this chapter,
we lay the foundations by discussing some issues of methodology. The assumptions of methodology are
embodied in conventions, definitions and notations. Whenever possible, we will isolate them with a letter
label ((A), (B), etc.).

5No pun intended.
6One can argue that the multiplication algorithm has decisions in the form of checking for carry bits. However, such

decisions are unessential for integer multiplication since we may assume that carry bits (possibly 0) are present at each step.
Nevertheless we can modify the algorithm to incorporate decision steps that are not so easily dismissed, such as to check if
one of its arguments is zero.

4 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

1.2 What is a Computational Problem?

The concept of a computational problem (or simply, problem) in informal language can take many meanings
and shades. Even restricting the concept to its use in Computer Science is too wide. The theory we
propose to develop takes the prototypical and simplest aspects only. This is a natural choice to start
with, and it is already enough to give us a rich and meaningful theory.

There are three main aspects of a problem in its natural context: (i) The problem statement, P.
(ii) The methods available for its solution, M . (iii) The criteria for evaluating and comparing different
solutions, C. The triple 〈P,M,C〉 may be called a problem-in-context. We will identify M with the model

of computation and C with the complexity measure. A solution to 〈P,M,C〉 is simply an algorithm in
M that satisfies the specifications of P and that is optimal or correct in the sense of C. It is not very
meaningful to discuss P without this context which may be implicit. In practice, it is not always easy to
separate a problem-in-context into the three components. Roughly speaking, P specifies the input-output
behavior (i.e., the relationship between any given input x with the output y of any purported algorithm
for this problem). Generally, M is dependent on P, and likewise C depends on both M and P. If M

′

(respectively, C
′) is different from M (respectively, C) then the two problems-in-context 〈P,M,C〉 and

〈P,M
′
, C

′〉 should really be considered different problems, even though they share a common P.
Let us illustrate the preceding discussion using the well-known example of sorting. Let P be the

sorting problem where, given a set X of integers, the problem is to ‘arrange the set into an ascending
sequence’. Three very different models of computation Mi (i = 1, 2, 3) have been extensively studied in
the literature.

M1: The comparison tree model where algorithms are finite binary trees whose nodes correspond to
comparisons.

M2: The tape merging model where algorithms wind and rewind tapes based on outcomes of comparing
the data at the front-ends of the tapes.

M3: The comparison network model where algorithms are directed acyclic graphs whose nodes (called
comparators) have in-degrees and out-degrees of 2.

The complexity measure studied is dependent upon the model: In M1, the goal is to minimize the
height of the binary trees. Depending on whether we consider ‘worst-case height’ or ‘average height’,
we get different measures. In M2, the criterion is to minimize tape motion (rather than the number of
comparisons, as in M1). In M3, the criterion is to minimize the number of comparators or to minimize
the length of the longest path.

Intuitively, P is the most fundamental of the three parameters 〈P,M,C〉, and we shall try to restrict
the use of the term ‘problem’ to mean P alone. This is not entirely possible but we shall largely get by
with the (mild) myth that our problems P do not imply any particular M or C. So the task that confronts
us after the preceding clarifications, is to formalize P, this notion of ‘problem-in-the-restricted-sense’. Let
us begin by listing some typical problems in Computer Science:

(i) (Rubik’s puzzle) For any given configuration of the Rubik’s Cube, find the least number of moves
required to get to the configuration which is monochromatic on each face. This is a finite problem

since there are a finite number of possible input configurations.

(ii) (Fibonacci numbers) Let f(n) be the nth Fibonacci number. The sequence of Fibonacci numbers
is 0, 1, 1, 2, 3, 5, 8, For each input n, the problem is to compute f(n). This is an instance of
computing a number theoretic function7. In fact, recursive function theory uses number theoretic
functions as the basic objects of study.

7A number theoretic function f is a partial function from the natural numbers 0, 1, 2, . . . to natural numbers. Note that
the ancients do not regard zero as a natural number, although mathematicians have more and more come to regard it as
natural. We take the modern viewpoint in this book.

1.2. WHAT IS A COMPUTATIONAL PROBLEM? 5

(iii) (Planarity Testing) For each graph G, the problem is to decide if G is planar (i.e., embeddable in
the plane). This is an example of a decision problem where the algorithm has to decide between
a ‘yes’ and a ‘no’ answer. Alternatively, this is called a recognition problem where we interpret
the algorithm as trying to recognize those inputs representing planar graphs.

(iv) (Linear Programming) For each m by n matrix A and an n-vector c, find any n-vector x such
that Ax ≥ 0 and c · x is maximized. If there are no x satisfying Ax ≥ 0, or if c · x is unbounded,
indicate so. (We assume that m and n can vary and are part of the input.) This exemplifies the
class of optimization problems which typically arise in the field of Operations Research.

(v) (Element identification) For each input set X of integers, |X| < ∞, construct a data-structure
D(X) such that queries Q of the form: ‘Is x in X?’ can be rapidly answered using D(X). This
is an instance of a preprocessing problem where the inputs are given in two stages and separate
algorithms are involved in each stage. In the first stage we have an algorithm A to ‘preprocess’
the input X. In the second stage, we have an algorithm B which uses the preprocessed structure
D(X) to answer queries about X. If X comes from some linear order, then a typical solution to
this ‘element identification problem’ builds a binary search tree to serve as D(X) and uses a binary
search tree algorithm for the second stage. Many preprocessing problems arise in Computational
Geometry. For example: Given a set X of points in the plane, construct D(X). We want to
use D(X) to quickly answer queries of the form: “Retrieve the subset of points in X that are
contained in a given half-plane H” (It turns out that we can build a D(X) that uses linear space
and answer queries on D(X) in logarithmic time.)

How can we hope to build a theory that encompasses such a wide variety of problems? The key is that
any problem that can be solved mechanically by a computer is ultimately encodable into a finite sequence
of symbols, where the symbols come from some arbitrary but fixed finite set Σ. This is essentially the
argument used by Turing in his celebrated paper [32] in which the machines now bearing his name were
introduced.

A finite set Σ of symbols is called an alphabet. A finite sequence of symbols from Σ is called a word

over Σ. The set of all words over Σ is denoted by Σ∗. A subset L of Σ∗ is called a language over Σ. The
empty sequence, denoted ε, containing no symbols is also a word. The length of a word w is denoted |w|.8

Thus |ε| = 0. We shall embody (part of) the Turing analysis in the following convention.9

(A) The input and output objects of a problem are words over some arbitrary but fixed al-
phabet.

We could have allowed different alphabets for the input and output objects but this is not essential.
For each problem P in (i-v) above, we chose some encoding of the input and output domains of P into Σ∗.
In (i), we may encode each Rubik cube configuration by specifying for each face (in some predetermined
order) the colors of each square on the face. The answer encodes a sequence of moves, where we must
choose a systematic representation for the cube faces and their rotations. In (ii), we may use binary
numbers to encode natural numbers. Note that each of problems (i) and (ii), after the choice of a suitable
encoding, becomes a function f : Σ∗ → Σ∗. In (iii), a graph G is represented by the list (in any order)
of its edges. The problem of testing for planar graphs may now be represented as a language L over Σ
where a word w is in L iff w represents a graph G which is planar. In (iv), we have to be more careful. In
mathematics, the problem usually assumes that the entries of the matrix A, vectors c and x are arbitrary
real numbers. For computational purposes, we will assume that these are rational numbers of arbitrary
precision. (In general, replacing real numbers by rationals affects the nature of the problem.) The linear

8In general, there ought to be no confusion over the fact that we also use | · | to denote the absolute value of a real number
as well as the cardinality of a set: it will be clear from context whether we are discussing strings, numbers or sets. One case
where this overloading of notation might be confusing will be noted when it arises.

9This is analogous to the situation in computability theory where we have the arithmetization or Gödelization of machines.
Thus (A) amounts to the ‘arithmetization of problems’.

6 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

programming problem can be encoded as a binary relation R ⊆ Σ∗ × Σ∗, where (w, v) ∈ R iff w encodes
an input (A, c) and v encodes an output vector x such that c · x is maximized, subject to Ax ≥ 0. In
(v), we may represent X by a sequence of binary numbers. We then encode the element identification
problem as a 3-ary relation R ⊆ Σ∗ × Σ∗ × Σ∗ where (u, v, w) ∈ R iff u encodes a set X, v encodes a
query on X, and w encodes the answer to the query.

Finite problems such as (i) are usually of little interest to us. Once the encoding is fixed, we find that
different problems can have different forms: language in (iii), functions in (i) and (ii), and relations in
(iv) and (v). (Note that this is in order of increasing generality.) Which is the appropriate paradigm? It
turns out that we choose the simplest form:

(B) A problem is a language.

This answers the question posed as the title of this section.10 However, it is far from clear that (B)
will be satisfactory for studying problems that are functions or relations. The sense in which (B) is
reasonable would hopefully be clearer by the end of this chapter. Before we see some deeper reasons (in
particular in §8.2, and also §2 of chapter 3) for why (B) is a reasonable choice, it is instructive to first
note a simple connection between recognition problems and functional problems.

Consider the following recognition problem: given a triple (x, y, z) of binary numbers, we want to
recognize if xy = z. This problem is obtained by a transformation of the functional problem of multipli-
cation, and it is easy to see that the transformation is completely general. Clearly an algorithm to solve
the functional multiplication problem leads to a solution of this problem. It is not obvious if there is a
converse, that is, a solution to the recognition problem will lead to a solution of the functional problem.
Fortunately, a slight modification of the recognition problem does have the desired converse (Exercises).
Part of the justification of (B) hinges upon such an ability to convert any functional problem of interest
to a corresponding recognition problem, such that their complexity are closely related.

1.3 Complexity Functions and Asymptotics

Definition 1 Let f be a partial function from R real numbers R ∪ {∞} (the extended reals). If f(x) is
undefined, we write f(x) ↑, otherwise write f(x) ↓. Note that f(x) ↑ is distinguished from f(x) = ∞.
We call f a complexity function if f is defined for all sufficiently large natural numbers. The complexity
function is finite if f(x) <∞ whenever f(x) is defined.

Let us motivate some decisions implicit in this definition. For each algorithm A and computational
resource R, we can associate a function fA,R(n) (or, simply fA(n) if R is understood) such that for inputs
of size n, the algorithm uses no more than fA(n) units of R and for some input of size n, the algorithm
uses exactly fA(n) units of R. By definition, fA(n) =∞ if the algorithm uses an unbounded amount of
R on some input of size n. We also specify that fA(x) is undefined for x not a natural number.

The definition of complexity functions is basically intended to capture such functions as fA. Usually,
the domain and range of fA is the set of natural numbers. So why do we extend these functions to real
numbers (and artificially allow them to be undefined at non-natural numbers). First, range of fA need not
be natural numbers if fA(n) measures the average use of resource R over all inputs of length n. Next, the
function fA may be quite bizarre or difficult to determine exactly; for many purposes, it suffices to get an
upper bound on fA using some nicer or more familiar functions. For instance, it may be enough to know
fA(n) ≤ g(n) where g(x) = x

2, even though fA(n) is really n
2 − 3 log n + 4.5e−n. These nicer functions

are usually defined over the reals: for instance, g(x) = log2 x or g(x) = x
1/2. Many of these functions

(logarithms, division) are partial functions. We could artificially convert a function such as g(x) =
log2 x into a number theoretic function by restricting its domain x to be natural numbers and redefining

10Earlier we said that the study of computational problems is relegated to the background in Complexity theory: we see
this embodied in assumptions (A) and (B) which, together, conspire to strip bare any structure we see in natural problems.
Of course this loss is also the theory’s gain in simplicity.

1.3. COMPLEXITY FUNCTIONS AND ASYMPTOTICS 7

g(n) := dlog2 ne (this is sufficient for upper bounds). But this destroys natural smoothness properties, and
becomes awkward when forming the functional composition of two such functions, (g1◦g2)(x) = g1(g2(x)).
(Composition of complexity functions is important because it corresponds to certain subroutine calls
between algorithms.) Our solution to these requirements is to let the domain of g be reals, and for g to
be defined at as many values as convenient. In practice, complexity functions tend to be non-negative
and monotonically non-decreasing, for sufficiently large values of its arguments.

The complexity function fA appears to have properties that are unessential or incidental to the
problem for which A is a solution. There are three reasons for this: (a) First, the behavior of fA for
initial values of n seems unimportant compared to the eventual or asymptotic behavior of fA(n). To see
this, suppose that fA(n) is “unusually large” for initial values of n. For instance, fA(n) = 101000 for n < 20
and fA(n) = n otherwise. We could replace A by another B which does a ‘table look-up’ for the first 100
answers but otherwise B behaves like A. Under reasonable assumptions, B uses almost no resources for
n ≤ 100, so fB(n) is small for n ≤ 100. Since B is essentially A, this illustrates the incidental nature of
initial values of fA. (b) Second, most algorithms have some degree of model independence which we would
like to see reflected in their complexity. For instance, the essential idea of the “mergesort algorithm” (or
substitute your favorite algorithm) is generally preserved, whether you implement it in Pascal or C/C++
or some more abstract computational model. This fact shows when you analyze the complexity of the
algorithm under each of these models: they are all related by a constant factor. (c) Third, even when
we fix a particular model of computation, it turns out that one can often “speed-up” an algorithm A by
desired any constant factor, without essential change to the algorithmic ideas. We will see this in Chapter
2 for the Turing machine model, where any algorithm A can be modified to another B such that each
step of B imitates about 1/c steps of A. We would like fA and fB to be regarded as as equivalent.

These considerations lead us to the next two definitions.

Definition 2 Let f, g be complexity functions. We say f dominates g if there exists a positive constant
n0 such that for all n ≥ n0, g(n) ≤ f(n) whenever both sides are defined. We have a notation for this:

f ≥ g(ev.)

(and read “f ≥ g eventually”). If F and G are two sets of complexity functions, we say F dominates G

if for each g ∈ G there is an f ∈ F that dominates it.

The eventually notation is quite general: if R(x) is a predicate on real numbers x in some domain
D ⊆ R, then we say “R(x) eventually” if there is some x0 such that for all x ∈ D, x ≥ x0 implies R(x)
holds.

The next definition/notation is of fundamental importance in complexity theory. There are several
alternative formulations of this notation which dates back to Du Bois-Reymond (1871) and Bachmann
(1894); and Knuth’s[21]. We chose a variant [7] that seems particularly useful:

Definition 3 (The O-notation) For any complexity function f , O(f) denotes the set of all complexity
functions g such that for some positive constant C = C(g),

0 ≤ g ≤ C · f(ev.).

Note that O(f) is empty unless f ≥ 0(ev.). If F is a set of functions, O(F) denotes the union over all
O(f) for f ∈ F . We read ‘O(F)’ as ‘big-Oh of F ’ or ‘order of F ’.

We extend this definition to recursively defined expressions.

Syntax and semantics of O-expressions. The set of O-expressions is defined by the following recur-
sive rule. Let n be a real variable11, f be any symbol denoting a complexity function, and c any symbol

11The literature uses ‘n’ for the variable of (univariate) complexity functions, in part because domains of complexity
functions are often restricted to natural numbers. We continue to use ‘n’ with complexity functions even though we intend
to let n range over all real numbers.

8 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

that denotes a real constant. The following are O-expressions:

Basis: f, n, c

Induction: O(E), E + F, E − F, E · F, E
F
, E ◦ F.

where E,F are recursively defined O-expressions. If E is the symbol f , we may write ‘f(F)’ instead of
‘f ◦ F ’ (◦ denotes functional composition). We may freely introduce matching parentheses to improve
readability.

Note an O-expression need not contain any occurrences of the symbol ‘O’. An O-expression that
contains some occurrence ‘O’ is called an explicit O-expression; otherwise it is an implicit O-expression.

The following are some O-expressions.

3 + 2n
, n + O(n−1 + log(n) + 5), O(n2) + logO(1)

n, f
O(g)

, (f(g))h
2
.

Here ‘1’ denotes the constant function, f1(n) = 1 for all n; ‘n’ denotes the identity function ι(n) = n, etc.
Each O-expression E denotes a set [E] of complexity functions. We define [E] recursively: (Basis) If

E = f is a function symbol, then [f] is the singleton set comprising the function denoted by f . Similarly
if E = n or E = c, [n] = {ι} and [c] = {fc} where fc(n) = c. If E = O(F) then [E] is defined to be
O([F]), using definition 3 above. The semantics of the other O-expressions are the obvious ones:

[E ◦ F] := {e ◦ f : e ∈ [E], f ∈ [F]}, [E + F] := {e + f : e ∈ [E], f ∈ [F]}, etc.

Henceforth, we intend to commit the usual linguistic abuse, by letting symbols (syntactical objects)
such as f and c stand for the functions (semantical objects) that they denote, when the context demand
a function rather than a symbol. This abuse should not lead to any confusion.

The main use of O-expressions is this: If F is an O-expression and E is an explicit O-expression, we
may say

‘F is E’ and write ‘F = E’.

This simply means that [F] ⊆ [E]. An important special case is where F = f and E = O(g) where f, g

are function symbols. For instance, if t(n) denotes the time complexity of the high school multiplication
algorithm then we may write ‘t(n) = O(n2)’. Note that we restrict E to be an explicit O-expression since
there is potential for confusion otherwise.

The use of the equality symbol in this context is clearly an abuse of our usual understanding of
equality: we do not regard ‘E = F ’ and ‘F = E’ as interchangeable. Thus O(n2) = O(n3) is true but
O(n3) = O(n2) is not. For this reason, the equality symbol here is called the one-way equality.

A corollary of the inclusion interpretation of the one-way equalities is this: an inequality involving
O-expressions is to be interpreted as non-inclusion ‘6⊆’. Thus ‘n log n 6= O(n)’ is true but ‘n 6= O(n log n)’
is false.

Some authors avoid the one-way equality symbol by writing the more accurate form

‘F ⊆ E’

or, in the case F is a function symbol f , ‘f ∈ E’. We shall not use this alternative form.

Example 1 Further examples of usage:

(i) The O-expressions O(1), O(n) and n
O(1) denote, respectively, the set of all functions that are

dominated by constants, by linear functions and by polynomial functions. For instance, 1
1+n2 = O(1)

but 1
n
6= O(1). Strictly speaking, 1

1+n2 and 1
n

are not O-expressions since we do not allow division.

(ii) Depending on the context, the appearance of an O-expression may sometimes denote a set of
functions, rather than as denote some unspecified member in this set. For instance, when we write
NP = NTIME(nO(1)), we intend to use the full set of functions denoted by the expression “O(1)”.
This is a potential pitfall for students.

1.3. COMPLEXITY FUNCTIONS AND ASYMPTOTICS 9

(iii) By the non-inclusion interpretation, f 6= O(g) means that for all c > 0, there are infinitely many
n such that f(n) > cg(n). There is, however, a useful intermediate situation between f = O(g) and
f 6= O(g): namely, there exists c > 0 such that for infinitely many n, f(n) > cg(n). Below, we will
introduce a notation to express this.

(iv) The O-notation factors out unessential features of complexity functions: thus we say ‘f(n) =
O(log n)’ without bothering to specify the base of the logarithm.

(v) The notation saves words: we simply write ‘f(n) = n
O(1)’ instead of saying that f(n) is domi-

nated by some polynomial. It also conserves symbols: we say ‘f(n) = O(1)n’ instead of saying that
there exists n0, c > 0 such that f(n) ≤ c

n for all n ≥ n0. Thus we avoid introducing the symbols c

and n0.

(vi) It is handy in long derivations. For example,

n + O(n−1) = n + O(1) = O(n) = O(n2).

A subscripting convention.
12 We augment the O-notation with another useful convention:

(i) It often occurs that we want to pick out some fixed but non-specific function f
′ in the set O(f),

depending on some parameter α. Then we write Oα(f) to refer to this f
′. If f

′ depends on several
parameters α, β, . . . then we write Oα,β,...(f). An O-expression is fully subscripted if each occurrence
of ‘O’ is subscripted. So a fully subscripted O-expression refer to a single function.

(ii) As an extension of the one-way equality, the ‘equality symbol’ between two fully subscripted O-
expressions denotes domination between two functions. For instance, we write ‘g = Oα(f)’ to
indicate that g is dominated by some f

′ ∈ O(f) whose choice depends on α. There is much room
for syntactic ambiguity and we assume common sense will avoid such usage (for instance, an implicit
O-expression E is, by definition, fully-subscripted and it would be confusing to write ‘g = E’).

(iii) Sometimes we want to annotate the fact that among the various occurrences of an O-expression,
some refers to the same function. We may use subscripts such as O1, O2, etc., as an ‘in-line’ device
for showing this distinction.

Example 2 We illustrate the subscripting convention.

(i) We say an algorithm A runs in time OA(n) to mean that the running time is dominated by kn

for some k depending on A.

(ii) We could write n2k = Ok(n) as well as n2k = On(2k), depending on the context.

(iii) Suppose g(n) = O1(n
2 log n) and f(n) = O2(n) + 3O1(n

2 log n). The two occurrences of ‘O1’
here refer to the same functions since they subscript identical O-expressions. Then we may write
their sum as f(n) + g(n) = O2(n) + 4O1(n

2 log n) = O3(n
2 log n).

(iv) We emphasize a fully-subscripted O-notation no longer denotes a set of functions. Hence it is
meaningful to write: ‘O1(f) ∈ O(f)’.

(v) We illustrate a more extensive calculation. The following recurrence arises in analyzing the
running time T (n) of certain list manipulation algorithms (e.g., the ‘finger tree’ representation of
lists in which we admit operations to split off prefixes of a list): T (1) = 1 and for n ≥ 2,

T (n) = max
1≤i<n

{T (i) + T (n− i) + log min{i, n− i}}

12This convention is peculiar to this book.

10 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

To see the subscripting convention in action, we now prove that T (n) = O1(n) − O2(log(2n)). If
n = 1, this is immediate. Otherwise,

T (n) = max
1≤i<n

{O1(i)−O2(log(2i)) + O1(n− i)−O2(log(2(n− i)))

+ log min{i, n− i}}

= max
1≤i<n

{O1(n)−O2(log(2i)) −O2(log(2(n− i))) + log min{i, n− i}}

≤ max
1≤i≤n/2

{O1(n)−O2(log(2i)) −O2(log(2(n− i))) + log i}

(since the expression is symmetric in i and n− i)

= O1(n)− min
1≤i≤n/2

{O2(log(2(n− i)))}

(we may assume O2(log(2i)) ≥ log i)

= O1(n)−O2(log n)

Note that we have used “≤” in the above derivation. This is something we would not write without
the accompanying subscripting convention.

We shall have occasion to use four other related asymptotic notations, collected here for reference:

Definition 4 (Other asymptotic notations)
(i) Ω(f) denotes the set of functions g such that there exists a positive constant C = C(g) such that
C · g ≥ f ≥ 0(ev.).

(ii) Θ(f) denotes the set O(f) ∩ Ω(f).
(iii) o(f) denotes the set of all g such that for all C > 0, C · f ≥ g ≥ 0(ev.). This implies that ratio

g(n)/f(n) goes to zero as n goes to infinity. Also o(f) ⊆ O(f).
(iv) ω(f) denotes the set of all g such that C · g ≥ f ≥ 0(ev.). This implies the ratio g(n)/f(n) goes

to infinity as n goes to infinity.

These notations are used in ways analogous to that in O-notations; in particular, we use one-way
equalities such as ‘f = o(g)’. The subscripting convention extends to the these notations. The O-notation
and the Ω-notation are inverses in the sense that

f = O(g) ⇐⇒ g = Ω(f).

Similarly,
f = o(g) ⇐⇒ g = ω(f).

To verbally distinguish the O-notations from the o-notations, we also call them the “Big-Oh” and the
“Small-Oh” (or, “Little-Oh”) notations, respectively. Clearly, f = o(g) implies f = O(g). Also f = Θ(g)
iff g = Θ(f) iff f = O(g) and g = O(f).

We sometimes call the set O(f) the big-Oh order of f , and if g = O(f), we say g and f have the same

big-Oh order. Similarly, Θ(f) is the big-Theta order of f , etc.
We warn that incorrect usage of these less-frequently used asymptotic notations is common. Further-

more, they are sometimes given rather different definitions. For instance, in [1] ‘Ω(f)’ denote the set of
functions g such that for some c, g(n) ≥ cf(n) for infinitely many n. (This is the intermediate situation
between g = O(f) and g 6= O(f) mentioned above.) But notice that ‘g = Ω(f)’ under the definition of
[1] is recaptured as our notation

g 6= o(f).

Although we seldom use this concept in this book, it is a typical situation that obtains when one proves
“lower bounds” in concrete complexity.

1.4. SIZE, ENCODINGS AND REPRESENTATIONS 11

Three final notes on usage:
(a) Clearly we could introduce Ω-expressions, etc. The meaning of mixed asymptotic expressions such
as O(n2) + Ω(n log n) can also be defined naturally. A proper calculus of such expressions needs to be
worked out. (Exercises) Fortunately, there seems to be little need of them.
(b) The reader must have noticed the similarities between the expression f = O(g) and the inequality
x ≤ y.13. In fact, the similarities extend to the other notations:

f = O(g), f = Θ(g), f = Ω(g), f = o(g), f = ω(g)

are analogous (respectively) to the inequalities

x ≤ y, x = y, x ≥ y, x << y, x >> y

on real numbers x, y. Such analogies has has led to expressions such as

f ≤ O(g), f ≥ Ω(g).

This could lead to trouble14 since one is next tempted to manipulate these expressions under the usual
rules of inequalities. On the other hand, a fully subscripted O-expression (say) refers to a particular
function and inequalities involving such an expression can be interpreted as domination and manipulated
confidently: for instance, we do not consider the expression n

2 ≥ O1(f(n)) to be inappropriate. In short,
we never use inequality symbols ≤ or ≥ with expressions that contain unsubscripted occurrences of the
O-notation.
(c) One could extend the definition of complexity functions and all the associated asymptotic notation to
admit multiple parameters such as f(m,n). This becomes necessary when discussing complexity classes
defined by several simultaneous resource bounds.

Additional Notes: See Hardy and Wright [14] for the treatment of similar notations. Knuth’s
original definition of the O-notation goes as follows: g = O(f) if there are constants n0 and c > 0 such
that for all n > n0, |g(n)| ≤ c · f(n). Our definition departed from Knuth (who is closer to the classical
precedents) in that we use g(n) instead of the absolute value of g(n) in the above inequality. Our choice
seems to be sufficient for most applications and easier to use. Like Knuth, however, we do not take the
absolute value in the Ω-notation; Knuth explains the asymmetry by thinking of ‘O’ as referring to the
neighborhood of zero and ‘Ω’ as referring to a neighborhood of infinity. For an updated discussion of
these notations, see [34] [3] [12].

1.4 Size, Encodings and Representations

Complexity is a function of the size of the input. In the natural setting of certain problems, a correct
choice for the size parameter is often not obvious. For example, let D be the set of square matrices with
rational entries. An n× n matrix M in D has three candidates for its size: its dimension n, the number
of entries n

2, and the total number of bits to represent all the entries. The convention (A) above removes
this problem: if the matrix M is encoded as a string w over Σ, then we define the size of M to be |w|. In
general, let D be any (mathematical) domain (such as matrices, integers, finite graphs, etc). An encoding

of D is a function e : D → Σ∗ (for some alphabet Σ) that is one-one. Relative to e, the size of x ∈ D is
simply defined as |e(x)|.

The use of encoding solves the problem of defining size but it introduces other issues. In particular, the
complexity of the problem depends on the choice of encoding. We may be willing to accept two different
encodings of the same mathematical problem as really two distinct computational problems, but that is
perhaps too easy a way out. This is because two encodings may be different for rather trivial reasons:

13For instance, viewing “f = O(g)” as a binary relation, then reflexivity (f = O(f)) and transitivity (f = O(g), g = O(h)
imples f = O(h)) holds. Even anti-symmetry holds: f = O(g), g = O(f) imples f = Θ(g).

14As indeed has happened in the literature.

12 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

for instance, suppose each input x to a problem P is encoded by a word e(x) ∈ Σ∗, and the complexity
of P under the encoding e is f(n). For any constant k > 0, we can choose another encoding e

′ such that

for each input x, |e′(x)| ≤ |e(x)|
k

(how?). With reasonable assumptions, we see that the complexity of the
problem under e

′ is g(n) = f(n/k). In this sense g(n) and f(n) are essentially the same.15

The next problem with encodings is that e : D → Σ∗ may not be an onto function so a certain
word w ∈ Σ∗ may not encode any element of D. Let us call w well-formed if it does encode some x in
D; otherwise w is ill-formed. Should we assume that the algorithm need only restrict its attention to
well-formed inputs? If so, the complexity function becomes undefined at those values of n where there
are no well-formed inputs of length n. (For example, if D is the set of square boolean matrices and e

encodes a boolean matrix in row-major order i.e. listing the rows where successive rows are separated by
a marker symbol, then all well-formed inputs have length n

2 + n− 1.) To simplify things somewhat, we
make the following decision:

(C) All words in Σ∗, well-formed or not, are possible inputs.

This decision is inconsequential if the set of well-formed words can easily be recognized: in many
problems, this is indeed the case. Otherwise, given an algorithm that works on only well-formed words,
we modify it to work on all inputs simply by attaching on the front-end a ‘parsing phase’ to screen the
inputs, rejecting those that are not well-formed. If this parsing phase is expensive relative to the actual
computation phase, then the complexity of this problem may turn out to be an artifact of the encoding.
In section 5.3 we shall see examples where the parsing complexity is intrinsically high. In any case, the
abandonment of (C) should lead to interesting variants of the theory.

One way to avoid an intrinsically hard parsing problem is to generalize the notion of encodings by
allowing several words to represent the same object. More precisely, a representation r of a domain D

over Σ is an onto partial function

r : Σ∗
→ D.

We call w ∈ Σ∗ an r-representative of x if r(w) = x. The fact that r is onto means that every object has
at least one representative. Since r is a partial function, let us say w ∈ Σ∗ is well-formed or ill-formed

(relative to r) depending on whether r(w) is defined or not.

If r is also 1-1, then in fact the inverse of r is an encoding. We have two computational problems
associated with any representation r:

1. The r-parsing problem is the problem of recognizing well-formed words.

2. The r-isomorphism problem is the problem of deciding when two words w,w
′ are r-representatives

of the same element: r(w) = r(w′).

If r is in fact an encoding then the isomorphism problem is trivial. Thus, the use of representations
has simply shifted the parsing complexity to the isomorphism complexity. This suggests that there is an
inherent complexity associated with certain domains D in the sense that every representation of D has a
hard parsing problem or a hard isomorphism problem (Exercises).

It is clear that a representation r cannot be arbitrary if the notion of complexity is to be meaningful:
consider the following encoding of the domain D of finite graphs, and let P ⊆ D be the set of planar
graphs. If for G ∈ D, the first symbol in the encoding e(G) is ‘1’ iff G ∈ P , then clearly the encoding
e is rather contrived and particularly ill-suited for encoding the planarity testing problem. We have no
theoretical guidelines as to how representations must be restricted. Fortunately, it is not as sorry a state
of affairs as we might imagine. Despite the lack of a general theory, for most problems that arise, either

15This seems to argue for a notation for the set of all g such that g(n) = O(f(O(n))): denote this set by �(f). Thus
5n = �(2n) but not 5n = O(2n). The O- and �-notations coincide when restricted to polynomials. In Complexity Theory,
we should perhaps only distinguish complexity functions up to their �-order; after all complexity practitioners normally do
not distinguish between 5n and 2n.

1.4. SIZE, ENCODINGS AND REPRESENTATIONS 13

there is a consensus as to the natural representation to use, or else the different choices of representations
are equivalent in some sense. In the remainder of this section we show how this is so.

We give an initial informal criterion for choosing between various natural representations (without
actually resolving the issue of which representations are ‘natural’):

(D) Let r and r
′ be two natural representations for a problem P . Then r is to be preferred over

r
′ if the following holds:

(D1) The parsing problem for r is easier.
(D2) The isomorphism problem for r is easier.
(D3) The intrinsic complexity of P under r is more than that under r

′.

We would apply the criteria (D1-3) in the indicated order: for instance, if the parsing problem for r and
r
′ are equivalent, but the isomorphism problem for r is easier that for r

′, we would prefer r over r
′. If

criteria (D1-3) cannot distinguish between two representations, then it turns out that, in practice, there
is no reason to differentiate between them anyway.

We have seen the reasons for (D1, D2). Observe that (D2) implies that we should prefer encodings
over general representations. The intuitive reasoning for (D3) begins with the observation that some
representations are more compact (or, more succinct or efficient) than others. The intuitive notion of
the most compact representation of a problem seems to be meaningful, but the notion of least compact
representation does not. For, it is easy to imagine representations that introduce an arbitrary amount
of irrelevant data (‘padding’) or that are arbitrarily redundant. If a problem is encoded more compactly
than another, then the complexity of the more efficiently encoded one tends to be greater (not less!).
Hence (D3) rejects redundant or padded representations.

Example 3 The contrast between compact and non-compact representations is illustrated by the fol-
lowing results. Suppose we want to choose between two encodings of positive integers: the usual unary
encoding (a positive integer n is represented by a string of n zeroes) and the ‘exponential unary encoding’
(n is representated by a string of 2n zeroes). A well-known result of Minsky[23] says that every partial
recursive function can be computed by a 2-counter machine (see exercises in chapter 2 for a definition
of counter machines), assuming the exponential unary encoding of numbers. A less well-known result,
independently obtained by Schroeppel[31] and by Frances Yao[35] says that no 2-counter machine can
compute the function f(n) = 2n, assuming the unary encoding of numbers. Now by criteria (D1) and
(D2), there is no distinction between these two encodings. But (D3) says the usual unary encoding is
preferable.

Despite the ad hoc nature of (D), we are able to use it in some common examples illustrated next.

1.4.1 Representation of Sets

Suppose D
′ is the domain of finite subsets of another domain D, and e : D → Σ∗ is an encoding of D.

We can extend e to a representation r of D
′: let # be a symbol not in Σ. The word

e(x1)#e(x2)# · · ·#e(xk) (1)

is called a standard representative of X = {x1, . . . , xk} ∈ D
′, provided x1, . . . , xk are distinct. Since the

order of the xi’s are arbitrary, X has k! (k factorial) standard representatives. If e(x1), . . . , e(xk) are
in ascending lexicographical order (assuming an arbitrary but fixed ordering on Σ) then (1.1) is unique
and is called the canonical encoding of X. If e were a representation to begin with, then the standard
representation of D

′ is still well-defined but the canonical encoding is not well-defined.
Consider the problem of recognizing membership in P where P ⊆ D

′. Let

Lc = {e′(x) : x ∈ P}

14 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

where e
′ is the canonical encoding, and

Ls = {w : w is a standard representative of some x ∈ P}.

Both Lc and Ls appear to be natural, so we attempt to distinguish them using the criteria (D). Let fc

and fs be the complexity of Lc and Ls (respectively). Under reasonable assumptions, it is seen (Exercise)
that fc and fs are related as follows:

fc ≤ fs + f0 (2)

fs ≤ fc + f1 (3)

where f0 is the complexity of deciding if a word of the form (1.1) is in ascending order, and f1 is the
complexity of sorting a sequence of words e(x1), . . . , e(xk) given in the form (1.1) into ascending order.
Now in typical models of computation and complexity measures, we have

f0(n) = O(n) and f1(n) = O(n log n).

If fc and fs are Ω(n log n), then (1.2) and (1.3) implies that fc = Θ(fs), i.e., they are indistinguishable in
the sense of (D). This is a reassuring conclusion: it does not matter which representation of sets is used,
provided Lc and Ls have large enough complexity. We will adopt the convention:

(E) Sets are given by their canonical or standard representation.

1.4.2 Representation of Numbers

The usual choice for representing natural numbers 1, 2, 3, · · · is the k-ary (k ≥ 1) notation over the
alphabet Σ = {0, 1, 2, . . . , k − 1}. Clearly the unary (k = 1) notation is an encoding but for k > 1, we
only have a representation since a prefix string of zeroes does not affect the value of a k-ary number.
In this latter case, we can get an encoding by restricting the k-ary numbers to those that begin with a
non-zero symbol. Note that criteria (D1-2) do not distinguish the various choices of k, so we need to test
with (D3).

Consider the problem of recognizing a set P of natural numbers (such as the set of primes: 2, 3, 5, 7, 11, 13, · · ·).
Let Lk ⊆ {0, 1, . . . , k − 1}∗ be the set of k-ary numbers in P and fk be the complexity of Lk. Consider
the k- and l-ary encodings for any fixed k, l > 1. Then

fk(n) = O(fl(n)) + O(n2). (4)

This comes from the fact that (using reasonable computational models) there are algorithms convert-
ing between k-ary and l-ary notations that run in O(n2) time. Furthermore, for all natural numbers m,
if v and w are k-ary and l-ary numbers (respectively) encoding the same number m, then their lengths
are related by |v| = Θ(|w|)(= Θ(log m)). (Exercise) We conclude that all k-ary notations (k > 1) are
indistinguishable in the sense of (D) for problems with complexity Ω(n2).

Unfortunately the above result does not hold for the unary notation. We note an exponential dis-
crepancy between unary and k-ary (k ≥ 2) notations: if u (in unary notation) and v (in k-ary notation,
k > 1) represent the same integer, then |u| = Θ(k |v|). Therefore to convert a k-ary number v to a unary
number takes Ω(k|v|) time since this is the time just to write each output symbol. Therefore, if fk is
subexponential (i.e., fk(n) = ω(cn) for any c > 0) then f1 is a slower (sic) growing function than fk.
(What if fk is at least exponential?) Criterion (D) then says we must reject the unary notation. In
conclusion, the following convention will be used.

(F) Integers are encoded in k-ary for some k > 1.

1.4. SIZE, ENCODINGS AND REPRESENTATIONS 15

There are other representations of numbers besides k-ary notations. For example, from basic number
theory we know that each number greater than 1 has a unique decomposition into a product of powers
of distinct prime numbers. We may encode such a number by a sequence of non-negative integers (say
in binary notation) p1#x1#p2# · · ·#pk#xk where p1 < p2 < · · · < pk are primes and each xi ≥ 1. This
sequence represents the number p

x1
1 p

x2
2 · · · p

x2
k

. Multiplication under this encoding is linear time, but
addition seems hard. It is not easy to dismiss this notation as ‘unnatural’ (a number theorist may not
think so). We may then ask if addition is intrinsically harder than multiplication under this encoding, a
curious reversal of Cobham’s question in Section 1. This points out that the choice (F) at this point of
our understanding is somewhat ad hoc.

An equally reasonable alternative to (F) would be to assume the k-adic notation: for each k ≥ 1, we
have an isomorphism between the strings over Σ = {1, . . . , k} and the non-negative numbers where the
correspondence is given by

a0a1 · · · an ∈ Σ∗
↔

n
∑

i=0

aik
i(n ≥ 0).

In other words16, k-adic notation differs from k-ary notation only in its use of the integers {1, . . . , k}
instead of {0, . . . , k− 1}. The k-adic notation avoids the well-known problem of non-uniqueness of k-ary
notation.

1.4.3 Representation of Graphs

In graph theory, two different graphs g and g
′ are usually identified if they are isomorphic, i.e., the actual

identity of the nodes is considered unimportant. In Computer Science, we normally distinguish between
g and g

′. To emphasize this distinction we say that graph theory treats unlabeled graphs while Computer
Science treats labeled graphs. In this book, the word graph always denotes an undirected, labeled graph;
we permit self-loops but not multiple edges in our graphs. There are three well-accepted methods of
representing graphs: (1) Adjacency matrices. (2) Adjacency lists. (3) Edge lists (i.e., lists of unordered
pairs of vertices). It is not hard to see that these three representations are interconvertible in time O(n2)
in most reasonable models, where n is the number of nodes in the graph. This amounts to a linear
time conversion for dense graphs (i.e., with Ω(n2) edges) but in any case at most quadratic time. Thus
criterion (D) justifies the following.

(G) Graphs are represented using any of the three representations of adjacency matrix, adja-
cency list or edge list.

Now consider the problem of representing unlabeled graphs. We can use a representation where each
encoding e(g) of a labeled graph g (using any of the above 3 methods) is said to be a representative of its
unlabeled counterpart G. Thus the unlabeled graph G has n! representations. The isomorphism problem
for this representation is the well-known problem of graph isomorphism for which no polynomial time
algorithm is known. So this is somewhat unsatisfactory. On the other hand, we can define an encoding of
G by using a canonical labeling of G: let g be the labeled version of G such that e(g) is lexicographically
minimal among all other labelings of G. There is theoretical evidence that the parsing problem in this
case is hard, and using criteria (D1), this canonical encoding should be rejected in favor of the previous
representations. Perhaps it is not our inability to find representations with easy isomorphism problems or
encodings with easy parsing problems, but that such representations simply do not exist. This suggests
the problem of classifying mathematical domains (using the tools of mathematical logic) according to ‘the
inherent complexity of their representations’. Other domains whose representations have apparently large
complexity include many groups and rings. Specifically, the representation of multivariate polynomials (a
basic example of rings) is an important one with repercussions in the attempts to classify the complexity
of algebraic problems such as polynomial factorization.

16The term ‘unary’ as it is normally used is really a misnomer: it should be ‘unadic’. With this warning, we will perpetrate
the abuse. It seems that Quine [26] is one of the first to use this notation.

16 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

In summary, in this section we made a critical decision (C) to allow all inputs, and we gave some
informal criteria for how to use our theory (namely, how to represent a problem so that the notions of
size has some natural meaning). As for decision (C), we are well-aware of its shortcomings. We will
see instances where we would like to analyze the complexity of an algorithm A relative to some proper
subset of possible inputs. For instance, if A is used to operate on the outputs of another algorithm A

′

(this happens when we study reducibilities, where we use A
′ reduce another problem to the problem

solved by A). As for the questions of representing problems, we have seen that for many problems with
sufficiently large complexity (in the cases examined, complexity of Ω(n2) is enough) any of a number of
natural representation are equivalent (relative to criterion (D)). In the rest of this book, when we discuss

natural problems involving numbers, sets or graphs, we normally will not be explicit about their represen-

tation because of the preceding conclusions (assumptions (E),(F) and (G)). For the interested reader, the
following is a very incomplete list of additional references on the relationship between representation and
complexity: [33], [22], [19].

1.5 Models of Computation

The theory of computability [28] begins with the fundamental question:

(1) What is the concept of computability?

For definiteness, assume we ask this question of number theoretic functions. Naturally, ‘computable”
must be defined in the context of some suitable formal system F of computing devices. It must be
emphasized that we require F to be “sufficiently general” in the sense that any function that we all
intuitively understand to be computable should be computable within the formalism of F . For instance,
we intuitively believe that the multiplication of two numbers, the function f(n) that produces the sum
of the first n primes, the function f(n) = b

∫

n

a=0 x
3
dxc should be computable. Logicians interested in the

foundations of mathematics introduced different formalizations of F . The equational calculus of Herbrand

and Hilbert, the λ-definable functions of Church, the µ-recursive functions of Kleene and Gödel, and the
machines of Turing are among these formalisms. For each F , we now have the concept of F -computable
functions. It turns out to be natural to extend the concept to partially F -computable functions. The
pleasant surprise is that for any two of these formalisms F and F

′, one can prove that a function is
(partially) F -computable if and only if it is (partially) F

′-computable. These discoveries are elevated
into a general law called Church’s thesis17 [4]: for all general computational formalisms, the concepts of

computable and partially computable are invariant. We have now provided a satisfactory answer to (1).
Furthermore, we conclude that all partially computable functions can effectively be enumerated (since

we can clearly list, say, all Turing machines and conclude from Church’s thesis that all partially com-
putable functions are thereby named). It is not hard to use an older diagonalization argument due to
Cantor to conclude that there exists an uncomputable function. In 1931, Gödel[10] showed that the
validity of statements in number theory is undecidable. This landmark discovery demonstrates that un-
computable functions not only exist, but occur naturally.18 Such discoveries give rise to a central theme
of computability theory:

(2) Which functions are computable and which are not?

Note that this question makes sense because of Church’s thesis. Extending this fundamental dis-
tinction, logicians went on to classify the uncomputable problems into ‘degrees of uncomputability’.

17Also called the Church-Turing Thesis. Note that, as “discoveries”, we have a collection of descriptive statements. But as
a law, it carries a prescriptive weight – henceforth any new formalism F ′ that diminishes or enlarges the class of computable
functions is inadmissible.

18It seems that the existence of such functions per se seems uninteresting unless one can show ‘natural’ examples. There is
an analogous situation in Complexity Theory: although we already know from the work of Hartmanis that there are arbitrarily
hard-to-recognize languages, greater interest was generated when Meyer and Stockmeyer showed that such languages occur
naturally. See chapters 5 and 6. Another recent example in logic is the work Paris-Harrington in combinatorial number
theory.

1.5. MODELS OF COMPUTATION 17

Unfortunately, they rarely try to classify the computable problems. In a sense, computability theory
and Complexity Theory are really one subject: the latter does for the computable problems what the
former does for the uncomputable ones. Complexity theory draws many of its methods (e.g., diagonal
arguments) and concepts (e.g., reducibilities) from computability theory. Many phenomena at the uncom-
putable levels are mirrored at the lower levels. However, many of these phenomena become considerably
more subtle at the lower levels. For instance, many questions that have been solved at the higher level
remain open at the lower level. In this and the next section, we shall examine the complexity theoretic
versions of (1) and (2).

Our view must necessarily be richer because researchers noticed that not all forms of computation are
equivalent. The word ‘computational form’ is advisedly chosen in this context; it is intended to capture
the concrete versions of computational models, before any attempt to put them into equivalence classes.19

And yet, researchers also noticed that many forms of computation are equivalent. Here, “equivalence of
computational form” is somewhat vague but in each concrete situation, we can make correspondences
across forms. For example, ‘time’ resource can be identified in two computational forms and some suitable
notion of equivalence (mutual simulation in polynomial time) defined. This not-all-forms-are-equivalent
and many-forms-are-equivalent phenomena at first appear confusing. The former says that we have lost
Church’s thesis; the latter suggests that there might be some hope. Before pointing a way out of this
paradise-lost, we need to sharpen our concept of computational form. Let us begin with examples of
computational forms (this list is incomplete and includes computational forms that are not “general” in
the sense demanded of F -formalisms above):

Turing machines, storage modification machines, arrays of finite automata, pushdown automata, finite
state automata, random access machines, vector machines, aggregates, formal grammars, various proof
systems, lambda calculus of Church, µ-recursive functions of Kleene and Gödel, Herbrand and Hilbert’s
equational calculus, Post’s canonical systems, Markov algorithms, Shepherdson and Sturgis’ register
machines, random access stored programs of Elgot and Robinson, Elementary Formal Systems of
Smullyan.

The reader is not expected to know any in this list. We propose to characterize computational forms
along two orthogonal directions:

(i) Model of computation: this identifies the basic computational structures (control, instructions and
data structures). Several computational forms will be collapsed into a common model corresponding
to our intent that members of the same model use similar computational structures: thus finite state
automata and Turing machines will be regarded as falling under the same model (the Turing model).

(ii) Mode of computation: this refers to the method of using the computational structures to define
computation. For example, the Turing model can compute in the deterministic, probabilistic or
nondeterministic mode (see next section).

A computational form is defined by specifying the model and mode. Computational models and
modes are essentially independent notions in the sense that within each model we can define machines
operating in any given mode.20 However, this must be qualified because some computational models
were specifically designed for particular modes and do not naturally embrace other modes. For example,
grammars or production rules in formal language theory essentially compute in nondeterministic modes,

19Taken literally, any perceptible difference between two models should lead to distinct computational forms. But this can-
not be taken too seriously either. Anticipating our “model-mode” view of the world to be discussed shortly, a computational
form is a mixture of model and mode.

20Up till now, we have used the word ‘algorithm’ to describe the computing agent. When we discuss particular forms
of computation, we traditionally refer to ‘machines’ of that form. A useful distinction (which we try to adhere to) is that
‘algorithms’ are abstract objects while ‘machines’ are their concrete representations within a form. Thus, we have ‘the’ high
school multiplication algorithm, but various Turing machines or PASCAL programs can be regarded as implementing the
same high-school algorithm. Another term which we regard as essentially synonymous with ‘machine’ is ‘program’.

18 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

and do not to easily embrace some other computational modes. Or again, the Boolean circuit model21

one single is essentially a parallel model and it is not very natural to define sequential modes for circuits.
We will say that a model is general if it does embrace all modes. For instance, the Turing model and
the pointer machine model will be seen as general. Since the concept of computational modes post-dates
the definitions of these models, we sometimes take the liberty of modifying original definitions of some
models to make them general. The remainder of this section is a brief exposition of some important
computational models; computational modes will be treated in the next section.

We now examine the computational structures that characterize some important computational mod-
els.

(i) Turing model. This will be covered in chapter 2 and is the most important one for this book.
Essentially each computing agent in this model has finitely many states and symbols, and a finite
number ‘heads’ each of which scans some memory location. The memory locations have some fixed
neighborhood structure (which is specified by a bounded degree undirected graph with locations
as vertices). Each location can store a symbol. The simplest example of a fixed neighborhood
structure is that of a total linear relation, giving rise to what is usually known as a Turing machine
tape. The computing agent has a finite set of instructions specifying what to write into scanned
locations and how to move its heads when in a given state scanning certain symbols.

(ii) Pointer machine model. This model, also known as the storage modification machine model, was
introduced by Schönhage in 1970 [29]. Similar models were earlier proposed by Kolmogorov and

Uspenskiĭ, and by Barzdin and Kalnin’sh. Like Turing’s model, this uses finite state control to
determine the step-by-step execution of instructions. The essential difference comes from having
a varying neighborhood structure that is represented by a fixed out-degree (arbitrary in-degree)
directed graph G. The edges (called pointers) of G are labeled by symbols from a fixed set ∆.
Every node has outdegree |∆| and the labeling establishes a bijection between ∆ and the set of
edges going out from any node. One of the nodes is designated the center. Then each word w ∈ ∆?

is said to accesses the node obtained by following the sequence of pointers labeled by symbols in
w, starting from the center. In Figure 1.1, the center is indicated by an arrow with no label.

a

b b b

a ab b

a

a

a

b

Figure 1.1: Pointer machine ∆-structure (∆ = {a, b}). The center is indicated by the arrow without any
label.

For instance the empty word ε accesses the center. Now a pointer machine (for any set ∆) is a
finite sequence of instructions of the following types:

(i) w := w
′ (assignment statement)

(ii) w := new (node creation statement)

(iii) if w
′ = w goto L (branch statement)

21Actually, circuits raises another more annoying issue for our attempt to classify models – it is what is known as a
‘non-uniform’ model. There are many easy (though not necessarily natural) ways to make it uniform like Turing machines.
We will assume this step has been taken if necessary.

1.6. MODES OF COMPUTATION: CHOICE AND PARALLELISM 19

(iv) Choose (L,L
′
) (choice statement)

Here w,w
′ are words in ∆? and L,L

′ are natural numbers viewed as labels of instructions. Initially
G comprises only of the center, with each pointer from the center pointing back to itself. Let us now
give the semantics of these instructions. Suppose G is the graph before executing an instruction
and G

′ is the graph after.

(i) If w
′ accesses the node v in G then both w and w

′ access v in G
′. This is achieved by modifying

a single pointer in G.

(ii) We add a new node v to G to form G
′, and w now accesses v. Furthermore, each pointer from

v points back to itself.

(iii) If both w
′ and w access the same node, then we branch to the Lth statement; otherwise we

execute the next instruction in the normal fashion. Here G = G
′.

(iv) The machine can go to the Lth or the L
′th instruction. This corresponds to computational

choice.

Although no explicit information is stored in nodes, we can simulate the same effect as follows:
designate certain special nodes a1, . . . , ak as representing k distinct symbols, and one of the labels
σ ∈ ∆ is designated the ‘content’ label. By convention, we say that a node v ‘contains’ the symbol
ai (i = 1, . . . , k) if the σ-pointer from v points to ai. Using this, we can easily represent a Turing
machine tape whose cells contain the symbols a1, . . . , ak. We now make up some convention for
the input and output words. We leave as an exercise the efficient simulation of Turing machines by
pointer machines and vice-versa. Just as the Turing model, this class is capable of many interesting
variations: first of all, we should probably expand the repetoire of instructions in non-essential
ways (e.g., allowing the ability to branch on a general Boolean combination of equality tests). But
non-trivial extensions include allowing each node to store an arbitrary integer, and providing basic
arithmetic or bitwise operations on a single instruction.

(iii) Random access machines (RAM). This is perhaps the closest model to real world computers. Again,
each computing agent here consists of a finite set of instructions executed under a finite state
control. The difference here is the use of registers to store an arbitrarily large integer. The contents
of registers can be tested for zero, compared to each other, have arithmetic operations performed
on them, all in one step. Registers have unique integer addresses, and registers are accessed in
instructions by (i) specifying its address explicitly in the instruction or (ii) indirectly by specifying
the address of a register which contains its address.

The reader will appreciate our earlier remark that a computational model is usually characterized
by its data structures: Turing machines have fixed topology data structures (called tapes) where each
location stores a finite symbol. The data structures in pointer machines have variable topology while
random access machines have fixed topology but non-atomic memory locations. Wagner and Strong is
an early effort to characterize abstract computational models,

1.6 Modes of Computation: Choice and Parallelism

Despite the multiplicity of computational forms, it is possible to isolate a small number of equivalence
classes among them: each equivalence class corresponds to basic and intuitive concepts of computation.
We identify each equivalence class with a particular mode of computation.22 As we shall see, within each

equivalence class, we can formulate a version of Church’s Thesis.

22Our notion of modes is partly inspired by the ‘computational types’ by Hong Jia-wei. The latter concept appears to be
a mixture of computational models and computational modes.

20 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

We distinguish two dimensions of modes. In the first dimension, the computation is either determinis-

tic or it may have choice. In the second dimension, the computation is either sequential or parallel. So the
four basic classifications of modes are: deterministic-sequential, deterministic-parallel, choice-sequential
and choice-parallel. We can have varying degrees of choice (resp. parallelism), with determinism (resp.
sequentialism) being the limiting case of no choice (resp. no parallelism). Therefore, in the above four
classes of modes, only the deterministic-sequential mode is uniquely determined: the other three classifi-
cations can be further refined. We next indicate characteristics of such modes.

1.6.1 The Fundamental Mode of Computation

The prototypical computation is in the deterministic-sequential mode. Indeed, this mode is usually the
only one recognized in theory of computability; of course, the other modes turn out to be no more general
in the sense of Church’s Thesis. We shall therefore call this the fundamental mode of computation. A
computation (by a machine M) operating in this mode has the following typical features:

(a) There is a bounded number of internal states, of which one is designated the ‘current state’.

(b) There is a finite but unbounded number of memory locations (chosen from an infinite reserve) that
are used at any moment. By this we mean that each location at any moment contains a symbol
from an alphabet Σ and a location is considered unused if the symbol it contains is a certain pre-
designated ‘blank’ symbol. Each location has a bounded number of other locations which are its
‘neighbors’.

(c) A bounded number of the memory locations are ‘scanned’ at any instant.

(d) At each time moment, a unique instruction (which only depends on the symbols scanned in (c) and
the current internal state of (a)) is executed. The instruction can change the contents of the scanned
locations, the current state, and the set of scanned locations. The new set of scanned locations
must be neighbors of the previously scanned ones.

(e) There are fixed conventions for starting, halting, error handling, inputs, and outputs.

It is interesting to compare (a)-(e) with the well-known characterization given in chapter 1 of Rogers [28].
The reader is encouraged to identify our abstract description with the execution of a program on a real
computer – most of the above can have a reasonable interpretation (the assumption of an unbounded
number of memory locations in (b) is most problematic in this comparison). All the ‘bounded numbers’ in
(a)-(c) are bounded by constants that solely depend on M . At each instant, the instantaneous description

(ID) of M consists of the current state, the set of scanned locations and the contents of all the used memory
locations. Thus we can regard the instructions described in (d) as transforming ID’s. If I and I

′ are
ID’s such that I is transformed in one step to I

′, we write I ` I
′, and say I directly derives I

′. The
characterization of M above is deterministic because once the computation is started, the succession of
ID’s is uniquely determined. The sequence of ID’s (possibly infinite) is called a computation path. M is
sequential because at each time unit, the contents of only a bounded number of locations can be scanned
and modified.

Assumption. We have tacitly assumed time and space are discrete above. More generally, all resources

are discrete. When we discuss non-fundamental modes with more than one computing agent, we will
further assume time is synchronized or global. This is assumed throughout this book.

To facilitate discussion of the next mode of computation, we elaborate on (e) somewhat. Let us assume
that M is a machine for recognizing its inputs. There are two designated internal states designated as
rejecting and accepting. The computation stops iff the machine reaches either of these states. If π is
any computation path we define the predicate ACCEPT0(π) to equal 1 if π is finite and the last ID in
π contains the accepting state. Otherwise ACCEPT0(π) = 0. Then M is said to accept an input x if
ACCEPT0(π) = 1, where π is the computation path of M on input x.

1.6. MODES OF COMPUTATION: CHOICE AND PARALLELISM 21

1.6.2 Choice Modes

Let us now turn to computational modes that replace ‘determinism’ with ‘choice’. This involves replacing
(d) above and (e) above.

(d)* At each time unit, a set (which only depends on the symbol scanned and the current internal
state) of next instructions is ‘executable’. The machine can ‘choose’ to execute any one of these
instructions. As in (d), each instruction can change contents of locations, current state and set of
scanned locations.

(e)* A suitable ‘choice aggregation’ function is used to determine the output, as illustrated next.

For simplicity, assume that there is only a choice of two next instructions to execute. On input x,
we now have a binary computation tree T = T (x) whose nodes are ID’s defined as follows. The root of
T is the initial ID (this is a function of x and M). If I is a node of T , and I1 and I2 are the ID’s which
result from I by executing the two executable instructions, then in T the node I has I1 and I2 as its two
children. A maximal path in T from the root (terminating in a leaf if the path is finite) corresponds to
a computation path.

We want to define the analogue of the ACCEPT0 function above, and it should be a function of the
computation tree T . We describe two main ways to do this. In the first way, we define the predicate
ACCEPT1 by

ACCEPT1(T) = 1 iff there is a path π in T such that ACCEPT0(π) = 1.

The choice mode machine M which accepts its input x iff ACCEPT1(T (x)) = 1 is said to compute in the
existential-sequential mode (or more commonly known as the nondeterministic mode).

Another way to define acceptance is to assign probabilities to each node in T . Each node I at level
k has probability Pr(I) = 2−k, and in particular the root has probability 1. We define the predicate
ACCEPT2 by

ACCEPT2(T) = 1 iff
∑

I

Pr(I) > 1/2,

where I ranges over those leaf nodes in T with the ‘accept’ state. The choice mode machine M which
accepts its input x iff ACCEPT2(T (x)) = 1 is said to compute in the probabilistic-sequential mode (or
more commonly known as the probabilistic mode). We shall see other choice modes in the book.

The existential mode of computation may appear strange at first. Yet it turns out to be an accurate
model of the notion of a formal axiomatic system. With suitable conventions, a nondeterministic machine
M corresponds exactly to a formal axiomatic system S: the machine M accepts an input x iff x encodes a
theorem of S. The reader familiar with grammars in formal language theory will also be able to make con-
nections with nondeterminism. Perhaps the main reason for the importance of the existential-sequential
mode is its use in defining a class of problems denoted NP , which has great empirical importance. We
shall study NP in chapter 3.

1.6.3 Parallel Modes

Now we consider the deterministic-parallel modes. Such modes have begun to assume increasing impor-
tance with the advent of mass-produced very large scale integrated (VLSI) circuits as well as the rapidly
maturing technology of multiprocessor computers. In parallel computation, we will call the entire set of
machines which can execute in parallel the ensemble. We shall always assume that the ensemble works
synchronously.23 Each computational model described in the previous section (Turing machines, pointer

23The study of asynchronous or distributed ensembles in discrete computations is an emerging subject that seems to
give rise to a rather different theory. The emphasis there is the complexity of communication (message passing) between
independent agents in the ensemble.

22 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

machines, random access machines) amounts to specifying individual computing units – this is true in
general. Hence to describe ensembles, we need to specify how these units are put together. This comes
from four additional design parameters:

(f) (Computing Units) The ensemble is made up of an infinite number of computing units, each op-
erating in the fundamental mode (a)-(e). These units may be finite in nature (e.g. finite state
automata) or infinite (e.g. general Turing machines).

(g) (Topology) The units have a connectivity (or neighborhood) structure which may be represented by
a graph of bounded degree. The graph may be directed or undirected. Units can only communicate
with their neighbors. The connectivity may be variable or fixed depending on the model.

(h) (Sharing and Communication) Each pair of machines which share an edge in the connectivity
graph has access to a common bounded set of memory locations: simultaneous reads of this shared
memory are allowed, but write conflicts cause the ensemble to halt in error. Note that this shared
memory is distinct from the infinite local memory which individual machines have by virtue of (b).

(i) (Activation, Input and Output) There is a designated ‘input unit’ and another ‘output unit’.
Input and output conventions are relative to these two units. These two units are not necessarily
distinct. Every unit is either ‘active’ or ‘inactive’ (quiescent). Initially, all but the input unit is
inactive. An active machine can activate its quiescent neighbors. Thus at any moment, a finite but
unbounded number of machines are active. The ensemble halts when the output unit enters certain
special states (accept or reject).

It is easy to suggest further variations of each of the aspects (f)-(i) above; the literature contains
many examples. For instance, unlike the suggestion in (f), not all the individual machines need to be
identical. Or again, the sharing need not be local as suggested by (h) if we postulate a global memory
accessible by all machines. This is sometimes called the ultra-computer model, a term popularized by
Jack Schwartz. Another very important practical issue arising from shared memory is the resolution of
reading and writing conflicts. Instead of our stringent condition on disallowing writing conflicts in (h),
there are three more liberal approaches:

We may allow simultaneous writing to a location provided all processors write the same value, or
we may have no restrictions on simultaneous writes but say that some arbitrarily chosen processor is
successful in writing, or we may say that the smallest numbered processor will be successful.

Another extreme case of (h) is where the machines may have almost no common memory except for a
flag associated with each channel or port. The channel or port of a machine may be specific (connected
to a particular machine) or non-specific (any machine may try to communicate through that port).

In view of the large number of variations in parallel models, it is all the more surprising that anything
significant or unifying can be said about computations in this mode. It is evidence that we are correct in
designating essentially one computational mode to all these.

We remark that the literature sometimes regards choice modes as ‘parallel’ modes since we can think
of the various choices of executable instructions as being simultaneously executed by distinct copies
of the original machine (reminiscent of ‘fork’ in UNIXTM). However we will not use ‘parallel’ in this
sense. In true parallelism (unlike choice) processes will be able to communicate during their simultaneous
computations.24 Consequently, the aspects (f)-(i) of parallel machines are irrelevant for the choice-
sequential mode. More importantly, choice computation is not to be confused with parallelism because
acceptance by choice computation is done post-computation (by a fixed evaluation mechanism that is
independent of the machine).

24The reader will appreciate this distinction if she attempts to show ‘in an obvious manner’ that the class NP (to be defined
in chapter 2) is closed under complementation and faces up to the inability for different branches of a nondeterministic
computation to communicate.

1.7. TRACTABILITY AND SOME COMPUTATIONAL THESES 23

The final class of modes, choice-parallel ones, can easily be conceived after the preceding development.
For instance, if there are m active computing units at some moment in a choice-parallel computation,
each unit having a branching factor of 2, then the entire ensemble has a branching factor of 2m. We shall
not elaborate on this mode of computation.

In conclusion, we see that the computer scientists’ answer to the fundamental question (1) of section
5 is quite different from the one the logicians obtained. This is captured in the notion of computational
modes. We next turn to the computer scientists’ view of question (2) in section 5.

1.7 Tractability and some Computational Theses

It has been observed in the computing milieu that many problems such as the Perfect Matching Problem in
graph theory have polynomial time algorithms (even though the initial mathematical characterization of
‘perfect matchings’ only suggested exponential algorithms). In contrast, certain computational problems
such as the Traveling Salesman Problem (TSP) defy persistent attempts to design efficient algorithms for
them. All known algorithms and suggested improvements for these algorithms still have, in the worst case,
super-polynomial25 running time. Typically, this means an exponential running time such as 2n. The
obvious question is whether a problem such as TSP is intrinsically super-polynomial. The gap between
an exponentially growing function (say) 2n and a polynomial function (say) n

2 is quite staggering: on
a computer executing 106 instructions per second, an input of size 200 would require 2200 (resp., 2002)
steps or more than 1046 years (resp., less than a second) of CPU time. Of course, the difference increases
dramatically with increasing n. This unbridgeable gap between polynomial functions and exponential
functions translates into a clear distinction between problems with polynomial complexity and those
with super-polynomial complexity. Super-polynomial problems are ‘practically uncomputable’ (except
for small values of n) even though they may be computable in the sense of computability theory.26 The
phenomenon appears very fundamental and researchers have coined the term ‘infeasible’ or ‘intractable’
to describe these difficult problems:

(H) A problem is tractable if it has polynomial complexity; otherwise the problem is intractable.

Cobham [5] and Edmonds[8] were among the first harbingers of the tractable-intractable dichotomy.27

Let us note an obvious criticism of (H). While we may agree that super-polynomial problems are in-
tractable, we may not want to admit all polynomial problems as tractable: a problem with complexity of
n

37 hardly deserves to be called tractable! In practice, we seldom encounter such high degree polynomials.
On the other hand, it is difficult to decide on theoretical grounds when polynomials become intractable,
and hence (H).

Note that (H) is really a general principle in the sense that we have not restricted it to any particular
model, mode of computation or computational resource. For instance, if we consider the Turing model
operating in the deterministic mode, and use space as our resource, then this principle tells us that the
tractable problems are what is normally called PSPACE . (If we operate in the nondeterministic mode,
a well-known result of Savitch which we will encounter in chapter 2 says that precisely the same class of
problems are tractable.) One reason why (H) is attractive is that it is a very robust concept: tractability
is easily seen to be invariant under minor modifications of the computational models. A far-reaching
generalization of this observation is the tractability thesis below which basically says that the concept
is robust enough to withstand comparisons across totally different computational models, provided we

compare these models using the same computational mode and using corresponding resources. There

25A complexity function f is super-polynomial if f(n) is not O(nk) for any fixed value of k. A complexity function f is
said to be (at most) exponential if f(n) = O(1)n, double exponential if f(n) = 2O(1)n

, etc.
26This remark must be balanced against the fact that very often, naturally occurring instances of an intractable problem

can be solved by efficient special methods.
27Edmonds called an algorithm ‘good’ if it runs in polynomial time in the fundamental mode. In [9] he informally

introduced the class NP by describing such problems as having ‘good characterization’.

24 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

is a problem with the last assertion: what do we mean by ‘corresponding resources’? For this to be
non-vacuous, we must be sure that there are certain computational resources which are common to every
conceivable model of computation. In the actual models that have been studied in the literature, this is
not problematic. In any case, we postulate three fundamental resources in every computational model:

(I) For every computational model in a given computational mode, there is a natural notion
of time, space and reversal resources.

Time and space have intuitive meaning; reversal on Turing machines is intuitively clear but it can be
formulated for all other models as well. For postulate (I) to be meaningful, there ought to be axioms that
these measures obey (otherwise, how do we know if ‘time’ on one model-mode is really to be equated with
‘time’ on another model-mode?). For example, we expect that “space is at least as powerful as time”.
We said that the Boolean circuit model28 does not naturally yield a notion of sequential mode. One
possible approach is to use what is known as a ‘straight-line program’ representation of a circuit (that
is, we list the gates in a linear sequence, where each gate must have its inputs coming from earlier gates
or from the external inputs). Then (sequential) time is simply the length of this straight-line program.
More generally, Hong has suggested that sequential time is simply the total number of individual actions
that take place inside a computation (although the circuit example blurs the distinction between the
computing device and the computation itself). We leave such issues as matters of further research. In
any case, when we say ‘resources’ below, they could refer to composite resources such as simultaneous
time and space.

We are now ready to assert what may be called the “polynomial analogue of Church’s Thesis”.

(J) (Tractability Thesis) For each computational mode and each computational resource, the
notion of tractability is invariant over all models of computation.

For comparison, we also formulate a version of Church’s Thesis here.29

(K) (Church’s Thesis) The notion of computability is invariant over all models of computation.

When restricted to the time resource in the fundamental mode, thesis (J) is sometimes called Cobham’s
thesis after Cobham who made the first observations about its invariance properties. Although the thesis
(J) has not been tested in its full generality (especially, in some of the newer modes), it is useful as a
working hypothesis or as a research program.

In all our theses, there is an implicit restriction to ‘reasonable’ models of computation. Or at least,
we intend to call a model ‘unreasonable’ if it violates such principles. Thus we might appeal to the
tractability theses to reject certain models of computations as unreasonable. For instance, it is clear that
if we severely restrict our computational model we could violate (J). Likewise, it is not hard to imagine
a model too powerful to respect the tractability thesis. This is not surprising, but simply points out that
our theses need a priori conceptual analysis in order to establish them firmly. Subject to this qualification,
and provided that we accept (H) and (I), we see that (J) has mathematical content in the sense that we
may verify it for each proposed model of computation. On the other hand, (J) is not a mathematical
theorem, and (as Emil Post remarked, concerning Church’s thesis) “it requires continual verification”. In
summary, we say that the thesis serves both a normative as well as descriptive function.30

Thesis (J) is the consequence of another more general polynomial smearing phenomenon that says, with
respect to a fixed resource, all reasonable computational models computing in a fixed mode are equally

28suitably made ‘uniform’, see chapter 10.
29As Albert Meyer points out to us, it is possible to interpret Church’s thesis in a much wider philosophical sense. See

(for example) [16] for such discussions. The mathematical content of this wider thesis is unclear and our formulation here
is, for our purposes, the generally accepted mathematical interpretation of the thesis.

30The same can be said of Church’s thesis – we would use its normative role to dismiss someone who insists that finite
automata be admitted as general computing devices. Taking Lakatos’ critique of mathematical truth as a clue, we might
modify Post’s position and say that these theses require continual refinement.

1.7. TRACTABILITY AND SOME COMPUTATIONAL THESES 25

powerful up to a polynomial factor. More precisely: say that a computational model M polynomially

simulates another model M
′ in resource R if for every machine A

′ in M
′ which uses f(n) units of resource

R, there is a machine A in M which uses O((f(n))k) units of R and which solves the same problem as A
′.

The constant k here may depend on A
′, although we find that in all known models, k may be uniformly

chosen (e.g. k = 2). We say M and M
′ are polynomially equivalent in resource R if they polynomially

simulate each other.

(L) (Polynomial Simulation Thesis) Within each computational mode, and with respect to a
given computation resource, all models of computation are polynomially equivalent.

Clearly (H) and (L) imply (J). Hong[17] has provided strong evidence for this thesis (his so-called ‘sim-
ilarity theorems’). We now state two conjectures and one more thesis. These relate across computational
modes and resources:

(M) (The P 6= NP Conjecture) With respect to time measure, tractability in the fundamental
mode and tractability in the nondeterministic mode are different.

(N) (Parallel Computation Thesis) Time measure in the deterministic-parallel mode is poly-
nomially related to space measure in the fundamental mode.

(O) (Duality Conjecture) The resources of Space and Reversal are duals (see text below) of
each other when the simultaneous bounds on space and reversals are polynomially related.

Conjecture (M) is perhaps the most famous open problem in the subject, and we shall return to it
in chapter three. Thesis (N) (proposed by Pratt and Stockmeyer [25] and Goldschlager [11]) equates
the tractable problems in the deterministic-parallel mode under time resource bounds with the tractable
problems for the fundamental mode under space resource bounds. See also [24]. The duality conjecture
was formulated by Jia-Wei Hong. It is more technical and involves simultaneously bounding the space
and reversal resources. Roughly, it says that if a complexity class is defined by Turing machines bounded
by O(f) space and O(g) reversal simultaneously then the same class is described by O(f) reversal and
O(g) space simultaneous bounds.

In this book we shall provide evidence for the above theses. We note the tremendous unifying power
of (H)-(O): First, (H) gives us a ‘world-view’ by pointing out a fundamental distinction (just as the
computable-uncomputable distinction in computability theory); this in turn guides the basic directions
of research. Second, these theses lead us to the general principle (or metathesis):

The truly fundamental phenomena of Complexity Theory are invariant across computational

models.

Third, the theses (M), (N) and (O) suggest that the concepts of modes and resources are not arbi-
trary. Rather, their interrelation reflects an internal structure of the concept of computation that awaits
discovery. This could be the most exciting direction in the next stage of Complexity Theory. It is fair
to add that the mode-resource-model structure we have imposed on the corpus of the known complex-
ity substratum may not bear careful scrutiny, or at least requires new clarifications, especially as new
computational concepts proliferate.31

31Such proliferation seems as inevitable as in subatomic Physics. The challenge is to provide an adequate unified field
theory of complexity theory as the world of complexity unfolds. It is also useful to remember that although Newtonion
Physics is superseded, it is hardly extinct, thanks to its compact embodiment of non-extremal physical phenomena.

26 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

1.8 What is Complexity Theory?

We have given an impressionistic tour of Complexity theory in this chapter and outlined some of the
methodological framework. This framework is plausible but not necessarily convincing. In any case, we
sometimes refer to these assumptions (if only to hint at alternative assumptions) as Standard Complexity

Theory. We are ready to round up with three perspectives of what the subject is about, plus a very
brief historical perspective. By complexity classes below we mean any set of languages. In practice, these
classes are defined by some well-defined and general mechanism which admits some concept of complexity.

a) The study of computational complexity is usually taken in a wider sense than that taken by
this book. In particular, it usually incorporates a very large and important literature on the analysis
of algorithms and data-structures. Complexity Theory there is sometimes called concrete complexity

(dealing in ‘concrete’ as opposed to ‘abstract’ problems). However, complexity in concrete complexity is
often more a property of the particular algorithm being analyzed, rather than a property of the problem

that the algorithm solves. In contrast:

Complexity Theory is concerned with the intrinsic complexity of problems.

Specifically, we are interested in classifying problems according to their intrinsic complexity.
Let us probe deeper this intuitive concept of intrinsic complexity. The notion turns out to be rather

subtle: one phenomenon that may arise is that there may be no fastest algorithm – for each algorithm
there exists a faster one. We will see examples of such ‘speed-up’ phenomena. If we consider two or more
computational resources, there may be inherent tradeoffs between the complexities with respect to these
resources. In the face of these possibilities, we can still attempt to classify the complexity of a problem
P relative to a given hierarchy of complexity classes: more precisely, if

K1 ⊆ K2 ⊆ K3 ⊆ · · · (5)

is an non-decreasing (not necessarily strict) sequence of complexity classes, we say that P is in the
ith level of this hierarchy if P ∈ Ki − Ki−1 (i = 1, 2, . . . and K0 = ∅). Note that this abstract
method of classification is a really profound departure from the original idea of comparing growth rates
of complexity functions. The hierarchy {K1,K2, . . .} that replaces complexity functions need not have
any clear connection to complexity functions. Let us call any hierarchy (1.5) used for this purpose a
complexity ruler. Once we agree to classify problems relative to complexity rulers, some very fruitful
directions in complexity theory become possible. Such classifications are studied in chapter 9.

One complexity ruler that is used commonly is the canonical ruler formed from the canonical list (see
chapter 2, section 3), but omitting the class PLOG :

DLOG ⊆ NLOG ⊆ P ⊆ NP ⊆ PSPACE

⊆ DEXPTIME ⊆ NEXPTIME ⊆ EXPSPACE

One of the first things a complexity theorist does on encountering a computational problem is to find
out where it fits in this canonical ruler. Another ruler is this: a logarithmico-exponential function (for
short, L-function) f(x) is a real function that is defined for values x ≥ x0 (for some x0 depending on f)
and is either the identity or constant functions, or else obtained as a finite composition with the functions

A(x), log(x), e
x

where A(x) denotes a real (branch of an)32 algebraical function. A classical result of Hardy[13] says that
if f, g are L-functions then either f = Θ(g), or f dominates g, or g dominates f . Hence the family R0

consisting of the classes DTIME(Θ(f)) where f is an L-function forms a complexity ruler. (Of course,

32For instance, the polynomial p(x) = x2 defines two branches corresponding to the positive and negative square-root
functions. Generally speaking, a polynomial p(x) of degree d defines d functions corresponding to the d roots of p(x) as x

varies. These functions are called ‘branches’ of p(x).

1.8. WHAT IS COMPLEXITY THEORY? 27

the ruler is doubly infinite in both directions, dense and all that.) In practice, when complexity theorists
discuss the time complexity of concrete problems (like matching, multiplication, etc), they are implicitly
using the ruler R0. For instance, although multiplication has time complexity t(n) that satisfies the
inequalities n ≤ t(n) = O(n log n log log n), there may in fact be no single function f(n) ∈ R0 such
that t(n) = Θ(f(n)); nevertheless it makes sense to talk about the sharpest upper (or lower) bound on
multiplication relative to the ruler R0.

Actually, the use of rulers to measure complexity can be further generalized by introducing the concept
of reducibility among languages (chapter 4). The inclusion relation can be replaced by the reducibility
relation.

b) The discussion of encodings and models of computations leads us to conclude that our theory,
necessarily becomes quite distorted for problems with low-level complexity (say o(n2) time). On the
other hand, the concept of computational modes arises because we are also not very concerned with
high-level complexity (otherwise they all become equivalent by Church’s thesis (K)). In short:

Complexity Theory is concerned with medium-level complexity.

Here (if one has to be so precise) one may identify as medium-level those problems which are elementary
or primitive recursive.33 It is this concern for medium level complexity that makes the fundamental di-
chotomy (H) a meaningful one. Indeed a central concern of the theory is to classify problems as tractable
or otherwise (with respect to any mode or resource). Our interest in medium level complexity partly
justifies some of our assumptions. For instance, even though assumption (B) captures recognition prob-
lems only, many functional or optimization problems are polynomially equivalent to suitable recognition
problems (chapter 3, section 2); studying complexity up to polynomial equivalence seems justifiable for
medium level complexity.

c) Finally, we contend that

Complexity Theory is essentially a theory of classes of problems

as opposed to a theory of individual problems. No doubt, the complexity of certain important problems
(graph isomorphism, multiplication, primality testing, etc) in particular models of computation has abid-
ing interest. But the exact complexity of an individual problem is to some degree an artifact of the details
of the computational model. It is only when we examine an entire class of (suitably chosen) problems
that we manage to have truly invariant properties. Moreover, even when we study the complexities of
individual problems, we usually aim at placing the problem in a well-known complexity class or in some
level of a hierarchy. Another case we may adduce to support our claim is the existence of the tractability
thesis: the class of interest there are those problems with polynomial complexity. Other examples can
be provided (see also the Preface). Indeed, we regard this emphasis on complexity classes as the chief
distinguishing mark of the Complexity Theory represented by this book, and hence the book title.

d) The preceding three perspectives on Complexity Theory are from an intrinsic or genetic standpoint.
A historical perspective would also be greatly rewarding especially for the student of the history and
philosophy of science. Unfortunately, only a few remarks can be offered here. The theory of computational
complexity (which we shorten to Complexity Theory in this book) took its name from the seminal paper
of Hartmanis and Stearns [15] in 1965. The earlier papers of Rabin [27] and Blum [2] are generally
counted among the most influential works associated with the founding of this subject. We refer the
interested reader to the volume [6] for further references as well as personal accounts from that seminal
period. The work of Cook and Karp in the early 1970s profoundly changed the field by raising certain
important questions; these questions though still open, play a paradigmic role that has influenced directly
or indirectly much of subsequent research programs.

33‘Elementary recursive’ and ‘primitive recursive’ are technical terms in recursive function theory. Section 6 of chapter 5
has a definition of elementary recursiveness.

28 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

Exercises

[1.1] Verify the assertion in the text: g 6= o(f) means that there is some c > 0 such that for infinitely
many n, g(n) ≥ cf(n).

[1.2] What is the distinction between f(n) = Ω(g(n)) and g(n) 6= O(f(n)), and between f(n) = ω(g(n))
and g(n) 6= o(f(n))?

[1.3] (i) A useful notation is f(n) ∼ g(n), defined here to mean

f(n) = (1± o(1))g(n).

Show that if f(n) ∼ g(n) then g(n) ∼ f(n).
(ii) Suppose x2x = n holds for all n. We want to solve for x = x(n). Show that x(n) =
log n− log log n + O(log log n

log n
)

(iii) Conclude that log n− x(n) ∼ log log n.

[1.4] ** (i) Are there useful applications of mixed asymptotic expressions (big-Oh, big-omega, small-oh,
etc)? Does it make sense to say that the running time of a machine is Ω(nO(n))?
(ii) More generally, work out a calculus of these mixed notations.

[1.5] Extend the asymptotic notations to multi-parameter complexity functions.

[1.6] Let g(n) = exp exp(blog2 log2 nc)) where exp(m) = 2m. Clearly g(n) = Ω(nα) and g(n) = O(nβ)
for some constants α, β > 0. Give the values for α and β that are sharpest in the sense that for
any ε > 0, both the Ω- and the O-bound would not be true if α + ε and β − ε (respectively) were
used.

[1.7] Show:
(i) Hn = Θ(log n) where Hn (the harmonic series) is defined as

∑

n

i=1
1
i
.

(ii)
∑log n

i=1 2i log
(

n

2i

)

= Θ(n). [Obtain the best constants you can in the upper and lower bounds

on the sums in (i) and (ii).]
(iii) (x + a) log(x + b) = x log x + a log x + b + o(1).

[1.8] Describe an O(n2) algorithm for converting k-ary numbers to k
′-ary numbers for k, k

′
> 1. Can

you do better than O(n2)? Hint: Regard the k-ary number anan−1 · · · a0 (ai = 0, . . . , k − 1) as
the polynomial p(x) =

∑

n

i=0 aix
i and evaluate p(x) at x = k in k

′-ary notation.

[1.9] Demonstrate the inequalities (2-4) in Sections 4.1, 4.2. Make explicit any reasonable assumptions
about the computation model and complexity measure.

[1.10] Referring to section 4.2, show that for k > 1,

fk(n) = O(f1(Θ(kn))) + O(kn).

f1(n) = O(fk(Θ(log n))) + O(n log n).

What can you say about the relative growth rates of f1 and fk if fk is exponential?

[1.11] List some properties that distinguish k-adic from k-ary notations.

[1.12] * Give a systematic treatment of the possible variations of parallel mode of computation. Extend
this to the parallel-choice modes of computation.

[1.13] Verify that multiplication is indeed linear time under the suggested prime number encoding of
numbers in Section 4.2. What is the complexity of addition?

1.8. WHAT IS COMPLEXITY THEORY? 29

[1.14] Recall the recognition problem in Section 2 for triples (x, y, z) of binary numbers such that
xy = z. We modify this so that the relation is now xy ≥ z. Show that the ordinary multiplication
problem can be reduced to this one. If this recognition problem can be solved in T (n) time on
inputs of length n, give an upper bound for the multiplication problem.

[1.15] Construct a pointer machine to add two numbers. Assume that numbers are encoded in binary,
and that a binary string is encoded as a linked list of nodes. Each node in this list points to one
of two designated nodes called 0 or 1. Your input and output are in this format.

[1.16] Let M be a deterministic Turing machine that accepts in time-space (t, s). Show how a pointer
machine can simulate M in O(t, s) time and space.

[1.17] Let P be a deterministic Pointer machine that accepts in time-space (t, s). Fix a convention for
input, and assume that P cannot change this input, to make it compatible with our convention
for Turing machines. Show how a Turing machine can simulate M in O(t log s, s log s) time and
space.

[1.18] ** Axiomatize or give abstract characterizations of the computational models in the literature.
Some work in the past have done precisely this for some models. Describe the various computa-
tional modes for in each of these models. With our new distinction between modes and models,
this task requires new care.

[1.19] ** Give proper foundations for the computational theses expounded in section 7. This presumes
a suitable solution of the preceding question.

[1.20] * There are many ways to represent a real algebraic number α (i.e. α is a root of some polynomial
p(x) with integer coefficients). (i) We can exploit the fact that real numbers are ordered and
represent α as 〈p(x), i〉 if α the ith real root of p(x). (ii) We can isolate the root of interest
by an interval, so use the representaion 〈p(x), I〉 where I is an interval with rational endpoints
containing α but no other roots of p(x). (iii) We can exploit Thom’s lemma that asserts that if we
assign a sign σ(Di(p)) ∈ {−1, 0,+1}) to the ith derivative Di(p) of p(x) for each i ≥ 0 then the
set of real numbers a such Di(p)(a) has sign σ(Di(p)) forms an interval (possibly empty) of the
real line. In particular, if we choose σ(D0(p)) = σ(p) = 0 then either the set of such a is empty
or else we have identified a unique root. Hence α can be represented by 〈p(x), σ〉 for a suitable σ.
Compare the three representations using criteria (D).

[1.21] * Consider the problem of representing multivariate polynomials whose coefficients are integers.
What are the various methods of encoding? Discuss the consequences of these on the complexity
of various algorithms on polynomials (a) GCD, (b) factorization. In this connection, the reader is
referred to the work of Erich Kaltofen on the straight-line program representation of polynomials
(e.g., [20]).

[1.22] ** Investigate the theory of computational problems (see footnote 1). In this regard, compare
the ‘theory of first order problems’ for linear orderings in [36] (which is taken from [37]).

[1.23] ** Show that some mathematical domains D (such as unlabeled graphs) have an inherently high
‘representaional complexity’ in the sense that fore any representation r : Σ∗ → D, either the
r-parsing or r-isomorphism problem is complex (compare the next exercise).

[1.24] ** Investigate the effects of encodings on complexity. On a methodological level, we could say
that the issue of encodings is outside Complexity Theory, that Complexity Theory begins only
after a problem is suitably encoded. E.g., Megiddo [22] points out that the the known polynomial
time algorithms for the linear programming problem (originally shown by Khacian) assumes a
certain encoding for the problem. Yet it may be possible to bring this encoding into our theory
if we resort to meta-mathematical tools.

30 CHAPTER 1. INITIATION TO COMPLEXITY THEORY

Bibliography

[1] A. Aho, J. Hopcroft, and J. Ullman. Data structures and algorithms. Addison-Wesley, 1983.

[2] Manuel Blum. A machine-independent theory of the complexity of recursive functions. Journal of

Algorithms, 14(2):322–336, 1967.

[3] Giles Brassard. Crusade for a better notation. SIGACT News, 17:1:60–64, 1985.

[4] Alonzo Church. An unsolvable problem of elementary number theory. Amer. J. Math. 58, pages
345–363, 1936.

[5] Alan Cobham. The intrinsic computational difficulty of functions. Proc. 1964 International Congress

for Logic, Methodology and Philosophy of Science, pages 24–30, 1964.

[6] The Computer Society of the IEEE. Proceedings, Third Annual Conference on Structure in Complex-

ity Theory. Computer Society Press of the IEEE, June 14-17, 1988. (held at Georgetown University,
Washington, D.C.).

[7] T. H. Corman, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press and
McGraw-Hill Book Company, Cambridge, Massachusetts and New York, 1990.

[8] Jack Edmonds. Paths, trees, and flowers. Canadian J. Math., 17:449–467, 1967.

[9] Jack Edmonds. Matroid partition. In G.B. Dantzig and Jr. A.F. Veinott, editors, Mathematics of

the decision sciences. Amer. Math. Soc., Providence, R.I., 1968.

[10] Kurt Gödel. Uber formal unentscheidbare Satze der Principia Mathematica und verwandter System
I. Monatschefte Math. Phys., 38:173–98, 1931. (English Translation in [Dav65]).

[11] L. M. Goldschlager. A universal interconnection pattern for parallel computers. Journal of Algo-

rithms, 29:1073–1087, 1982.

[12] Yuri Gurevich. What does O(n) mean? SIGACT News, 17:4:61–63, 1986.

[13] G. H. Hardy. Properties of logarithmico-exponential functions. Proc. London Math. Soc., 2:54–90,
1912.

[14] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press,
London, 1938.

[15] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Trans. Amer.

Math. Soc., 117:285–306, 1965.

[16] Douglas R. Hofstadter. Godel, Escher, Bach: an eternal golden braid. Vantage, New York, N.Y.,
1980.

[17] Jia-wei Hong. Computation: Computability, Similarity and Duality. Research notices in theoretical
Computer Science. Pitman Publishing Ltd., London, 1986. (available from John Wiley & Sons, New
York).

31

32 BIBLIOGRAPHY

[18] David S. Johnson. The NP-completeness column: an ongoing guide. the many faces of polynomial
time. Journal of Algorithms, 8:285–303, 1987.

[19] S. Jukna. Succinct data representation and the complexity of computations. In L. Lovász & E.
Szemerédi, editor, Theory of algorithms, volume 44, pages 271–282. Elsevier Science Pub. Co., 1985.

[20] E. Kaltofen. Greatest common divisors of polynomials given by straight-line programs. Journal of

Algorithms, 35:231–264, 1988.

[21] Donald E. Knuth. Big omicron and big omega and big theta. SIGACT News, Vol.8, No.2:18–24,
1976.

[22] N. Megiddo. Is binary encoding appropriate for the problem-language relationship? Theoretical

Computer Science, 19:337–341, 1982.

[23] Marvin Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1967.

[24] Ian Parberry. Parallel speedup of sequential machines: a defense of the parallel computation thesis.
SIGACT News, 18:1:54–67, 1986.

[25] Vaughn R. Pratt and Larry Stockmeyer. A characterization of the power of vector machines. Journal

of Computers and Systems Sciences, 12:198–221, 1976.

[26] W. V. Quine. Concatenation as a basis for arithmetic. Journal of Symbolic Logic, 11 or 17?:105–114,
1946 or 1952?

[27] Michael Rabin. Degree of difficulty of computing a function. Technical Report Tech. Report 2,
Hebrew Univ., 1960.

[28] Hartley Jr. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, 1967.

[29] A. Schönhage. Storage modification machines. SIAM Journal Computing, 9(3):490–508, 1980.

[30] A. Schönhage and V. Strassen. Schnelle Multiplikation Grosser Zahlen. Computing, Vol. 7:281–292,
1971.

[31] Richard Schroeppel. A two counter machine cannot calculate 2n. Technical Report AI Memo 257,
M.I.T., 1973.

[32] Alan M. Turing. On computable number, with an application to the Entscheidungs problem. Proc.

London Math. Soc., Ser.2-42, pages 230–265, 1936.

[33] R. Verbeek and K. Weihrauch. Data representation and computational complexity. Theoretical

Computer Science, 7:99–116, 1978.

[34] P. M. B. Vitányi and L. Meertens. Big omega versus the wild functions. SIGACT News, 16(4):56–59,
1985.

[35] Frances F. Yao. Computation by 2-counter machines. Unpublished term paper, M.I.T., 1973.

[36] Chee-Keng Yap. Space-time tradeoffs and first order problems in a model of programs. 12th ACM

Symposium on Theory of Computing, pages 318–325, 1980.

[37] Chee-Keng Yap. Three studies on computational problems. PhD thesis, Yale University, 1980. PhD
Thesis, Computer Science Department.

Appendix A

Basic Vocabulary

This appendix establishes some general terminology and notation used throughout the book.

We assume the usual set theoretic notations. We write S ⊆ S
′ for set inclusion, and S ⊂ S

′ for proper
set inclusion. We let |S| denote the cardinality of a set S.

Instead of the equality sign, we use ‘:=’ to indicate a definitional equality. For example, we write
‘S := . . .’ if ‘. . .’ serves as a definition of the set S.

Let D,R be sets. By a partial function f with domain D and range R we mean a rule that associates
certain elements x of D with an element f(x) ∈ R. So D and R are assumed to be specified when f is
given. The function is said to be undefined at x if the rule does not associate x to any element of R, and we
denote this by f(x) ↑; otherwise, we say f is defined at x and write f(x) ↓. If f is defined at all elements
of its domain, we say f is total. Composition of functions is denoted f ◦ g where (f ◦ g)(x) := f(g(x)).

The set of integers and the set of real numbers are denoted Z and R, respectively. The set of extended

reals refers to R∪{∞}. The set N of natural numbers refers to the non-negative integers, N = {0, 1, 2, . . .}.
The floor function takes any real number x to the largest integer bxc no larger than x. The ceiling function

takes any real number x to the smallest integer dxe no smaller than x. So b0.5c = 0 = d−0.9e.

An alphabet Σ is a non-empty finite set of markings. We call each element of Σ a letter or symbol.
The set of finite sequences of letters (called words or strings) over an alphabet Σ is denoted Σ∗. The
empty word is denoted ε. A language is a pair (Σ, L) where Σ is an alphabet and L is a subset of Σ∗.
Usually, the alphabet Σ of a language (Σ, L) is either understood or immaterial, and we shall loosely refer
to L as the language. The language L is trivial if L = Σ∗ or L = ∅ where ∅ denotes the empty set. The
complement of L, denoted co-L, is the language (Σ,Σ∗ − L). Note that the complementation operation
is an instance of a language operator whose proper definition requires that the alphabet of the language
be explicitly given. A collection K of languages is usually called a class. For any class K, co-K is defined
to be the class {co-L : L ∈ K}.

The concatenation of two words v and w is written v ·w or simply vw. This notation extends naturally
to sets of words: if S and T are sets of words then S · T := {vw : v ∈ S,w ∈ T}. The length of a word w

is denoted |w|. The unique word in Σ∗ of length zero is denoted ε, and Σ+ is defined as Σ∗ − {ε}. (We
may assume that the word ε is common to all Σ∗.) For any non-negative integer n and word w, we let
w

n denote the n-fold self-concatenation of w. More precisely, w
0 := ε and for n ≥ 1, w

n := w · wn−1.

A language operator ω is a partial d-ary function, d ≥ 0, taking a d-tuple (L1, . . . , Ld) of languages to a
language ω(L1, . . . , Ld). Here we assume that the Li have a common alphabet which is also the alphabet
of ω(L1, . . . , Ld). Some simple language operators are now introduced. Other important operators, to
be introduced in the course of this book, are usually defined using machines; this is in contrast with the
following set-theoretic definitions.

Let (Σ, L), (Σ, L
′) be languages. The complement of L, denoted co-L, is the language Σ∗ − L. The

union, intersection and difference of (Σ, L) and (Σ′
, L

′) are (resp.) the languages (Σ ∪ Σ′
, L ∪ L

′),
(Σ ∪ Σ′

, L ∩ L
′) and (Σ, L − L

′). (The preceding are the Boolean operators.) The concatenation of
L and L

′, denoted L · L′, is the language {ww
′ : w ∈ L,w

′ ∈ L
′} over the alphabet Σ ∪ Σ′. For any

non-negative integer n, we define the language L
n inductively as follows: L

0 consists of just the empty

33

34 APPENDIX A. BASIC VOCABULARY

word. L
n+1 := L

n ·L. The Kleene-star of L, denoted L
∗, is the language

⋃

n≥0 L
n. (Note that the Σ∗ and

L
∗ notations are compatible.) A related notation is L

+ defined to be L · L∗. The reverse of L, denoted
L

R, is {wR : w ∈ L} where w
R denotes the reverse of w.

A language L is said to be finite (resp. co-finite) if |L| (resp. |co-L|) is finite.
Let Σ and Γ be alphabets. A substitution (from Σ to Γ) is a function h that assigns to each x ∈ Σ

a subset of Γ∗. h is naturally extended to a function (still denoted by) h that assigns to each word in
Σ∗ a set of words in Γ∗: h(a1a2 · · · an) := h(a1)h(a2) · · · h(an). We say h is non-erasing if ε 6∈ h(x) for
all x ∈ Σ. A homomorphism is a substitution h where each set h(x) has exactly one element (we may
thus regard h(x) as an element of Γ∗). A letter homomorphism is a homomorphism where h(x) is a word
of length 1 for all x ∈ Σ (we may thus regard h(x) as an element of Γ). An isomorphism is a letter
homomorphism such that h is a bijection from Σ to Γ . An isomorphism is therefore only a ‘renaming’
of the alphabet.

For every substitution h from Σ to Γ, we may define the language operator (again denoted by h) that
takes a language (Σ, L) to the language (Γ, h(L)) where h(L) is the union of the sets h(w) over all w ∈ L.
We also define the inverse substitution operator h

−1 that takes a language (Γ, L
′) to (Σ, h

−1(L′)) where
h
−1(L′) is the set {w ∈ Σ∗ : h(w) ⊆ L

′}.
A (language) class K is a collection of languages that is closed under isomorphism. We emphasized in

Chapter 1 that complexity theory is primarily the study of language classes, not of individual languages.
The classes which interest us are usually defined using machines that use a limited amount of computing
resources. In this case, we call K a complexity class although this is only an informal distinction.

Operators are important tools for analyzing the structure of complexity classes. For instance, many
important questions are of the form “Are two complexity classes K and K

′ equal?”. If Ω is any set of
operators, let

Ω(K) := {ω(L1, . . . , Ld) : Li ∈ K,ω is ad-ary operator in Ω}.

The closure of K under Ω is
Ω∗(K) :=

⋃

n≥0

Ωn(K)

where Ω0(K) := K and Ωn+1(K) := Ω(Ωn(K)). One possible approach to showing that K is not equal
to K

′ is to show that, for a suitable class of operators Ω, K is closed under Ω (i.e., Ω∗(K) = K) but
K

′ is not. An important simple case of Ω is where Ω consists of just the Boolean complement operator;
here Ω(K) = {co-L : L ∈ K} is simply written as co-K. A branch of formal language theory called AFL
theory investigates closure questions of this sort and certain complexity theory questions can be resolved
with this approach.

Contents

1 Initiation to Complexity Theory 1

1.1 Central Questions . 1
1.2 What is a Computational Problem? . 5
1.3 Complexity Functions and Asymptotics . 9
1.4 Size, Encodings and Representations . 16

1.4.1 Representation of Sets . 19
1.4.2 Representation of Numbers . 20
1.4.3 Representation of Graphs . 21

1.5 Models of Computation . 22
1.6 Modes of Computation: Choice and Parallelism . 27

1.6.1 The Fundamental Mode of Computation . 28
1.6.2 Choice Modes . 29
1.6.3 Parallel Modes . 30

1.7 Tractability and some Computational Theses . 32
1.8 What is Complexity Theory? . 36

A Basic Vocabulary 47

35

Chapter 2

The Turing Model: Basic

Results

February 5, 1999

2.1 Introduction

We take the Turing model of computation as the canonical one in Complexity The-
ory. In this we are simply following the usual practice but other more logical reasons
can be given: the fundamental analysis by which Turing arrives at his model is still
one of the most cogent arguments in support of Church’s thesis.1 The simplicity of
Turing’s basic model is appealing. Despite the fact that Turing predated our com-
puter age, there is a striking resemblance between his machines and modern notions
of computation. Henceforth, any new model that we introduce shall (perhaps only
implicitly) be compared with this canonical choice. Of course, Turing considered
only the fundamental mode of computation but we can naturally adapt it to the
other computational modes. Furthermore, we find it convenient to consider variants
of the original Turing machine. Recall from chapter 1 that all these model-specific
details turn out to be unimportant for the major conclusions of our theory. It is
somewhat paradoxical that some form of these model-dependent details cannot be
avoided in order to attain our model-independent conclusions. 2

In this chapter we will study some basic complexity results in the Turing model.
For the time being, we restrict ourselves to the fundamental and the nondeterministic
modes of computation. A Turing machine basically consists of a finite-state ‘black-
box’ operating on one or more tapes where each tape is divided into an infinite linear

1According to Martin Davis [8] Gödel did not believe in Church’s thesis until he heard of Turing’s
results. Gödel’s skepticism arose from his insistence on an á priori analysis of the concept of
computation (which is what Turing provided). The article contains an authoritative account of the
origins of Church’s thesis.

2One is reminded of Sir Arthur Eddington’s elephants in Nature of the Physical World.

51

52 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

sequence of squares. Each square is capable of storing a single symbol (chosen from
a finite set depending on the particular machine). Each tape has a reading head
scanning a square. Under the control of the black-box, in one step the heads can
change the contents of the square being scanned and can move left or right to the
adjacent squares. The following computational resources have been studied with
respect to Turing machines:

time, space, reversals, ink, tapes, symbols, states.

Time and space are intuitively clear, so we briefly explain the other resources. ‘Re-
versal’ is the number of times some tape head changes directions. ‘Ink’ measures
the number of times the machine has to write on a tape square (a tape square may
be rewritten many times). ‘Tapes’ (‘symbols, ’ ‘states, ’ respectively) are the num-
ber of tapes (symbols, states, respectively) used in the definition of the machine.
The latter three resources are called static resources because they are a function of
the machine description only. The others are dynamic resources since the amount
of (say) time or space used also depends on the particular computation. In Com-
plexity Theory, we primarily study dynamic resources. Time, space and reversals
are considered basic and will be studied in this chapter. Reversals (in contrast to
time and space) may initially appear artificial as a measure of complexity. It is a
comparatively recent realization that reversal is an essential ingredient for gluing
together space and time.

Reading Guide. This is a long chapter containing basic technical results about
the Turing model. It is important that the student understand the subtle points in
the definitions of complexity in section 3. Sections 6, 7 and 8 form a group of results
about simulations that use time, space and reversals (respectively) as efficiently as
possible: these techniques are fundamental and should be mastered. Sections 10
and 11 may be safely omitted since later chapters do not rely on them.

Two conventions for languages and machines

The reader should be familiar with the vocabulary of formal language theory; the
appendix in chapter one is given for convenient reference.

We will be introducing mathematical “machines” in this chapter, and as above,
these machines have states and they operate on symbols. These machines will be used
to define languages. In order to simplify their description, we make the following
universal convention for the entire book:

Convention (α). We fix Σ∞ to be any infinite set of markings that are
called symbols. Σ∞ is the universal set of symbols, assumed to contain
every symbol (such as 0, 1, a, b, $,#, etc) that we will ever use in defining
machines or languages. It contains a distinguished symbol called the
blank symbol. No alphabet of a language contains this blank symbol.

2.2. TURING MACHINES 53

Convention (β). We fix Q∞ to be any infinite set of markings that
are called states. We assume Q∞ is disjoint from Σ∞. It is called the
universal set of states, assumed to contain every state that we will ever
use in defining machines. It contains three distinguished states q 0, qa

and qr called the start state, the accept state, and the reject state,
respectively. The explicit use of reject states, however, can be avoided
until chapter 7.

2.2 Turing Machines

The multitape Turing machine is now introduced. Turing machines are used
in two capacities: to define languages and to define functions over words. 3 In the
former capacity, we call them acceptors and in the latter, transducers. For now,
we focus on acceptors. Transducers will be used in chapter 4 and in §9.

It is convenient to regard a Turing acceptor as having two parts: a transition
table δ (defining the set of machine instructions) together with an ‘acceptance rule’
(specifying when a computation of δ accepts its input). The advantage of this
approach is that, just by specifying alternative acceptance rules, we obtain different
choice modes. This separation is also a recognition of the distinction between the
Turing model of computation and computational modes (which are basically model
independent).

Informally, a multitape Turing acceptor may be viewed as a physical machine
or system consisting of a finite state automaton equipped with k + 1 (paper) tapes
for some k ≥ 0: an input tape (tape 0) and k work tapes (tapes 1, . . . , k). Each
tape consists of a doubly infinite sequence of cells (or tape squares) indexed by the
integers. Each tape square contains a symbol in Σ∞ . On tape i (i = 0, . . . , k), there
is a head (head i) that scans some tape cell. The input head refers to head 0 and
the rest are called work heads. To begin a computation, we are given an input word
x = a1a2 · · · an on the input tape; initially every cell of the each tape contains the
blank symbol except for cells 1, 2, . . . , n of the input tape containing the input string
x. The head on each tape initially scans cell 1. Depending on the current state and
the k + 1 symbols scanned under the heads, the machine has certain instructions
that are executable. Executing one of these instructions results in a new state, in
new symbols under each head, and in the movement of each head at most one cell
to the right or left of the current cell. The machine halts when it has no executable
instruction. By definition, an input head is restricted so that it may not change the
contents of its tape. In general, a tape with such a restriction is termed read-only.
The machine may or may not eventually halt. See Figure 2.1

The machine just described is also known as an off-line k-tape Turing machine.

3A third use, as ‘generators’ of languages, is not needed in our book. Generators corresponds
to grammars in formal language theory. Also, languages are just unary relations. We could have
extended Turing machines to accept any k-ary relation.

54 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

..

.

...

. . .

.

.

tape k

tape 1

tape 0 (input)

q

bk

b1

b0

Figure 2.1: An off-line k-tape Turing machine.

If we restrict the input head to move only from left to right, we obtain an on-line

version. In general, a tape is called one-way if its head is constrained to move in only
one direction (and for emphasis, we call ordinary tapes two-way). (In the literature,
off-line and on-line machines are also called 2-way or 1-way machines, respectively.)
Sometimes we have a k-tape (k ≥ 1) Turing machine without an input tape; then
the input is conventionally placed on one of the work-tapes. The special case of this
where k = 1 is called a simple Turing machine (this is essentially the original Turing
model and is often useful because of its extreme simplicity). In this book, we will
mainly use the off-line multitape version (and simply call them ‘Turing machines’
without qualifications), and we occasionally use the simple Turing machine. The
main reason for the use of an input tape is so that we can discuss sublinear space
complexity (otherwise, the space is at least linear just to represent the input).

Remark: Many other variants of Turing machines have been studied: we may
allow more than one head on each tape, consider tapes that are multi-dimensional
(the above tapes being one-dimensional), allow tapes that have a binary tree struc-
ture, tape heads that can remember a fixed number of previously visited positions
and can ‘reset’ to these positions in one step, etc. For reasons discussed in the
previous chapter, these variations are not inherently interesting unless they give rise
to interesting new complexity classes.

Recall our conventions (α) and (β) in the Section 1 concerning the universal sets
Σ∞ and Q∞ of symbols and states. We now use these to formalize the physical
machines described above.

Definition 1 Let k ≥ 0. A k-tape transition table δ is a finite subset of

Σk+1
∞ ×Q∞ × Σk

∞ ×Q∞ × {+1, 0,−1}k+1

2.2. TURING MACHINES 55

Each (3k + 4)-tuple in δ has the form

〈b0, b1, . . . , bk, q1, c1, . . . , ck, q2, d0, . . . , dk〉 (2.1)

and represents a machine instruction which is interpreted as follows:

“if bi (for each i = 0, . . . , k) is the symbol being scanned on tape i and q1

is the current state, then change bj (for each j = 1, . . . , k) to cj (leaving b0

unchanged), make q2 the next state, and the ith tape head (for i = 0, . . . , k)
should move left, stay in place or move right according as di = −1, 0 or +1”

To simplify proofs, it is convenient to make the following restrictions on transition
tables:

(1) The input head never scans more than one blank cell past the input word in
either direction.

(2) There are no state transitions from the accept or reject states qa, qr or into

the initial state q0. (Recall that qa, qr, q0 are distinguished states in Q∞.)

(3) The blank symbol cannot be written on any of the work tapes (thus, after
a blank cell is visited it turns non-blank). Formally, this means that in (2.1),
cj 6= for each j.

A transition table satisfying the above restrictions is said to be in standard form.
It is easy to make syntactic restrictions on transition tables to ensure that they are
in standard form. From now on, unless otherwise stated, this assumption is made.
The restrictions on δ to obtain on-line or simple Turing machines is also a simple
exercise.

The tape alphabet of δ is the set of symbols (excluding the blank symbol) that
occur in some tuple of δ. The input alphabet of δ is the set of symbols (excluding the
blank) that occur as the first component of a tuple in δ (i.e., as b0 in (2.1)). Thus
the input alphabet is a subset of the tape alphabet. The state set of δ is similarly
defined.

A configuration of δ is a (2k + 3)-tuple

C = 〈q, w0, n0, w1, n1, . . . , wk, nk〉 = 〈q, wi, ni〉
k

i=0 (2.2)

where q is in the state set of δ, each wj(j = 1, . . . , k) is a word over the tape
alphabet of δ, w0 is a word over the input alphabet of δ, and 0 ≤ ni ≤ 1 + |wi|(i =
0, . . . , k). The string wi represents the non-blank portion of tape i. The convention
that blanks cannot be written ensures that the non-blank portion of each tape is
contiguous. The integer ni indicates that head i is scanning the nith symbol in wi.
For a string x, let x[i] denote the ith symbol in x if 1 ≤ i ≤ |x|. If i is outside the

56 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

indicated range, then by definition, x[i] denotes the blank symbol. Thus if w i is not
the empty string ε then ni = 1 (respectively, 0) means the first (respectively, the
blank prior to the first) symbol of wi is scanned. The initial configuration on input
x is defined to be

C0(x) = 〈q0, x, 1, ε, 1, . . . , ε, 1〉

where q0 is the start state.
Remarks: The integers ni are relative addresses of cells, namely, relative to the

leftmost non-blank cell. Occasionally we use instead the absolute addressing of cells,
but there ought to be no confusion. In the literature, configurations are also called
instantaneous descriptions (ID’s).

We define the binary relation `δ (or `, if δ is understood) on configurations
of δ. Informally, C `δ C ′ means the configuration C ′ is obtained by modifying C

according to some instruction of δ. More precisely, suppose C is given by (2.2) and
δ contains the instruction given in (2.1). We say the instruction (2.1) is applicable

to C if q = q1 and wi[ni] = bi for each i = 0, . . . , k. Then applying (2.1) to C we get

C
′ = 〈q′, w′

0, n
′
0, . . . , w

′
k
, n

′
k
〉

where q
′ = q2, n

′
i
= di + max{1, ni} (i = 0, . . . , k), 4

w
′
0 = w0 and for j = 1, . . . , k:

w
′
j

=











cjwj if nj = 0
wjcj if nj = |wj|+ 1

ujcjvj if wj = ujbjvj , and|ujbj | = nj

We write C `δ C
′ in this case; C

′ is called a successor of C and the sequence
C `δ C

′ is called a transition or a step. We write C `k

δ
C

′ if there is a k-step sequence
C0 ` C1 ` · · · ` Ck such that C = C0 and C

′ = Ck. The reflexive, transitive closure
of the binary relation `δ is denoted `∗

δ
(or just `∗).

Observe that the instruction (if any) of δ applicable to C is generally not unique.
We say δ is deterministic if each configuration C of δ has at most one instruction
applicable to it. Otherwise δ has choice. We say the Turing machine with a deter-
ministic δ operates in the deterministic mode, otherwise it operates in the choice

mode.
A configuration is accepting if its state is the accept state qa. Similarly for

rejecting if its state is the accept state qr. It is terminal if it has no successor. For
transition tables in standard form, accepting or rejecting configurations are terminal.
A computation path (of δ) is either a finite sequence of configurations

C = (C0, C1, . . . , Cm) = (Ci)
m

i=0

or an infinite one
C = (C0, C1, C2, . . .) = (Ci)i≥0

4This unintuitive formula takes care of the case ni = 0 in which case n′

i = 1 even though di = 0.

2.2. TURING MACHINES 57

such that C0 is an initial configuration, Cm (when the path is finite) is terminal,
and for each i ≥ 0, Ci ` Ci+1. We may denote C by

C = C0 ` C1 ` C2 ` · · · ` Cm

or
C = C0 ` C1 ` C2 ` · · · .

Any contiguous subsequence

Ci ` Ci+1 ` Ci+2 ` · · · ` Cj

(0 ≤ i ≤ j ≤ m) is called a sub-computation path.
We call C an accepting computation path on input x if, in addition, C 0 = C0(x)

is an initial configuration on x, and the path terminates in an accepting configu-
ration Cm. Non-accepting computation paths come in two flavors: they either do
not terminate or terminate in non-accepting configurations. Although it is often
unnecessary to distinguish between these two situations, this distinction is crucial
sometimes (see §9; also chapters 7 and 8).

The next definition captures an important form of the choice mode:

Definition 2 A nondeterministic Turing acceptor M is given by a transition table

δ = δ(M), together with the following acceptance rule.

Nondeterministic Acceptance Rule. A word x is accepted by M iff

x is over the input alphabet of M and there is an accepting computation

path of δ for x.

M is a deterministic Turing acceptor if δ is deterministic. By convention, a
Turing acceptor is assumed to be nondeterministic unless otherwise specified. The
language accepted by M is given by (Σ, L) where Σ is the input alphabet of δ(M) and
L consists of those words that are accepted by M. We write L(M) for the language
accepted by M.

Example 1 We describe informally a 1-tape deterministic Turing acceptor which
accepts the palindrome language Lpal = {w ∈ {0, 1}∗ : w = w

R} where w
R is the

reversal of the word w. The reader should feel comfortable in translating this into
a formal description (i.e. in terms of δ) because, from now on, we shall describe
Turing machines in such informal terms. The acceptor works in three stages:

(i) Copy the input w onto tape 1.

(ii) Move the input head back to the start of the input, but leave the head on
tape 1 at the right end.

58 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

(iii) Move the input head right and head 1 left, in synchrony, comparing the
symbols under each head – they should agree or else we reject at once. Accept
iff all the symbols agree.

Example 2 (Guessing, verifying and nondeterminism) We give a nondeterministic
1-tape acceptor for the complement co-Lpal of the palindrome language. Note that
x ∈ {0, 1}∗ is in co-Lpal iff for some i:

1 ≤ i ≤ n = |x| and x[i] 6= x[n− i + 1]. (2.3)

Using nondeterminism we can ‘guess’ such an i and ‘verify’ that it has the properties
in (2.3). By ‘guessing’ an i we mean that the machine initially enters a state q 1 such
that in this state it has two choices:

(i) Write down a ‘1’ in its single work-tape, move head 1 one position to the
right and remain in state q1;

(ii) Write a ‘1’ in the work-tape, keeping head 1 stationary and enter a new
state q2.

During the guessing stage (state q1), the input head does not move. When we
enter state q2, there is a unary word on work-tape. This is the unary representation
of the guessed i. Let x be the input of length n. To ‘verify’ that i has the right
properties, we can determine x[i] by moving the input head to the right while moving
head 1 to the left, in synchrony. When head 1 reaches the first blank past the
beginning of i, the input head would be scanning the symbol x[i]. We can ‘remember’
the symbol x[i] in the finite state control. Notice that the guessed i may be greater
than n, and this could be detected at this point. If i > n then we reject at once
(by this we mean that we enter some non-accepting state from which there are no
transitions). Assuming i ≤ n, we can similarly determine x[n− i+1] by moving the
input head to the end of x and moving i steps to the left, using tape 1 as counter.
We accept if x[i] 6= x[n− i + 1], rejecting otherwise.

To check that the above machine accepts the complement of Lpal, observe that
if x is in Lpal then every computation path will be non-accepting; and if x is not in
Lpal then the path corresponding to the correct guess of i will lead to acceptance.
This example shows how nondeterminism allows us to check if property (2.3) for
some values of i, by testing for all values of i simultaneously. This ability is called
“guessing”, and generally, it simplifies the logic of our machines.

Transformations and Turing Transducers

This subsection is placed here for easy reference – the concepts of transformations
and transducers is only used in section 9.

2.3. COMPLEXITY 59

Definition 3 A multivalued transformation is a total function

t : Σ∗
→ 2Γ∗

where Σ,Γ are alphabets and 2S denotes the power set of S. If t(x) is a singleton

set for all x ∈ Σ∗ then we call t a transformation and think of t as a function from

Σ∗ to Γ∗.

Definition 4 A nondeterministic k-tape transducer T is a nondeterministic (k+1)-
tape (k ≥ 0) Turing acceptor such that tape 1 is constrained to be one-way (i.e., the

head may not move left). Tape 1 is called the output tape and the non-blank word

on this tape at the end of any accepting computation path is called the output word
of that path. The work tapes of T now refer to tapes 2 to k+1. T is said to compute

a multivalued function t in the natural way: for any input x, t(x) is the set of all

output words y in accepting computation paths.

The set t(x) can be empty. In case T computes a transformation, then T has the
following properties: (a) For each input x, there exists at least one accepting path.
(b) On a given x, all accepting paths lead to the same output word. We call such a
transducer univalent. The usual example of a univalent transducer is a deterministic
transducer that accepts all its inputs.

Complexity of transducers. In the next section we will define computational
complexity of acceptors for various resources (time, space, reversal). The computa-
tional complexity of a transducer T is identical to the complexity when T is regarded
as an acceptor, with the provision that space on tape 1 is no longer counted.

2.3 Complexity

In this section, we see the first concepts of computational complexity. We consider
the three main computational resources of time, space and reversal.

The time of a computation path C = (C0, C1, · · ·) is one less than the length of
the sequence C; the time is infinite if the length of the sequence is infinite. The
space used by a configuration C = 〈q, wi, ni〉

k

i=0 is defined as

space(C) =
k
∑

i=1

|wi|

Observe that the space in the input tape is not counted. The space used by the
computation path C = (Ci)i≥0 is sup{space(Ci) : i ≥ 0}; again the space could be
infinite. It is possible for the time to be infinite while the space remains finite.

The definition of reversal is a little subtle. Let C = (C i)i≥0 be a computation
path of a k-head machine. We say that head h (h = 0, . . . , k) tends in direction d (for
d ∈ {−1,+1}) in Ci if the last transition Cj−1 ` Cj (for some j ≤ i) preceding Ci

60 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

in which head h moves is in the direction d. This means that the head h “paused”
in the time from j + 1 to i. If head h has been stationary from the start of the
computation until Ci we say head h tends in the direction d = 0 in Ci. We also say
that head h has tendency d if it tends in direction d. It is important to note that
the head tendencies of a configuration C are relative to the computation path in
which C is embedded. We say head h makes a reversal in the transition C j−1 ` Cj

in C if the tendency of head h in Cj−1 is opposite to its tendency in Cj. We say
Cj−1 ` Cj is a reversal transition. The reversal in a reversal transition C j−1 ` Cj

is the number of heads (including the input head) that makes a reversal. So this
number is between 1 and 1 + k. The reversal of C is the total number of reversals
summed over all reversal transitions in the entire computation path.

Observe that changing the tendency from 0 to ±1 is not regarded as a reversal.
Each computation path C can be uniquely divided into a sequence of disjoint sub-
computation paths P0, P1, . . . , where every configuration in Pi (i = 0, 1, , . . . ,) has
the same head tendencies. Each Pi is called a phase. The transition from one phase
Pi to the next Pi+1 is caused by the reversal of at least one head. Clearly the reversal
of C bounded by k + 1 times the the number of phases in C.

Remarks: An alternative to our definition of reversal complexity is to discount
reversals caused by the input head. Hong [20] (see section 8.3) uses this alternative.
This would be consistent with our decision not to count the space used on the
input tape. However, the real concern there was to admit sublinear space usage to
distinguish problems with low space complexity. Our decision here allows possible
complexity distinctions which might be otherwise be lost (see remark at the end of
§7).

We give two ways to define the usage of resources.

Definition 5 (Acceptance complexity) If x is an input for M, define AcceptT imeM(x)
to be the least time of an accepting computation path for x. If M does not accept x,

AcceptT imeM(x) =∞. If n ∈ N, define

AcceptT imeM(n) := max
x
{AcceptT imeM(x)}

where x ranges over words in L(M) of length n; if L(M) has no words of length n

then AcceptT imeM(n) = ∞. Let f be a complexity function. M accepts in time f

if f(n) dominates AcceptT imeM(n).

Note that AcceptT imeM(x) is a complexity function; it is a partial function
since it is defined iff x is a natural number. Although this definition is stated for
the time resource, it extends directly to the space or reversal resources. Indeed, all
the definitions we give in this section for the time resource naturally extend to space
and reversal.

One consequence of our definition is that any finite or co-finite language is ac-
cepted by some Turing acceptor in time (respectively, space, reversal) f(n) = O(1)

2.3. COMPLEXITY 61

(respectively, f(n) = 0, f(n) = 0). Another technical consequence is that a k-tape
acceptor uses at least k tape cells. Thus to achieve space 0, we must use 0-tape
acceptors.

The fact that M accepts x in time r does not preclude some (whether accepting
or not) computation on input x from taking more than r time. Furthermore, if x is
not in L(M), it is immaterial how much time is used in any computation on x! This
stands in contrast to the next definition:

Definition 6 (Running complexity) For any input x for M, let RunT imeM(x) be

the maximum over the time of all computation paths of M on input x. For n ∈ N,

let

RunT imeM(n) := max
x

RunT imeM(x)

where x ranges over all words (whether accepted by M or not) of length n. For any

complexity function f , we say M runs in time f if f(n) dominates RunT imeM(n).

Note that if M runs in time f then f(n) ↓ for all n ∈ N. If f(n) < ∞ then M
must halt in every computation path on inputs of length n. If M is deterministic
and x ∈ L(M) then AcceptT imeM(x) = RunT imeM(x).

Example 3 Refer to examples 1 and 2 in the last section. The space and time of the
deterministic acceptor for palindromes are each linear; the reversal is 3. Similarly,
acceptance space and time of the nondeterministic acceptor for the complement of
palindromes are each linear, with reversal 3. However the running space and time
of the nondeterministic acceptor is infinite for all n since the guessing phase can
be arbitrarily long. We leave as exercises for the reader to modify the machine to
satisfy the following respective complexity bounds: (a) the running space and time
are each linear; (b) the time is linear and space is logarithmic. In (a), you can
actually use a 1-tape machine and make only 1 reversal. What is the reversal in
(b)?

The following notion is sometimes useful: we call f time-constructible function
if there is a deterministic M such that for all inputs x of sufficiently large length,
RunT imeM(x) = f(|x|).
M is said to time-construct f .

The definitions of space-constructible or reversal-constructible are similar: sys-
tematically replace the word ‘time’ by ‘space’ or ‘reversal’ above. We have defined
constructible functions with respect to deterministic machines only, and we use run-
ning complexity. Such functions have technical applications later. The reader may

4In the literature, a function that f(n) of the form RunT imeM(n) is sometimes said to be
‘time-constructible’. What we call time-constructible is also described as ‘fully time-constructible’.
Other related terms include: measurable (Hopcroft-Ullman), real-time computable (Yamada) or
self-computable (Book), honest (Meyer-McCreight).

62 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

try this: describe a 1-tape Turing machine that time-constructs the function n
2.

It may be easier to first “approximately” time-construct n
2. See the Exercises for

more such constructions.

The Turing acceptor for the palindrome language in the example of the last
section is seen to run in linear time and linear space. But see section 9 for a
more space-efficient machine: in particular, logarithmic space is sufficient (but at
an inevitable blow-up in time requirement).

We shall use acceptance complexity as our basic definition of complexity. The
older literature appears to prefer running complexity. Although running complexity
has some desirable properties, in proofs, it sometimes takes additional effort to
ensure that every computation path terminates within the desired complexity bound.
Consequently, proofs for accepting complexity are often (but not always) slightly
shorter than for running complexity. A more compelling reason for acceptance
complexity is that it is more basic: we could define ‘rejection complexity’ and view
running complexity as a combination of acceptance and rejection complexity. The
problem of termination can be overcome by assuming some ‘niceness’ conditions
on the complexity function. The exact-time complexities and time-constructible
complexities are typical notions of niceness. Indeed, for nice functions, complexity
classes defined using running complexity and acceptance complexity are identical.
Since most of the important complexity classes (such as P ,NP , etc, defined next)
are bounded by nice functions, the use of running or acceptance complexity lead
to the same classes in these cases. It is important to realize that most common
functions are nice (see Exercises). The general use of running complexity is largely
avoided until chapter 8 when we discuss stochastic computations where it seems
that running complexity is the more fruitful concept.

Resource bounded complexity classes. We introduce some uniform nota-
tions for complexity classes defined by bounds on computational resources used
by acceptors.5 Let F be a family of complexity functions. The class NTIME(F) is
defined to consist of those languages accepted by nondeterministic Turing acceptors
in time f , for some f in F . If F = {f}, we simply write NTIME(f). The notation
extends to languages accepted by deterministic Turing acceptors (DTIME(F)), and
to space and reversal complexity (XSPACE(F) and XREVERSAL(F) where X = N

or D indicates nondeterministic or deterministic classes). When running complexity

(time, space, reversal, etc) is used instead of acceptance complexity, a subscript ‘r’ is
appended to the usual notations for complexity classes. For instance, NTIME r(F),
NSPACEr(F), DREVERSALr(F), etc. It is clear that DTIME r(F) ⊆ DTIME(F)
and NTIME r(F) ⊆ NTIME(F), and similarly for the other resources.

5We appear to be following Ronald Book in many of these notations. He attributes some of
these suggestions to Patrick Fischer.

2.3. COMPLEXITY 63

Canonical Classes. Most common families of complexity functions can be ob-
tained by iterating the following operations lin, poly, expo on an initial family F :
lin(F) = O(F), poly(F) = F

O(1), expo(F) = O(1)F . For instance, the following
families will be used often:

{log n}, logO(1)
n, {n + 1}, O(n), nO(1)

, O(1)n
, O(1)n

O(1)
.

Each family in this sequence ‘dominates’ the preceding family in a natural sense.
For future reference, we collect in the following table the special notation for the
most important complexity classes:

Canonical Classes

Special Symbol Standard Notation Name

DLOG DSPACE(log n) deterministic log-space
NLOG NSPACE(log n) nondeterministic log-space

PLOG DSPACE(logO(1)
n) polynomial log-space

P DTIME(nO(1)) deterministic poly-time

NP NTIME(nO(1)) nondeterministic poly-time

PSPACE DSPACE(nO(1)) polynomial space
DEXPT DTIME(O(1)n) deterministic simply-exponential time
NEXPT NTIME(O(1)n) nondeterministic simply-exponential time

DEXPTIME DTIME(2n
O(1)

) deterministic exponential time

NEXPTIME NTIME(2n
O(1)

) nondeterministic exponential time
EXPS DSPACE(O(1)n) simply-exponential space

EXPSPACE DSPACE(2n
O(1)

) exponential space

These classes are among the most important in this theory and for convenience,
we shall refer to the list here as the canonical list.6 Note that our distinction between
“exponential” and “simply-exponential” is not standard terminology. It will follow
from results later in this chapter that (after omitting PLOG, DEXPT and NEXPT)
each class in the above list is included in the next one on the list.

In Chapter 1 we said that complexity theory regains a Church-like invariance
property provided that we parametrize the complexity classes with (1) the com-
putational resource and (2) the computational mode. Our notation for complexity
classes reflects this analysis: each class has the form

µ− ρ(F)

where µ = D,N , etc., is the computational mode, and ρ = TIME ,SPACE , etc., is
the computational resource. According to the computational theses in Chapter 1,

6Note that P should really be ‘DP’ but the ‘P’ notation is so well-accepted that it would be
confusing to change it. DLOG is also known as L or LOG in the literature. Similarly, NLOG is
also known by NL.

64 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

these classes are model-independent in case F = n
O(1). In particular, the canon-

ical classes P , NP and PSPACE have this invariance. That is, if we had defined
these notions using some other general computational model such as pointer ma-
chines instead of Turing machines, we would have ended up with the same classes
(P ,NP ,PSPACE).

Simultaneous resource bounds. In the preceding definitions of complexity, we
bound one resource but place no restrictions on the other resources (actually the re-
sources are not completely independent of each other). In ‘simultaneous complexity’
we impose bounds on two or more resources within the same computation path.

Definition 7 (Acceptance within simultaneous bounds) Let t, s ≥ 0 be real numbers

and f, g be complexity functions. An acceptor M accepts an input x in time-space
bound of (t, s) if there exists an accepting computation path for x whose time and

space are at most t and s, respectively. M accepts in time-space (f, g) if there is

some n0 such that for all x ∈ L(M), if |x| ≥ n0 then M accepts x in time-space

(f(|x|), g(|x|)).

For any complexity functions t and s, let X-TIME-SPACE(t, s) (where X = D

or N) denote the class of languages L that are accepted by some (deterministic or
nondeterministic, depending on X) Turing machine M that accepts in time-space
(t, s). The complexity classes defined in this way are called simultaneous space-time

classes. Clearly,

X-TIME-SPACE(t, s) ⊆ XTIME(t) ∩XSPACE(s)

although it seems unlikely that this would be an equality in general. Similarly we
will consider simultaneous space-reversal, time-reversal, time-space-reversal classes
denoted, respectively,

X-SPACE-REVERSAL(s, r),X-TIME-REVERSAL(t, r)

and
X-TIME-SPACE-REVERSAL(t, s, r)

where t, s and r are time, space and reversal complexity bounds. For a more
compact notation, we could use (but do not recommend) the alternative XTISP,

XTIRE, XSPRE and XTISPRE for X-TIME-SPACE, X-TIME-REVERSAL, etc.
Finally, we note these notations will be extended later (see chapter 7) when ‘X’

in these notations may be replaced by symbols for other computational modes.

Recursively enumerable languages. We occasionally refer to the class of lan-
guages accepted by Turing acceptors without any complexity bounds. Even in this
case, we can distinguish an important subclass of languages accepted by Turing
acceptors which does not have any infinite computation paths.

2.4. LINEAR REDUCTION OF COMPLEXITY 65

Definition 8 A language is recursively enumerable or, r.e., if it is accepted by some

deterministic Turing acceptor. A halting Turing machine is one that does not

have any infinite computation path on any input. A language is recursive if it is

accepted by some halting Turing acceptor. Let RE and REC denote the classes of

r.e. and recursive languages, respectively.

In recursive function theory, the fundamental objects of study are partial number-
theoretic functions instead of languages. The recursive function theory analogues
of the above definitions are: a partial function from the natural numbers to natural
numbers is partial recursive if it is computed by some Turing transducer (assume
that natural numbers are encoded in binary) where the function is undefined at the
input values for which the transducer does not halt. If the function is total, then it
is called a (total) recursive function.

2.4 Linear Reduction of Complexity

The results to be shown are of the form: if a language can be accepted in (time, space,
or reversal) resource f then it can be accepted in resource cf , for any c > 0. The idea
is that, by using a transition table with more states and a larger alphabet, we can
trade-off dynamic complexity for static complexity. These technical results are very
useful: they justify the use of the ‘big-oh’ notation for complexity functions. For
instance, we can talk of a language being accepted in ‘quadratic time’ or ‘logarithmic
space’ without ambiguity. It also illustrates our discussion in chapter 1 where we
concluded that complexity functions must not be taken in an absolute sense, but
only up to O-order.

Our first theorem, taken from Stearns, Hartmanis and Lewis [13], says that the
space complexity of a problem can be reduced by any constant factor and it is
sufficient to use a 1-tape acceptor.

Theorem 1 (Space Compression) Let c > 0 be a constant and s = s(·) a complexity

function. For any multitape M that accepts in space s, there is a 1-tape N that accepts

L(M) in space cs. If M is deterministic, so is N.

Proof. As will be the rule in such proofs, we only informally describe N since the
formal description of N is tedious although straightforward. It is sufficient to show
this for c = 1/2 since we can make c arbitrarily small with repeated applications of
the construction. The single work tape of N contains k ‘tracks’, one track for each
work tape of M. See Figure 2.2.

Each cell of N can be regarded as containing a ‘composite symbol’ that is essen-
tially a k by 4 matrix with the ith row containing 4 tape symbols (possibly blanks)
of the ith work-tape of M, and possibly a marker (↑) for the head position. There
are five forms for each row:

[b1b2b3b4], [↑ b1b2b3b4][b1 ↑ b2b3b4][b1b2 ↑ b3b4][b1b2b3 ↑ b4]

66 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

Track 2

Track 1

b2,2

Track k

.

.

.

b1,1 b1,2 b1,3 b1,4

b2,1 b2,3 b2,4

bk,1 bk,2 bk,3 bk,4

Composite
Cell

Figure 2.2: Composite cell with k tracks.

where each bi is either a blank symbol or a tape symbol of δ(M). The marker ↑
indicates that the immediately succeeding b i is being scanned. Thus a symbol of
N encodes 4k symbols of M. Since all the scanned cells have absolute indexing
from −s(n) + 1 to s(n) − 1 on an input of length n, we see that s(n)/2 + O(1)
composite symbols of N suffice to encode the contents of M’s tapes. But in fact
bs(n)/2c cells suffice if we exploiting the finite state machinery of N to store a
constant amount of extra information. N simulates a step of M by making a ‘right-
sweep’ (i.e., starting from the leftmost non-blank cell to the rightmost non-blank) of
the non-blank portion of N’s tapes, followed by a return ‘left-sweep’. The ‘current
neighborhood’ of M consists of those cells of M that either are scanned by some tape
head, or are immediately adjacent to such a scanned cell. On the right-sweep, N
takes note of (by marking in some appropriate manner) the current neighborhood
of M. On the left-sweep, it updates the current neighborhood to reflect the changes
M would have made. It is clear that N accepts in space s(n)/2. Note that N is
deterministic if M is deterministic. Q.E.D.

The proof illustrates the reduction of dynamic complexity at the expense of static
complexity. In this case, we see space being reduced at the cost of increasing the
number of tape symbols and the number of states. The amount of information that
can be encoded into the static complexity of an acceptor is clearly finite; we refer
to this technique as storing information in the finite state control of the acceptor.

Corollary 2 Let X = D or N . For any complexity function s,

XSPACE(s) = XSPACE(O(s)).

The reader may verify that theorem 1 and its corollary hold if we use ‘running
space’ rather than ‘acceptance space’ complexity. The next result from Hartmanis
and Stearns [14] is the time analog of the previous theorem.

Theorem 3 (Linear Speedup) Given c > 0 and a k-tape acceptor M that accepts

in time t(n) > n, there is a (k + 1)-tape N that accepts in time n + ct(n) with

L(M) = L(N). If M is deterministic so is N.

2.4. LINEAR REDUCTION OF COMPLEXITY 67

Proof. Choose d > 1 to be an integer to be specified. Tape j of N, for j = 1, . . . , k,
will encode the contents of tape j of M using composite symbols. Similar to the last
proof, each composite symbol encodes d tape symbols (including blanks) of M; but
unlike that proof, the present composite symbols do not need to encode any head
positions of M and do not need multiple tracks. Tape k + 1 in N will be used to
re-code the input string using composite symbols. We describe the operation of N
in two phases. Let the input string be x with |x| = n.

Set-up Phase. First N copies the input x from tape 0 to tape k + 1. This takes
n + 1 steps. So now tape k + 1 contains x in a ‘compressed form’. Next N moves
head k + 1 leftward to the first non-blank composite symbol using n

d
+ O(1) steps.

Henceforth, N ignores tape 0 and treats tape k + 1 as the input tape.

Simulation Phase. N now simulates M by making repetitive sequences of 5
moves, where each sequence simulates d moves of M. These 5 moves have the same
form on each tape so it is enough to focus on some generic tape t = 1, . . . , k. Define
the ‘current neighborhood’ of N on tape t to be the currently scanned cell or the
two cells immediately adjacent to the scanned cell. First, N makes three moves to
determine the contents of its current neighborhood on each tape: if head t of N
is scanning the composite cell j, the first 3 moves will visit in turn the composite
cells j + 1, j and j − 1. Based on these 3 moves, N now “knows” what will be in
the current neighborhood after the next d steps of M. Notice that in d steps, each
head of M modifies at most two composite cells in each tape, and remains within
the current neighborhood. Hence N can make 2 more moves to update the current
neighborhood and to leave its head on the appropriate composite cell, in preparation
for the next sequence of 5 moves. To illustrate these 2 moves, suppose that the tape
head ends up at composite cell j + 1 after d moves of M. In this case, N can move
from composite j − 1 (where its head is positioned after the first 3 moves) to j and
then to j + 1, updating cells j and j + 1. The other cases are similarly treated.

If M accepts or reject within d steps, then N accepts or rejects instantly. This
completes the simulation phase.

Timing Analysis. We show that N uses ≤ n+ct(n) moves in the above simulation
of M. In the set-up phase, n + n

d
+ O(1) moves were made. In the simulation

phase, we see that each sequence makes at most 5 steps correspond to d steps
of M (the sequence just before termination has only 3 steps). Thus N made ≤
5t(n)

d
+ O(1) moves in this phase. Summing the time for the two phases we get

n + n

d
+ 5t(n)

d
+ O(1) < n + 6t(n)

d
+ O(1). Thus, if we choose d > 6/c, the total time

will be ≤ n + ct(n)(ev.). Q.E.D.

The following is immediate:

Corollary 4

(i) If t(n) = ω(n) then XTIME(t)=XTIME(O(t)), where X = D or N .

68 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

(ii) For all ε > 0,DTIME ((1 + ε)n) = DTIME(O(n)).

We do not state the nondeterministic version of Corollary 4 (ii) because a
stronger result will be shown next. We show that with k + 3 (rather than k + 1)
work-tapes we can exploit nondeterminism to strengthen theorem 3. In fact the
three additional tapes of N are known as ‘checking stacks, ’ i.e., the contents of
these tapes, once written, are not changed. The basic idea is that the set-up and
simulation phases in the proof of theorem 3 can be carried out simultaneously.
Nondeterminism is used in an essential way: the reader who is not familiar with
nondeterministic computations will find the proof highly instructive. The proof is
adapted from Book and Greibach [3]; the same ideas will be exploited later in this
chapter when we consider the problem of reducing the number of work-tapes with
no time loss.

Theorem 5 (Nondeterministic linear speedup) For all c > 0, and for any k-tape

M that accepts in time t(n) ≥ n, there is a nondeterministic (k + 3)-tape N that

accepts in time max{n + 1, ct(n)} with L(M) = L(N).

Proof. Let d be some integer to be specified later. As in the proof of theorem 3, N
‘compresses’ the tape contents of M, i.e., uses composite symbols that encode d tape
symbols of M at a time. The tapes of N are used as follows. Tape i (i = 1, . . . , k) of
N represents in compressed form the contents of tape i of M. Tape k + 1 contains
in compressed form an initial segment of the (actual) input string. Tapes k + 2 and
k + 3 each contains a copy of a ‘guessed’ input string, again in compressed form. In
addition, the simulation of M by N uses tape k + 3 as its ‘input’ tape. The idea is
for N to proceed with the 8-move simulation of theorem 3 using a ‘guessed’ input
string. In the meantime, N verifies that the guess is correct.

We describe the operations of N in two phases; each phase consists of running
two simultaneous processes (the reader should verify that this is possible because
the simultaneous processes operate on different tapes).

Initial Phase. The following two processes run in parallel.

Process 1. This process copies some initial prefix x1 of the input x into
tape k + 1, in compressed form. This takes |x1| steps. The prefix x1 is
nondeterministically chosen (at each step, the transition table of N has
two choices: to stop the process instantly or to continue, etc).
Process 2. On tapes k + 2 and k + 3, N writes down two copies, in

compressed form, of a guessed string y in the input alphabet of M. When
the writing of y is completed (nondeterministically of course), heads k+2
and k + 3 move synchronously back (ie., left-ward) over the string y.
Process 2 halts nondeterministically at some point before these heads
move past the first blank symbol left of y.

2.4. LINEAR REDUCTION OF COMPLEXITY 69

tape k + 3

tape k + 2

tape k + 1

· · ·

tape 0

ȳ1

ȳ1

x̄1

x1

ȳ2

ȳ2

x2

↑

↑

↑

↑

Figure 2.3: At the end of the initial phase

The initial phase ends when both processes halt (if one process halts before the other
then it marks time, doing nothing). At this point, on tape 0, we have x = x 1x2

where x1 is the initial segment that process 1 copied onto tape k + 1 and head 0 is
scanning the first symbol of x2. Similarly, y = y1y2 where heads k +2 and k +3 (on
their respective tapes) are scanning the composite symbol that contains the first
symbol of y2. Note that any of xi or yi(i = 1, 2) may be empty. The figure 2.3
illustrates the situation (not to scale!) where w̄ denotes the compressed version of
a string w and ↑ indicates a head position.

Final Phase. We run the following two processes in parallel.

Process 3. The input head continues to scan the rest of the input (i.e.,
x2), comparing it with the compressed copy of y2 on tape k + 2: for
this purpose, note that heads 0 and k + 2 are conveniently positioned
at the left-most symbol of x2 and y2, respectively, at the start of the
final phase. If x2 6= y2, then N rejects at once. Process 3 halts when the
checking confirms that x2 = y2.
Process 4. First we verify that x1 = y1, using x1 on tape k + 1 and y1

on tape k + 3. If x1 6= y1, N rejects at once. Otherwise, head k + 3 will
now be positioned at the beginning of y and we can begin the “8-move
simulation” of M (as in the proof of Theorem 2). Process 4 halts when
this simulation is complete.

We remark that in processes 3 and 4 above, when we say “N rejects at once”,
we mean that the described computation path halts without acceptance. It does
not mean that N is rejecting the input in a global sense. This explanation holds

70 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

generally for other similar situations.
The final phase ends when both processes halt. N accepts if neither process

rejects: this means x = y and N’s simulation of M results in acceptance. To see the
time taken in this phase, clearly process 3 takes ≤ |x2| steps. Checking x1 = y1 by

process 4 takes ≤ |x1|
d

+O(1) steps since x1 and y1 are in compressed form. Since the

8-move simulation takes 8t(|x|)/d steps, process 4 takes |x1|
d

+ 8t(|x|)
d

+ O(1) steps.

Thus the final phase takes 1 + max{|x2|,
|x1|
d

+ 8t(|x|)
d

+ O(1)} steps. (Note that the
“1+” is necessary in making the final decision to accept or not.)

We now prove that L(M) = L(N). If x is not in L(M) then it is easy to see that
every computation path of N is non-accepting x because one of the following will
fail to hold:

(a) y2 = x2,

(b) y1 = x1,

(c) M accepts x.

Conversely, if x is in L(M) then there is a computation path in which (a)-(c) hold
and the final phase accepts.

It remains to bound the acceptance time of N. Consider the computation path
in which, in addition to (a)-(c), satisfies the following:

(d) |x1| = d2n/de where n = |x|.

Process 2 uses dn

d
e steps to guess y and d |y2|

d
e steps to position the heads k + 2 and

k + 3. When we specify d below, we will ensure that d ≥ 3. Hence for n large
enough, the initial phase takes ≤ max{|x1|,

n+|y2|
d

+ O(1)} = |x1| steps. Combining
this with the time taken by the final phase analyzed earlier, the total time is

|x1|+ 1 + max{|x2|,
|x1|

d
+

8t(|x|)

d
+ O(1)}

≤ 1 + max{n,
(d + 1)|x1|

d
+

8t(n)

d
+ O(1)}

≤ 1 + max{n,
11t(n)

d
}(since t(n) ≥ n).

The last expression is ≤ max{n + 1, ct(n)} if we choose d > 11/c. Hence d can be
any integer greater than max{3, 11/c}. Q.E.D.

An interesting consequence of the last result is:

Corollary 6 NTIME(n + 1) =NTIME(O(n)).

A Turing acceptor that accepts in time n + 1 is said to be real-time.7 Thus the
real-time nondeterministic languages coincide with those linear time nondetermin-
istic languages. This stands in contrast to the fact that DTIME(n + 1) is a proper
subset of DTIME(O(n)).

7In the literature NTIME(n + 1) is also denoted by Q standing for ‘quasi-realtime’.

2.5. TAPE REDUCTION 71

Before concluding this section, we must make a brief remark about ‘linear re-
duction of reversals’. In some sense, reversal is a more powerful resource than either
space or time, since for every k > 0 there are non-regular languages that can be
accepted using k reversals but that cannot be accepted using k−1 reversals [16]. In
contrast, only regular languages can be accepted using a constant amount of space
or time. Indeed, in section 6, the power of reversals is even more dramatically shown
when we prove that all RE languages can be accepted with just two reversals when
we allow nondeterminism.

For simple Turing machines, reversal complexity seems to behave more to our ex-
pectation (based on our experience with time and space): Hartmanis[15] has shown
that only regular languages can be accepted with O(1) reversals. Furthermore, Fis-
cher [11] shows there is a linear speedup of reversals in this model. However, it
is not clear that a linear speedup for reversals in the multi-tape machine model is
possible in general. It is impossible for small complexity functions because of the
previous remark about languages accepted in k but not in k − 1 reversals.

2.5 Tape Reduction

Theorem 1 shows that with respect to space, a Turing acceptor may as well use one
work-tape. This section has three similar results on reducing the number of work-
tapes. The first is a simple result which reduces k work-tapes to one work-tape,
at the cost of increasing time quadratically. The second is a classic simulation of
a k-tape machine by a 2-tape machine due to Hennie and Stearns [17], in which
the simulation is slower by a logarithmic factor. Although these results hold for
nondeterministic as well as deterministic machines, our third result shows that we
can do much better with nondeterministic simulation. This is the result of Book,
Greibach and Wegbreit [4] showing that a nondeterministic 2-tape machine can
simulate a k-tape machine without increasing the time, space or reversals by more
than a constant factor. Finally, a tape-reduction result for deterministic reversals is
indicated at the end of section 8.

Such tape reduction theorems have important applications in later chapters.
Essentially they imply the existence of ‘efficient universal’ Turing machines (chapter
4), which in turn are used to prove the existence of complete languages (chapter 5)
and in obtaining hierarchy theorems (chapter 6).

We now state the first result.

Theorem 7 If L is accepted by a multitape Turing machine M within time t then

it is accepted by a 1-tape Turing machine N within time OM(t2). N is deterministic

if M is deterministic. Moreover, the space (resp., reversal) used by N is bounded by

a constant times the space (resp., O(t)) used by M.

Proof. Assume M has k work-tapes. We can use the 1-tape machine N described
in the proof of the space compression theorem, where each symbol of N is a viewed

72 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

as k × d matrix of M’s tape symbols. For the present proof, d may be taken to be
1. Note that the size of the non-blank portion of N’s work-tape is ≤ i after the ith
step. Hence the ith step can be simulated in OM(i) steps of N. So to simulate the
first t steps of M requires

∑

t

i=1 OM(i) = OM(t2) steps of N. The claim about space
and reversal usage of N is immediate. Q.E.D.

We know that the above simulation is essentially the best possible in the deter-
ministic case: Maass [27] shows that there are languages which require time Ω(n 2)
on a 1-tape machine but can be accepted in real time by a 2-tape machine. See also
[25].

Theorem 8 (Hennie-Stearns) If L is accepted by a k-tape Turing machine within

time t(n) then it is accepted by a 2-tape Turing machine within time O(t(n) log t(n)).

Proof. We use an ingenious encoding of the work-tapes of a k-tape machine M
using only tape 1 of a 2-tape machine N. The other work-tape of N is used as a
scratch-tape. Tape 1 of N has 2k tracks, two tracks for each tape of M. Each cell
of N is a composite symbol viewed as a column containing 2k symbols (possibly
blanks) of M. The cells of N are grouped into ‘blocks’ labeled by the integers:

· · · , B−2, B−1, B0, B1, B2, B3, · · ·

where B0 consists of just a single cell (call it cell 0) of N. We will number the
individual cells by the integers also, with the initial head position at cell 0. For
j > 0, Bj (respectively, B−j) consists of cells of N in the range

[2j−1
, 2j) = {2j−1

, 2j−1 + 1, . . . , 2j
− 1}

(respectively, (−2j
,−2j−1]). Thus blocks Bj and B−j each has 2j−1 cells, j > 0.

We assume the boundaries of these blocks are marked in easily detectable ways as
cells are visited, the details being left to the reader. The key idea is that, instead
of having the k simulated heads of M at different parts of N’s tracks, we constrain
them to always be at cell 0. The contents in M’s tapes are translated laterally to
allow this. Essentially this means that when head i of M moves leftward (say) the
entire contents of tape i must be shifted rightward so that the currently scanned
symbol of tape i is still in cell 0 of N’s tape 1. This may appear to require expensive
movement of data, but by a suitable scheme of ‘delayed’ data movement, we show
that there is only a small time penalty.

It is enough for us to explain what occurs in two of the tracks that represent
some work-tape T of M. These two tracks are designated upper and lower, and let
B

U

j
and B

L

j
denote the restriction of Bj to the upper and lower tracks, respectively.

Inductively, there is an integer i0 ≥ 0 that is non-decreasing with time such that a
block Bi is ‘active’ iff |i| ≤ i0. We initialize i0 = 0. The non-blank portion of tape
T is contained in the active blocks. We hold the following property to be true of
each active block Bi:

2.5. TAPE REDUCTION 73

(1) Each B
X

i
(X = U or L) is either full (i.e., represents 2 i−1 symbols of M,

including blanks) or empty (i.e., does not represent symbols of M, not even
blanks). The contents of a full block represent contiguous symbols of T . Note
that B

X

i
may be filled entirely with blanks of M and still is regarded as full.

(2) Exactly two of B
U

i
, B

L

i
, B

U

−i
and B

L

−i
are full. In particular, both B

U

0 and
B

L

0 are always full (it is easy to initialize this condition at the beginning of
the computation). In addition, if B

L

i
is empty, so is B

U

i
. (We allow B

U

i
to be

empty while B
L

i
is full.)

(3) If −i0 ≤ i < j ≤ i0 then Bi represents contents of T that are to the left (in
their natural ordering on tape T) of those represented in Bj. Furthermore, if
both B

L

i
and B

U

i
are full then B

L

i
represents contents of T that are to the left

of those in B
U

i
.

Let us now see how to simulate one step of M on T . Suppose that the head of T

moves outside the range of the two symbols stored in B0. Say, the next symbol to
be scanned lies to the right and i ≤ i0 is the smallest positive integer such that B

L

i

is full (recall that if B
L

i
is empty then B

U

i
is also empty). [If no such i exists, we

may increment i0, fill both tracks of Bi0 with blanks of M, and make both tracks
of B−i0 empty. Now we may choose i to be i0.] Clearly, the upper track of B

U

−i
is

empty, and both tracks of Bj for j = −i + 1,−i + 2, . . . ,−1, 0 are full. We copy the
contents of these Bj’s (there are exactly 2i symbols) onto the scratch-tape in the
correct sequential order (i.e., as they would appear in tape T). There are two cases:

(i) B
L

−i
is empty. Then transcribe the 2i symbols in the scratch-tape to the lower

tracks of B−i, B−i+1, . . . , B−1, B0.

(ii) B
L

−i
is full. Then we transcribe the contents of the scratch tape to the upper

track of B−i and to the lower tracks of B−i+1, . . . , B−1, B0.

Observe that there is exactly enough space in cases (i) and (ii). Now copy the
contents of B

L

i
to tape 2 and transcribe them onto the lower tracks of B1, . . . , Bi−1

and the upper track of B0: again there is exactly enough space. (If B
U

i
is full we

then move it to the lower track.) We call the preceding computations an order |i|

operation. Note that we have now returned to our inductive hypothesis and the
scanned symbol of T is in B0 as desired. Clearly a order |i| operation takes O(2 |i|)
time. Repeating this for each of the k tapes of M, we have completed the simulation
of one step of M.

To analyze the cost of this simulation, note that an order i ≥ 1 operation can
only occur if the lower track lying strictly between B 0 and B−i or between B0 and
Bi is empty. Also, immediately following such an operation, the cells in the lower
track between B−i and Bi are full. This implies that M must make at least 2 i−1

moves between two consecutive order i operations. It is also clear that the first
order i operation cannot occur until M has made at least 2 i−1 moves. Suppose M

74 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

makes t moves. Then the largest value of i such that some order i operation is made
is m0 = 1 + blog2 tc. Therefore the number of order i operations is ≤ t

2i−1 and the
total number of moves made by N is

m0
∑

i=1

t ·O(2i)

2i−1
= O(t log t).

Q.E.D.

In section 8, we will prove that a deterministic k-tape machine can be simu-
lated by a deterministic 2-tape machine with a quadratic blow-up in the number of
reversals.

If we use a 2-tape nondeterministic machines to do the simulation, the result
of Book, Greibach and Wegbreit below shows that the above quadratic blow-up in
time and reversals can be avoided.

First we need some definitions. Let (Σ, L) be accepted by some nondeterministic
k-tape machine M. Let ∆ be the tape alphabet of M, Q the states of M, and suppose
that the δ(M) contains p ≥ 1 tuples which we number from 1 to p. Let

Γ = Σ×Q×∆k
× {0, 1, . . . , p}

be a new alphabet with composite symbols which may be regarded as (k +3)-tuples
as indicated. Define a trace of a configuration C as a symbol of Γ of the form

b = 〈a, q, c1, . . . , ck, β〉 (2.4)

where a is the currently scanned input symbol in C, q is the state in C, each c j is
currently scanned symbol in the work tape j, and β is the number of any tuple in
δ(M) which is applicable to C. If there are no applicable tuples then β = 0. The
trace of a computation path C̄ = (C0, . . . , Cm) is the word b0b1 · · · bm where bi ∈ Γ
is a trace of Ci, and for each j < m, the tuple number in bj (i.e., the last component
of bj) identifies the instruction of M causing the transition C j ` Cj+1. The trace of
C̄ is unique. We are now ready for the proof.

Theorem 9 (Tape Reduction for Nondeterministic Machines) Let t(n) ≥ n and

M be a nondeterministic machine accepting in simultaneous time-reversal bound

of (t, r). Then there is a 2-tape nondeterministic machine N accepting L(M) in

simultaneous time-reversal bound of O(t, r).

Proof. Let M be as in the theorem. With ∆ and Γ as above, we construct a 2-tape
N that operates as follows: on input x, N guesses in tape 1 a word w = b0 · · · bm ∈ Γ∗

that is intended to be the trace of an accepting computation of M on x. It remains to
show how to verify if w is indeed such a trace. We may assume that w is generated
in such a way that the transitions from bi to bi+1 are plausible, e.g., if the instruction
(corresponding to the tuple number) in bi causes a transition to a new state q then

2.6. SIMULATION BY TIME 75

bi+1 has state q. Furthermore, the state in bm is accepting. It remains to check that
the symbol scanned under each head is the correct one.

For each j = 1, . . . , k, we will check the symbols under head j is correct. To do
this for a particular j, first N re-positions head 1 at the beginning of w. This takes
O(m) steps. Then N scans the word w from left to right, carrying out the actions
specified each composite symbol bi (i = 0, . . . ,m) using its own input head to move
as directed by the instructions in bi, and using tape 2 to act as tape j of M. If N
discovers that the symbol under its own input head does not agree with the symbol
indicated in bi, or the symbol scanned on its tape 2 does not agree with the symbol
indicated in bi, then N rejects at once. Otherwise, it proceeds to check the symbols
for head j + 1. When all tapes are verified in this manner, then N accepts.

Note that the checking of tape contents is entirely deterministic. We now prove
that this N accepts if and only in M accepts. If M accepts, then clearly N accepts.
Suppose N accepts with a particular word w = b0 · · · bm ∈ Γ∗. We can construct
inductively for each i ≥ 0, a unique sub-computation path C0, . . . , Ci such that each
bi is a trace of Ci and C0 is the initial configuration on input x. In particular, there
is an accepting computation path of length m. Finally, we note that the time used
by N is O(m); moreover, if the accepting computation makes r reversals, then N
makes r + O(1) reversals. Q.E.D.

Note that we can apply the nondeterministic linear speedup result to N to reduce
the time complexity from O(t) to max{n+1, t(n)} = t(n), but the number of work-
tape would increase to 5. But if t(n) is sufficiently fast growing, we can first apply
speedup result to M then apply the above construction to achieve 2-tape machine
with time complexity t(n) rather than O(t).

The cited paper of Maass also shows a language accepted by a real-time determin-
istic 2-tape machine that requires Ω(n2

/log5
n) time on any 1-tape nondeterministic

machine. This shows that the Book-Greibach-Wegbreit result cannot be improved
to 1-tape.

Remark: There are complexity differences between k and k + 1 tapes for all
k when we restrict attention to real-time computations: more precisely, there are
languages accepted in real-time by some (k + 1)-tape acceptor but not by any real-
time k-tape acceptor. Rabin [32] proved this for k = 1 and Aanderaa [1] showed
this in general. See also [31].

2.6 Simulation by Time

In this section, we will bound space and reversal resources in terms of time. The
results are of the form

X-TIME-SPACE-REVERSAL(t, s, r) ⊆ Y-TIME(t′)

where X,Y ∈ {D,N}. Generally, we show this by showing how to simulate a X-
mode machine M using time-space-reversal (t, s, r) using a Y -mode machine N in

76 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

time t
′. We then say we have a ‘simulation by time’. We think of simulation by time

as an attempt to minimize time without consideration of other resources. In the
next two sections, we obtain similar results on simulations by space and by reversal.
The importance of these three sections taken together is how they exemplify the
vastly different computational properties of each of these resources.

Theorem 10 Let t be a complexity function, X = D or N . Then

XTIME(t) ⊆ X-TIME-SPACE-REVERSAL(t, O(t), O(t)).

Proof. Observe that if a k-tape M accepts in time t then it clearly accepts in space
kt and in reversal (k + 1)t. Q.E.D.

In particular, XTIME(f) ⊆ XSPACE(O(f)) = XSPACE(f), by the space com-
pression theorem.

Theorem 11 Let M be a deterministic or nondeterministic acceptor. For all com-

plexity functions r, s, if M accepts in space-reversal (s, r) then

a) each phase of M has length OM(n + s), and

b) M accepts in time OM((n + s) · r).

Proof. A computation path C of M can be uniquely divided into phases which
correspond to the time periods between reversals. Choose C so that no configuration
is repeated in C. There is a constant OM(1) such that if all tape heads of M remain
stationary for OM(1) consecutive steps then some configuration would be repeated;
by choice of C, some tape head must move in any consecutive OM(1) steps. There
are at most n head motions that is attributable to the input head – the rest is
clearly bounded by s. Hence if the simultaneous space-reversal of C is (s, r), then
each phase has OM(n+ s) steps. This proves (a). Since there are r phases, the time
of C is OM(rs), proving (b). Q.E.D.

Corollary 12 For X = D,N ,

X-SPACE-REVERSAL(s, r) ⊆ XTIME(O((n + s) · r)).

Lemma 13 Let M be fixed k-tape acceptor, x be an input and h > 0 any integer.

Let

CONFIGSh(x) = {〈q, wi, ni〉
k

i=0 : w0 = x,

k
∑

j=1

|wj | ≤ h}

be the set of configurations of M with input x using at most space h. Then

|CONFIGSh(x)| = n ·OM(1)h

where n = |x|+ 1.

2.6. SIMULATION BY TIME 77

Proof. There are at most n+1 positions for head 0, and at most (h+2) positions
for each of heads 1, . . . , k, in a configuration of CONFIGSh(x). There are at most
(

h+k−1
k−1

)

ways to distribute h cells among k tapes. These h cells can be filled with

tape symbols in at most d
h ways where d is the number of tape symbols of M,

including with the blank symbol. Let q be the number of states in M. Thus:

|CONFIGSh(x)| ≤ q · (n + 2) · (h + 2)k
·

(

h + k − 1

k − 1

)

· d
h = n · O(1)h

.

Q.E.D.

Theorem 14 If M is a Turing machine that accepts in space s then M accepts in

time n ·OM(1)s(n). M can be deterministic or nondeterministic.

Proof. Let C be a shortest accepting computation path on input x using space s(|x|).
Then the configurations in C are all distinct and by the previous lemma, the length
of C is upper bounded by n · OM(1)s(n). Q.E.D.

Corollary 15 With X = D,N , we have

XSPACE(s) ⊆ X-TIME-SPACE(n · O(1)s(n)
, s(n)).

Theorem 16 NSPACE(s) ⊆ DTIME(n ·O(1)s(n)).

Proof. Let M be a nondeterministic k-tape machine accepting in space s. The
theorem is proved by showing a deterministic N that accepts the same language L(M)
in time n · O(1)s(n). It is instructive to first describe a straightforward simulation
that achieves O(n2 log n · O(1)s(n)).

On input x, N computes in stages. In stage h (for h = 1, 2, . . .), N has in tape
1 exactly h cells marked out; the marked cells will help us construct configurations
using at most h space. Then N lists on tape 2 all configurations in CONFIGS h(x).
Since |CONFIGSh(x)| = n · O(1)h, and each configuration needs h + log n space
(assuming the input head position is in binary and input word is not encoded with
a configuration), we use a total of n log n · O(1)h space. On a separate track below
each configuration in tape 2, we will mark each configuration as having one of three
possible statuses: unseen, seen and visited. Initially, all configurations are marked
‘unseen’, except for the initial configuration which is marked ‘seen’. Now N per-
forms a sequence of ≤ |CONFIGSh(x)| sweeps of the input data, where each sweep
corresponds to visiting a particular ‘seen’ configuration; after the sweep, that ‘seen’
configuration will have a ‘visited’ status. To pick a configuration for sweeping, N
picks out the leftmost ‘seen’ configuration C on tape 2. When visiting configuration
C, N first generates all configurations derivable from C, say C1 and C2, and puts
them on two different tapes. Then N goes through tape 2 again, this time to locate
the occurrences of C1 and C2 in tape 2. This can be done in time n log n · O(1)h.

78 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

If Ci is located in tape 2, we mark it ‘seen’ if it is currently ‘unseen’; otherwise
do nothing. Then we mark C itself as ‘visited’. If we ever mark an accepting
configuration as ‘seen’, we can accept at once; otherwise, when there are no more
‘seen’ configurations, we halt and reject. The total time in stage h is seen to be
n

2 log n · O(1)h. The correctness of this simulation follows from the fact that the
input x is accepted by M iff N accepts at some stage h, h ≤ s(|x|). The total time
to accept is

s(n)
∑

h=1

n
2 log n ·O1(1)

h = n
2 log n ·O2(1)

s(n)
.

We now improve on the O(n2 log n) factor. The idea [7] is to represent the
input head positions implicitly. Let us call a storage configuration to be a ‘standard’
configuration except that information about the input tape (i.e., the input word and
the input head position) is omitted. Thus, for a configuration that uses h space,
the corresponding storage configuration is just the current state, the contents of the
work tapes and the positions of the work heads. This can be stored in O(h) space.
In stage h, we first compute on tape 2 a list L of all the storage configurations using
space h. This list can be represented by a string of length h ·O(1)h = O(1)h. Then
we duplicate L n + 2 times. So tape 2 contains the string

T = L#L# · · ·#L
︸ ︷︷ ︸

n+2

.

This string represents every ‘standard’ configuration C as follows. If the input head
of C is at position i (i = 0, 1, . . . , n + 1) and its storage configuration is S then C is
represented by the i + 1st occurrence of S in T . Again, we assume that the all the
configurations in T are initially ‘unseen’ except the initial configuration is ‘seen’.
As long as T has any ‘seen’ configuration, we do repeated sweeps as before to ‘visit’
the leftmost ‘seen’ configuration. To visit C, we must mark as ‘seen’ any successor
C

′ of C that is still ‘unseen’. Note that there are O(1) such successors and these are
within O(1)h distance from C. Hence the marking process takes only O(1)h time.

To find the next ‘seen’ configuration to visit, we would also like to spend O(1) h

steps in finding it. It turns out that this can only be done in the amortized sense.
The idea is to keep track of the leftmost and rightmost ‘seen’ configuration: for each
‘seen’ configuration, we can store two flags, leftmost and rightmost, which will be set
to true or false according as the configuration is leftmost and/or rightmost. Note
that if the next leftmost ‘seen’ configuration lies to the left of the configuration being
visited, then we can find it in O(1)h steps. This is a consequence of our policy to
always visit the leftmost unseen configuration first. But if it lies to the right, there
is basically no bound (i.e., the maximum number n ·O(1)h of steps may be needed).
However, we shall charge the cost to traverse an entire block L of configurations
to the last visited configuration on that block. Then it is not hard to see that
each visited configuration is charged at most once (assuming as we may, that each

2.6. SIMULATION BY TIME 79

configuration has at most two successors). Thus the charge of O(1)h per visited
configuration is maintained. The total charges over all visited configurations is then
n ·O(1)h.

There is one other detail to mention: since the input head position in a configura-
tion of T is implicit, we need to know the current input symbol for any configuration
that we visit in T . This is easy to take care of by using the input head of the sim-
ulator to track the position of head 2. When head 2 is inside the ith copy of L

in T , we assume that the simulator is scanning the ith cell in its input tape. This
concludes our description. There are n · O(1)h sweeps and each sweep takes O(1)h

time, the total time of stage h is n · O(1)h. This implies the stated bound in our
theorem. Q.E.D.

There is another basic method of doing a time simulation of nondeterministic
space. First we review the connection between Boolean matrices and digraphs. A
digraph G on n vertices can be represented by its adjacency matrix A where A is
an n× n matrix with its (i, j)th entry Ai,j = 1 if and only if there is an edge from
the vertex i to vertex j. We assume that Ai,i = 1 for all i. Recall that the product
of two Boolean matrices is defined as in ordinary matrix multiplication except that
addition becomes logical-or ‘∨’ and multiplication becomes logical-and ‘∧’. It is
easy to see that if B = A

2 (A squared) then Bi,j = 1 if and only if there is a vertex
k such that Ai,k ∧ Ak,j = 1, i.e. there is a path of length at most 2 from i to j.
Arguing the same way, with C = B

2 = A
4, we see that Ci,j = 1 if and only if there

is a path of length at most 4 from i to j. Therefore we see that A
∗ given by

A
∗ := A

2k

(where k is the least integer such that 2k ≥ n) then A
∗
i,j

= 1 if and only if there
is a path from i to j. The matrix A

∗ is called the transitive closure of A. There
is a well-known method attributed to Warshall and to Floyd for computing the
transitive closure A

∗. For s = 0, 1, . . . , n, let A
(s) be the matrix defined as follows:

A
(s)
i,j

= 1 if and only if there is a path from i to j such that the intermediate nodes

(excluding i and j) lie in the set {1, . . . , s}. Hence A
∗ = A

(n). Clearly A
(0) = A. It

is also easy to see that A
(s+1) is obtained as follows:

A
(s+1)
i,j

= A
(s)
i,j
∨

(

A
(s)
i,s+1 ∧A

(s)
s+1,j

)

.

It is easy to see that this algorithm has complexity O(n3) on a random-access ma-
chine. It turns out (Exercises) that we can accomplish this on a Turing machine also,
assuming that the matrix A is given in row-major order. We exploit this connection
between paths and transitive closure. In particular, if we regard configurations as
nodes of a graph, and edges correspond to the ` relation, then deciding if a word
is accepted amounts to checking for a path from the start configuration to any fi-
nal configuration. We leave the details as an exercise. This alternative method is
slightly less efficient with complexity (nO(1) s(n))3 = n

3
O(1)s(n). We will encounter

the transitive closure method again.

80 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

A consequence of this theorem is that the class NLOG of languages accepted in
nondeterministic logarithmic space is in P. Although theorem 16 remains valid if
we replace NSPACE with NTIME the next theorem will show something slightly
stronger. But first we note a fact similar to lemma 13.

Lemma 17 Let M have k-tapes and x an input word. For any h ≥ 1, let CONFIGS ′
h
(x)

denote the set of configurations of M that can be reached from the initial configura-

tion on input x using at most h steps. Then

|CONFIGS ′
h
(x)| = OM(1)h.

Proof. As before, if q is the number of states in M and d is the number of tape
symbols of M, plus one, then |CONFIGS ′

h
(x)| ≤ q · (h + 2)k+1 · dh = O(1)h. The

difference is that now, the input head position n0 satisfies n0 ≤ h + 1. Q.E.D.

Thus |CONFIGS ′
h
(x)| does not depend on n = |x|.

Theorem 18 NTIME(t) ⊆ DTIME(O(1)t).

Proof. The proof proceeds as in theorem 16 but we now enumerate over configura-
tions in CONFIGS ′

h
(x) rather than CONFIGSh(x). Q.E.D.

Theorems 16 and 18 remain valid if we use running complexity instead of accept-
ing complexity (Exercise). The next result shows that reversal in the fundamental
mode is bounded by a single exponential time.

Theorem 19 Let M be a deterministic Turing machine accepting in r(n) reversals.

Then AcceptT imeM(n) = n ·OM(1)r(n) (assuming the left-hand side is defined).

Proof. Let M be a k-tape machine and C an accepting computation path on an
input of length n > 0. The theorem follows if we show that the length of C is
n ·OM(1)r(n). Call a step Cj−1 ` Cj active if any work head moves during this step
from a non-blank symbol; otherwise the step is inactive. Thus, during an inactive
step, the input head can freely move and the work heads may move from a blank
symbol. We obtain a bound on the number of active steps. By assumption, C has
r ≤ r(n) phases. Let mi be the number of active steps in phase i (i = 1, . . . , r).

For any configuration Cj , recall that each head h (h = 0, . . . , k) tends in some
direction dh ∈ {−1, 0,+1}. The potential of tape h in Cj is the number of non-blank
cells that would be encountered as head h moves in the direction dh, starting from
its current cell in Cj . If dh = 0 the potential is defined to be zero. For example,
if head h is at the rightmost non-blank symbol, and dh = +1 then the potential is
1; but if dh = −1 then the potential would be the total number of non-blank cells
on tape h. The potential of Cj is the sum of the potentials of all work tapes (so we
discount the potential of the input tape). Clearly the potential of C j is at most the
space usage in Cj. Therefore, at the start of phase i the potential is at most

k

i−1
∑

v=1

mv

2.7. SIMULATION BY SPACE 81

since the number of active steps until that moment is
∑

i−1
v=1 mv and each active step

can create at most k new non-blank cells, where k is the number of work heads.
Suppose inductively that mv ≤ cn(k + 1)v for some c > 0. This is true for v = 1.
Now each active step in a phase consumes at least one unit of potential, so m i is
bounded by the potential at the beginning of the ith phase:

mi ≤ k

i−1
∑

v=1

mv ≤ k

i−1
∑

v=1

cn(k + 1)v
< cn(k + 1)i

.

Therefore in r phases, the total number of active steps is

r
∑

v=1

mv < cn(k + 1)r+1 = n · OM(1)r.

It remains to bound the number of inactive moves. There are OM(1) consecutive
steps in which no head moves, and there are at most n moves by the input head in
any phase. Hence there are at most n + OM(mi) inactive moves in the ith phase.
Summing over all phases gives at most nr + OM(1)r inactive moves. Q.E.D.

Corollary 20 DREVERSAL(r(n)) ⊆ D-TIME-REVERSAL(n ·O(1)r(n)
, r(n))

Remark: If reversals by input heads are not counted, then we get instead

DREVERSAL(r) ⊆ D-TIME-REVERSAL(n2
O(1)r(n)

, r(n)).

2.7 Simulation by Space

We will present two techniques for simulating other resources so as to minimize
deterministic space. These space simulation techniques are quite different than the
time simulation techniques of the previous section.

Theorem 21 (Extended Savitch’s theorem) If t(n) ≥ 2s(n) ≥ log n then

N-TIME-SPACE(t(n), s(n)) ⊆ DSPACE(s(n) log

(

t(n)

s(n)

)

).

Proof. Given a nondeterministic machine M accepting in simultaneous time-space
(t, s), it suffices to show that L(M) is accepted in space s log(t/s) by some determin-
istic N. (We require t(n) ≥ 2s(n) simply to prevent log(t/s) from vanishing.) An
input x of length n is accepted by M iff there is an accepting computation path C

whose time-space is (t(n), s(n)). As in lemma 13, for any h ≥ 1, let CONFIGSh(x)

82 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

be the set of configurations of M on input x using space at most h. For configu-
rations C,C

′ ∈ CONFIGSh(x), define the predicate PATHh(C,C
′
,m) to be true if

there is a sub-computation path from C to C
′ of length ≤ m.

Claim A: Assume that the input x is freely available, we can evaluate PATH h(C,C
′
,m)

in deterministic space O(m + h + log n). Proof of claim. Consider the tree T (C)
rooted at C and whose paths comprise all those sub-computation paths from C of
length ≤ m and involving configurations in CONFIGSh(x). It suffices to search for
C

′ in T (C) using a standard depth-first search. At any moment during the search,
we are at some node labeled C

′′ in T (C). We first check if C
′′ is the C

′ we are
looking for. If not, we try to visit an unvisited successor of C

′′ in CONFIGSh(x),
provided C

′′ is at depth less than m. If this is not possible, we backtrack up the
tree. To backtrack, we must be able to generate the parent C

′′′ of C
′′: this is easy if

we had stored the instruction of M that transformed C
′′′ into C

′′. The space to store
this backtracking information is just O(1) per level or O(m) overall. We also need
O(h+log n) to store the current node C

′′ and the target configuration C
′. When we

have searched the entire tree without finding C
′, we conclude that PATHh(C,C

′
,m)

is false. This proves our claim.

Claim B: Assume h ≥ log n and that the input x is freely available, we can
evaluate PATHh(C,C

′
,m) in in deterministic space O(h log(2 + m

h
). Proof of claim.

We use a following simple observation:

(*) PATHh(C,C
′
,m) holds iff both PATHh(C,C

′′
, bm/2c) and PATHh(C ′′

, C
′
, dm/2e)

hold, for some C
′′ ∈ CONFIGSh(x).

Thus we can evaluate PATHh(C,C
′
,m) recursively: if m ≤ h, we use claim

A to directly evaluate PATHh(C,C
′
,m) in space O(h), as desired. Otherwise, if

m > h, we use observation (*) to make two recursive calls to the predicate. Here
are the details: To evaluate PATHh(C,C

′
,m), assume tape 1 of the machine N

stores the value h, tape 2 stores the current arguments (C,C
′
,m) while tape 3

acts as the recursion stack. We then systematically enumerate all configurations
C

′′ ∈ CONFIGSh(x). For each C
′′, we recursively evaluate PATHh(C,C

′′
,m/2) and

PATHh(C ′′
, C

′
,m/2) in this order. But before making first recursive call, we write

the pair (C ′
, 0) on top of the recursion stack, where the Boolean value 0 indicates

that this is the first of the two recursive calls. Then the current arguments on tape
2 are updated to (C,C

′′
,m/2) and we continue recursively from there. Similarly,

before making the second recursive call, we write the pair (C, 1) on the recursion
stack and update the current arguments on tape 2 to (C ′′

, C
′
,m/2). If either one

of these recursive calls returns with “failure” (predicate is false), we generate the
next configuration in CONFIGSh(x) and use it place of C

′′; in case C
′′ is the last

configuration in our enumeration of CONFIGSh(x), we return from the current
call PATHh(C,C

′
,m) with “failure”. If both recursive calls returns with “success”

(predicate is true), we return from the current call with “success”.

2.7. SIMULATION BY SPACE 83

The recursion depth in evaluating PATHh(C,C
′
,m) is dke = dlog(m/h)e ≥ 1.

The space to store the arguments for each recursive call is O(h + log n) where the
log n comes from having to represent the input head position (the actual input x

need not be stored). So the total space used is O((log n + h) log(m/h)), which is
O(h log(m/h)) when h ≥ log n.

Finally, that x is accepted by M if and only if PATHh(C0, Ca,m) is true for some
h ≤ s(n), m ≤ t(n), where Ca ∈ CONFIGSh(x) is an accepting configuration and
C0 the initial configuration on input x. By modifying M, we may assume that C a

is unique in CONFIGSh(x). Since s(n) and t(n) are unknown, N must search for h

and m systematically, using a doubly-nested loop:

for p = 1, 2, . . . ,
for h = 1, . . . , p,

let m = h2bp/hc and C0, Ca ∈ CONFIGSh(x).
Accept if PATHh(C0, Ca,m) is true,

The correctness follows from two remarks:
(i) For any given value of p, the maximum space used in the inner loop is O(p). This
is because the space to evaluate PATHh(C0, Ca,m) is order of h lg(m/h) ≤ p.
(ii) If input x is accepted by M then the double-loop accepts for some p = O(s log(t/s));
otherwise, the double-loop runs forever. Q.E.D.

We obtain several interesting corollaries, including the well-known result of Sav-
age [34].

Corollary 22

(i) (Savitch’s theorem) If s(n) ≥ log n then NSPACE(s) ⊆ DSPACE(s2).
(ii) If s(n) ≥ n then NTIME(s) ⊆ DSPACE(s).
(iii) If s(n) ≥ n, N-SPACE-REVERSAL(s, r) ⊆ DSPACE(s log r).

Proof. (i) Use the fact that NSPACE(s) = N-TIME-SPACE(O(1)s
, s) for s(n) ≥

log n.
(ii) This follows since NTIME(t) ⊆ N-TIME-SPACE(2t, t) but N-TIME-SPACE(2t, t) ⊆
DSPACE(t) by applying the theorem.
(iii) This follows since N-SPACE-REVERSAL(s, r) ⊆ N-TIME-SPACE((n + s)r, s)
and N-TIME-SPACE((n + s)r, s) ⊆ DSPACE(s log r) by applying the theorem.
Q.E.D.

We remark that our formulation of the generalized Savitch theorem is motivated
by the desire to combine (i) and (ii) of this corollary into one theorem.

If s(n) = o(log n), Savitch’s theorem yields NSPACE(s) ⊆ DSPACE(log 2
n).

Monien and Sudborough have improved this to

NSPACE(s) ⊆ DSPACE(s(n) log n).

84 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

In chapter 7, we further improve upon Monien and Sudborough via a strengthening
of theorem 21. Indeed, chapter 7 shows four distinct extensions of Savitch’s theorem!

Corollary 23

(i) DSPACE(nO(1)) = NSPACE(nO(1)).

(ii) DSPACE(O(1)n) = NSPACE(O(1)n).

This corollary justifies our notation ‘PSPACE ’ since we need not distinguish
between ‘D-PSPACE’ and ‘N-PSPACE’. The notations EXPS and EXPSPACE are
likewise justified.

We next simulate deterministic reversals by deterministic space. Istvan Simon
[35] had shown how to simulate simultaneous time-reversal by space. Our next result
strengthens his result to space-reversal.

Theorem 24 If s(n) ≥ log n,

D-SPACE-REVERSAL(s, r) ⊆ DSPACE(r log s).

Proof. Given a deterministic k-tape M accepting in space-reversal (s, r), it suffices
to construct a deterministic N accepting L(M) in space r log s. For any configuration
C in a computation path C, the trace of C refers to the head tendencies in C (relative
to C) and to information that remains in C after we discard all the tape contents
except for what is currently being scanned.8 More precisely, the trace of C is defined
as

〈q, b0, . . . , bk, n0, . . . , nk, d0, . . . , dk〉

where q is the state in C, the bi’s are the scanned symbols, the ni’s are the head
positions, and the di’s are the head tendencies. We remark that the ni’s are absolute
positions, unlike our usual convention of using relative positions in configurations.
To simulate the jth step means to compute the trace of the jth configuration of the
computation path. We shall also need the concept of a partial trace: this is like a
trace except any number of the bi’s can be replaced by a special symbol ‘∗’. We say
bi is unknown if bi = ∗. Thus a trace is also a partial trace although for emphasis,
we may call a trace a full trace.

On tape 1 of N we assume that we had already computed a sequence

τ1, τ2, . . . , τm

where τi is the trace of the first configuration in phase i. To begin, we can always
place the trace τ1 of the initial configuration on tape 1. Call the last phase (phase

8Warning: in this book we use the term ‘trace’ for several similar but non-identical concepts.
The reader should check each context.

2.7. SIMULATION BY SPACE 85

m) represented in this sequence the current phase. This means that our simulation
has reached some step in the mth phase.

To simulate a step of a phase, it turns out that we need to simulate k steps from
previous phases and thus we can use recursion. To keep track of these recursive
calls, we use tape 2 of N as a recursion stack. On the recursion stack, we will in
general store a sequence of the form

σi1 , σi2 , . . . , σiv
(v ≥ 1)

where m = i1 > i2 > · · · > iv ≥ 1 and each σij
is a partial trace of a configuration

in the ijth phase. Furthermore, all the σij
’s, except possibly for σiv

, are not full
traces. Note that σi1 is always in the current phase (phase m). Intuitively, we are
really trying to evaluate σi1 but its evaluation calls for the evaluation of σ i2 , which
calls for the evaluation of σi3 , etc. Thus σiv

is the top entry of the recursion stack.

This is how the recursive calls arise. Suppose that at some point in our simulation
we managed to compute the full jth trace τ where the jth configuration belongs to
the current phase. Also assume that the recursion stack contains τ as its only entry.
We now want to simulate the (j + 1)st step. Note that we can obtain the partial
trace of the (j +1)st configuration from the full jth trace: the only unknowns about
the (j +1)st trace are the symbols under any head that has moved in the transition
from the jth configuration to the (j+1)st configuration. At this moment, we replace
τ on the recursion stack by partial (j + 1)st trace σi1 (as the only stack entry).

Now inductively, assume that we have σi1 , . . . , σiv
(v ≥ 1) on the stack. Let

σiv
= 〈q, b0, . . . , bk, n0, . . . , nk, d0, . . . , dk〉

be the partial trace on top of the stack. We may assume that b0 is known (i.e. not
equal to ∗) since this is on the input tape. Let h ≥ 1 be the smallest index such that
bh = ∗ (if σiv

is a full trace, then let h = k +1). We take following action depending
on two cases:

(1) If h ≤ k then we want to determine bh. Note that we know the position
(= nh) of bh and hence from the contents of tape 1, we can determine the
phase preceding phase iv in which cell nh was last visited. If this cell had
never been visited before, we can also determine this fact and conclude that
bh is the blank symbol . Suppose this cell was last visited by configuration
C in phase iv+1 (iv > iv+1 ≥ 1). Note that in the configuration following C,
head h must no longer scan cell nh. Our goal is to compute the trace of C.
We say the trace of C is sought after by σiv

. To do this, we copy the trace
of the starting configuration of phase iv+1 to the top of the stack. This trace,
σiv+1 , is available in tape 1.

(2) If h = k +1 then σiv
is a full trace. There are two cases: (i) If this is the trace

sought after by the preceding partial trace σiv−1 then we can fill in one of the

86 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

unknown symbols in σiv−1 and erase σiv
from the top of the stack. (ii) If this

is not the trace sought after by the preceding partial trace then we simply
replace σiv

on the stack by its successor partial trace. By definition, if v = 1
then case (ii) is applied.

It is clear that we eventually convert the partial trace σ i1 into a full trace, and
hence repeat the cycle. We need to consider the action to take when we enter a
new phase. Suppose τ = σi1 had just turned into a full trace. Just before we
replace τ on the stack by its successor τ

′, as described in (2), we check whether
τ is the beginning of a new phase, and if so we first store it on tape 1. In fact,
the information indicating whether τ is the start of a new phase could already be
determined as we initially form the partial trace corresponding to τ .

The total amount of space required on tapes 1 and 2 of N is O(r log s) since
each partial trace uses O(log s) space. The assumption s(n) ≥ log n is needed to
represent the input head positions. Q.E.D.

Corollary 25

(i) (Istvan Simon) D-TIME-REVERSAL(t, r) ⊆ DSPACE(r log t).
(ii) DREVERSAL(O(1)) ⊆ DSPACE(log n) = DLOG.

(iii) For r(n) ≥ log n, DREVERSAL(r) ⊆ DSPACE(r2).

To see (i) use the fact that D-TIME-REVERSAL(t, r) ⊆ D-SPACE-REVERSAL(t, r).
For (ii) and (iii), use the fact that

DREVERSAL(r) ⊆ D-TIME-REVERSAL(n ·O(1)r
, r).

As application of part (ii) of this corollary, we note that since the palindrome
language can be accepted in linear time by an acceptor making three reversals, it
can be accepted in log space.

Since time, space and reversals are not independent, it is worth pointing out some
conditions under which the theorem D-SPACE-REVERSAL(s, r) ⊆ DSPACE(r log s)
is stronger than its corollary (i), D-TIME-REVERSAL(t, r) ⊆ DSPACE(r log t).
For instance, let s(n) = θ(n) = O(log r(n)). Then corollary (i) implies D-SPACE-REVERSAL(s, r)
⊆ DSPACE(r log n) while the theorem yields the stronger D-SPACE-REVERSAL(s, r) ⊆
DSPACE(r log log n).

Remark: Rytter and Chrobak [33] have shown that the the converse of corollary
(ii),

DLOG ⊆ DREVERSAL(O(1)),

holds, provided we do not count reversals made by the input head. This extra
condition of Rytter and Chrobak is essential, as pointed out by Lískiewicz 9: Book
and Yap [5] proved that all tally languages in DREVERSAL(O(1)) are regular.
On the other hand, Mehlhorn and Alt (see section 11) has given a non-regular

9Private communication.

2.8. SIMULATION BY REVERSAL 87

tally language. Thus corollary (ii) is a proper inclusion. Nevertheless, we cannot
strengthen corollary (ii) to DREVERSAL(O(1)) ⊆ DSPACE(s) for any s(n) =
o(log n), because the language {an

b
n : n > 0} belongs to DREVERSAL(O(1)) but

not to DSPACE(s).

2.8 Simulation by Reversal

We consider simulation techniques that seek to minimize reversals. Reversal com-
plexity seems much more ‘powerful’ than time and space complexity. For example,
to double an arbitrarily large tape segment on a 2-tape Turing machines takes only 2
reversals – yet the time and space charged against this activity would be linear. Our
intuition about reversals, relative to time or space, is much less developed. This is
illustrated by a somewhat unexpected result from Baker and Book [2] about reversal
complexity in the nondeterministic mode:

Theorem 26 RE ⊆ NREVERSAL(2).

Proof. Without loss of generality, let L be a recursively enumerable language ac-
cepted by a simple Turing machine M. Suppose x ∈ L and let C0, C1, . . . , Ck be the
accepting computation path of M on x. Assume that all the C i’s are encoded by
strings of the same length. We construct a two-tape nondeterministic N that ac-
cepts L as follows: on input x, N guesses some sequence C0#C1# · · ·#Ck on tapes
1 and 2 (so the two tapes have identical contents). Now head 2 reverses until it is
at the #-separator between Ck−1 and Ck; while doing this N can verify if Ck is an
accepting configuration. Next, after reversing the direction of head 1, we can easily
check that Ck−1 (on tape 2) and Ck (on tape 1) are consecutive configurations of
some computation path. If not, N immediately rejects; in particular, N rejects if
|Ck−1| 6= |Ck|. Without any further head reversals, we can continue in this fashion
to check that Ci−1 (on tape 2) and Ci (on tape 1) are consecutive configurations
of some computation path, for i = k − 1, k − 2, . . . , 1. We must ensure that C0 is
the initial configuration on input x; but it is simple to ensure this (without any
additional head reversals) while we are guessing the C i’s. Q.E.D.

This result, combined with the earlier

DREVERSAL(r) ⊆ DTIME(nO(1)r),

tells us that there is no fixed complexity function f such that any language accepted
nondeterministically in reversal r(n) can be accepted deterministically in reversal
f(r(n)) (contrast with theorem 18 and Savitch’s theorem for time and space). Thus
reversal seems to be rather different than time or space. Later in this book, we see
that when reversal is simultaneously bounded with either time or space, then the
corresponding complexity classes are better behaved.

88 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

2.8.1 Basic Techniques for Reversals

In this subsection, we show that reversal complexity in the fundamental mode is
also relatively well-behaved. These results are from [10]. First we give a series of
technical lemmas.

Lemma 27 (Natural Number Generation) Given as input any integer r > 0 in

unary, the string

0̄#1̄#2̄# · · ·#2r − 1#

can be generated by a 2-tape Turing machine M making O(r) reversals. Here m̄

denotes the binary representation of the integer m of length r, prefixed with 0’s if

necessary.

Proof. M first generates the pattern (0r#)2
r

on tape 1. This can be done within
O(r) reversals, using a simple doubling method. Call each portion of the tape 1
between two consecutive # symbols a segment. Similarly, M generates a pattern
P1 = (01)2

r

on tape 2.
Now M uses r stages, making a constant number of reversals per stage, to ‘fix’

the r bits in each segment in tape 1. (The final string #̄0# · · ·#2r − 1# is going
to be the contents of tape 1 at the end of the stages, so ‘fixing’ a bit means making
it the symbol 0 or 1 that should appear finally.) For example, with r = 3, the
rightmost bit of the 23 = 8 segments alternates between 0 and 1, i.e. has the
pattern P1 = 10101010. The next bit has pattern P2 = 11001100, and the final bit
has pattern P3 = 11110000.

Suppose that at the beginning of the (i+1)st (i ≥ 0) stage, M has fixed the last
i bits for each segment on tape 1, and suppose the pattern

Pi+1 = (02i

12i

)2
r−i

is inductively available on tape 2. Here the first bit of a segment refers to its least
significant bit. Note that the (i + 1)st bit of the jth segment is exactly the jth bit
of pattern Pi+1.

In the (i+1)st stage M needs to know which bit in the jth segment is the (i+1)st
bit. This is solved by placing a special mark on another track below the ith bit of
each segment. These marks are easily updated at each stage. Now with only one
phase, M can fix the (i + 1)st bit for each segment of Pr on tape 1.

Using a constant number of sweeps, M can generate the pattern Pi+2 = (02i+1
12i+1

)2
r−i−1

from Pi+1. At the end of the rth stage, the string 0̄#1̄#2̄# · · · 2r − 1# is on tape 1
of M. This completes the proof. Q.E.D.

A string of the form
x1#x2# · · ·#xn#, n ≥ 1

(xi ∈ Σ∗, # /∈ Σ) is called a list of n items (xi is the ith item). A list is said to be in
normal form if n is a power of 2 and each xi has the same length. The next lemma
shows how to convert any list into one in normal form.

2.8. SIMULATION BY REVERSAL 89

Lemma 28 (List Normalization) There is a 2-tape Turing machine M which, given

a list x1#x2# · · ·#xn# of n items on its input tape, can construct another list

y1#y2# · · ·#y2k# in normal form using O(log n) reversals. Therefore,

(a) 2k−1
< n ≤ 2k ;

(b) each yi (i = 1, . . . , 2k) has length max
i=1,...,n

|xi|; and

(c) each yi (i = 1, . . . , n) is obtained by padding xi with a prefix of zeroes and

each yj (j = n + 1, . . . , 2k) is a string of zeroes.

Proof. First M computes the unary representation z0 ∈ {0}
∗ of max

i=1,...,n

|xi| as follows:

With O(1) reversals, M initializes tape 1 to have all the odd numbered items from the
original list and tape 2 to have all the even numbered items. So tape 1 and 2 contain
the lists x1#x3#x5# · · · and x2#x4#x6# · · ·, respectively. In another pass, M
compares x2i−1 on tape 1 with x2i on tape 2 (i = 1, 2, . . . , dn/2e), marking the longer
of the two words. In O(1) passes, M can produce a new list z1#z2# · · ·#zdn/2e# of
these marked words. M repeats this process: splits the list into two with roughly
the same number of items, compares and marks the longer item of each comparison,
produces a new list consisting of only the marked items. After O(log n) reversals, M
is left with a list containing only one item. This item has the longest length among
the xi’s. It is now easy to construct z0.

The next goal is to construct a string of the form

(z0#)2
k

(where k = dlog2 ne).

Suppose we already have (z0#)2
i

. Using x1#x2# · · ·#xn# and (z0#)2
i

, M can
compare n with 2i: if n ≤ 2i then we are done, otherwise we will construct (z0#)2

i+1

from (z0#)2
i

using O(1) reversals.

Finally, from (z0#)2
k

, we can easily construct the desired y1#y2# · · ·#y2k#.
Q.E.D.

A more complicated problem is computing the transitive closure of a matrix. It
turns out that the key to computing transitive closure is a fast matrix transposition
algorithm:

Lemma 29 (Matrix Transposition) There is a 2-tape Turing machine M such that,

given an n × m matrix A = (aij), M can compute the transpose A
T of A using

O(log min{m,n}) reversals. Here we assume both A and A
T are stored in row major

form.

Proof. Because of the preceding list normalization lemma, we may assume that A

satisfies the property m = 2k for some integer k ≥ 1 and each entry of A has the
same length. Let us first show how to compute A

T in O(log m) reversals.

90 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

For each i = 0, 1, . . . , k, and for j = 1, 2, . . . , 2i, let A
(i)
j

denote the n × 2k−i

matrix consisting of the columns indexed by the numbers

((j − 1)2k−i + 1), ((j − 1)2k−i + 2), . . . , (j2k−i).

For example, A
(k)
j

is the jth column of A and for each i,

A = A
(i)
1 |A

(i)
2 | · · · |A

(i)
2i

(where | means concatenation of matrices). An i-row representation of A is a string

consisting of the row-major forms of A
(i)
1 , A

(i)
2 , . . . , A

(i)
2i , listed in this order, separated

by ‘$’.

Let A
(i) denote the i-row representation of A. The lemma follows if we can show

how to obtain A
(i+1) from A

(i) in O(1) reversals. This is because the input is A
(0)

(the row major form of A) and the desired output is A
(k) (the column major form

of A).

In order to do the A
(i) → A

(i+1) transformation, we need some auxiliary data.
Define the block pattern:

P (i) = ((w2k−i−1

0 w2k−i−1

1 #)n$)2
i

(i = 0, . . . , k − 1)

where w0 = 0s and w1 = 1s, and s is the length of each entry of A. Each w
2k−i−1

0

(respectively, w
2k−i−1

1) ‘marks’ a left (respectively, right) half of the rows of A
(i)
j

,

j = 1, 2, . . . , 2i. P
(i) helps us to ‘separate’ the rows of each A

(i)
j

into ‘left half’ and
‘right half’.

We may inductively assume that each tape has two tracks with the following
contents: A

(i) is on track 1 and P
(i) is positioned directly underneath A

(i) on track
2. The case i = 0 is initialized in O(1) reversals. A copy of P

(i+1) can be made on
track 2 of tape 2 using P

(i). Now it is easy to obtain A
(i+1) on track 1 of tape 2.

It is not hard to show that A
T can also be computed in O(log n) reversals. We

leave the details as an exercise. Hence if we first determine the smaller of m and n

in O(1) reversals, we can then apply the appropriate matrix transposition algorithm
to achieve the O(log min{m,n}) bound. Q.E.D.

Lemma 30 (Parallel Copying Lemma) There is a 2-tape Turing machine M which,

given an input x = 0n#x1x2 · · · xm, where xi ∈ Σ∗, (i = 1, . . . ,m), produces string

y = x
2n

1 x
2n

2 · · · x
2n

m
within O(n) tape reversals, where we assume that M can recognize

the boundary between blocks xi and xi+1, i = 1, . . . ,m− 1.

Proof. Using O(n) reversals, M can get a string S = (x1x2 · · · xm)2
n

. Notice that
x

2n

1 x
2n

2 · · · x
2n

m
is the transpose of S if we regard S as being a m×2n matrix. Q.E.D.

From the last two important lemmas, we get immediately,

2.8. SIMULATION BY REVERSAL 91

Lemma 31 (Matrix Multiplication) There is a 2-tape Turing machine M such that,

given two n × n Boolean matrices A = (aij) and B = (bij) in row major form, M
computes their product AB = (cij) in O(log n) reversals.

Proof. By lemma 29, we can obtain the transpose BT of B within O(log n)
reversals. Let

A = (a11 · · · a1na21 · · · a2n · · · an1 · · · ann)

and
B

T = (b11 · · · bn1b12 · · · bn2 · · · b1n · · · bnn).

By lemma 30, we can get

A1 = (a11 · · · a1n)n(a21 · · · a2n)n · · · (an1 · · · ann)n

and
B

T

1 = (b11 · · · bn1b12 · · · bn2 · · · b1n · · · bnn)n

within O(log n) reversals. Then O(1) more reversals will give AB. So O(log n)
reversals are enough for n× n Boolean matrix multiplication. Q.E.D.

Lemma 32 (Matrix Transitive Closure) There is a 2-tape Turing machine M such

that given an n×n Boolean matrix A = (aij), stored in row major form, M computes

the transitive closure A
∗ of A in O(log2

n) reversals.

Proof. Since A
∗ = (E + A)m for any m ≥ n, where E is the identity matrix, we can

reduce this problem to log n matrix multiplications. Q.E.D.

Sorting seems a very important tool for reversal complexity. Here we give an
upper bound for sorting.

Lemma 33 (Sorting) There is a 2-tape Turing machine M that, given a list

x1#x2# · · ·#xn#

on its input tape, can construct the sorted list

xπ(1)#xπ(2)# · · · xπ(n)#

in O(log n) reversals. Here each item xi is assumed to have the form (ki&di) where

ki is a binary number representing the sort key, di is the data associated with ki and

& some separator symbol.

Proof. By lemma 28, we can assume that the input list is in normal form. We
will be implementing a version of the well-known merge sort. The computation will
be accomplished in k phases, where n = 2k. To initialize the first phase, we use the
parallel copying lemma to construct on tape 1 a string of the form

(x1$)
n#(x2$)

n# · · ·#(xn$)n#

92 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

(for some new symbol $) using O(log n) reversals.
For i = 1, 2, . . . , k, let f(i) = 2k −

∑

i−1
j=1 2j = 2k − 2i + 2. So f(1) = 2k and

f(k) = 2. At the beginning of the (i + 1)st phase (i = 0, 1, . . . , k − 1), we will
inductively have on tape 1 a string of the form

B1#B2# · · ·#B2k−i#

where each Bj has the form

(xj,1$)
f(i+1)%(xj,2$)

f(i+1)% · · ·%(xj,2i$)f(i+1)

where xj,1, xj,2, . . . , xj,2i are distinct items from the original list, already sorted in
non-decreasing order. Call Bi the ith block. The substring in a block between two
consecutive ‘%’ is called a subblock. Observe phase 1 has been properly initialized
above.

We also need some auxiliary data to carry out the induction. Let w 0 = 0s1
where s = |xi| (for all i). For this, we assume that at the beginning of the (i + 1)st
phase, we also store on tape 1 the patterns

Pi = (w2i

0 #)
n

and

Qi = (w
f(i)
0 #)

n

Note that Qi can be easily obtained from Pi−1 and Qi−1 within O(1) reversals and
Pi can be obtained from Pi−1 in another O(1) reversals. Again, phase 1 is easily
initialized.

Let us now see how we carry out phase i+1. First we split the string B1#B2# · · ·#B2k−i#
into two lists containing the odd and even numbered blocks: tape 1 now contains
B1#B3# · · ·#B2k−i−1# and tape 2 contains B2#B4# · · ·#B2k−i#. This can be
done using O(1) reversals.

Our goal is to ‘merge’ B2j−1 with B2j, for all j = 1, 2, . . . , 2k−i−1 in parallel. Let

B2j−1 = (y1$)
f(i+1)%(y2$)

f(i+1)% · · ·%(y2i$)f(i+1)

and
B2j = (z1$)

f(i+1)%(z2$)
f(i+1)% · · ·%(z2i$)f(i+1)

We begin by comparing the first copy of y1 with the first copy of z1. Suppose
y1 ≥ z1 (‘≥’ here is the ordering on the items, as defined by the sort key). Then we
‘mark’ the first copy of z1 and move head 2 to the first copy of z2 in the block B2j .
We can compare the second copy of y1 with this copy of z2, marking the smaller
of y1 and z2. If y1 is smaller, we move to the first copy of y2 and next compare
y2 with z2. Otherwise, z2 is smaller and we next compare the 3rd copy of y1 with
the first copy of z3. In general, suppose we compare (some copy of) yi with (some

2.8. SIMULATION BY REVERSAL 93

copy of) zj . We mark the smaller of the two. If yi is smaller, we next move head 1
to the first copy of yi+1 and move head 2 to the next copy of zj and proceed with
comparing these copies of yi+1 and zi; Otherwise, zj is smaller and the roles of y

and z are exchanged in the description. (For correctness, we will show below that
there is a sufficient number of copies of each item.)

Eventually, one of the blocks is exhausted. At that point, we scan the rest of
the other block and mark the first copy of each remaining item. Notice that each
subblock now contains exactly one marked copy. We then proceed to the next pair
of blocks (B2j+1 and B2j+2).

After we have compared and marked all the pairs of blocks, we will get two
strings S1 and S2, with one copy of an item in each subblock of each block marked,
on the two tapes, respectively. Our goal is to produce the merger of B2j−1 and B2j

from S1 and S2. Call the merged result B
′
j
. We will scan S1 and output on tape

2 a partially instantiated version of B
′
j
. Our preceding marking algorithm ensures

that if a marked copy of item w in S1 is preceded by h copies of w then w has been
compared to and found larger than h other items in S2. In the merge result, we
want to place these h smaller items before w. Since each item should be repeated
f(i + 2) times in its subblock in B

′
j

we must precede w with

h(1 + |z1$|f(i + 2))

blank spaces to accommodate these h subblocks which will be placed there in another
pass. With the help of the pattern Qi+2, we can leave the required amount of blank
spaces for each subblock in B

′
j
. More precisely, we make a copy of Qi+2 in a track of

tape 2 and use it as a ‘template’ which has the block and subblock structure already
marked out. As we scan string S1, for each unmarked copy of an item preceding its
marked version, we skip a subblock of Qi+2. When we reach a marked version of
item w in S1, we will copy that f(i+2) successive copies of w into a subblock of Q i+2.
To see that there are enough copies of w on S1 following this marked w, observe
that there are a total of f(i + 1) copies of w in its subblock in S 1 and since at most
2i copies of w precedes its marked version, there are at least f(i+1)− 2 i ≥ f(i+2)
copies left. When we finish this process, we scan the partially formed B

′
j

and the
string S2 simultaneously, and fill in the remaining subblocks of B

′
j
. We finally have

a new list of blocks:

B
′
1#B

′
2# · · ·#B

′
2k−i−1

#

where each B
′
j

has the required form

(xj,1$)
f(i+2)%(xj,2$)

f(i+2)% · · ·%(xj,2i+1$)f(i+2).

This completes the proof. Q.E.D.

For some applications, we need the sorting algorithm to be stable:

94 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

Corollary 34 (Stable Sorting) The above sorting algorithm can be made stable in

this sense: if the output list is

xπ(1)#xπ(2)# · · ·#xπ(n)#

where each xπ(i) has the key-data form kπ(i)&dπ(i), then for each i = 1, . . . , n − 1,
kπ(i) = kπ(i+1) implies π(i) < π(i + 1).

Proof. To do this, we first number, in another track (say track K) of the tape,
the items in the string to be sorted sequentially. This takes O(log n) reversals. Next
use the method of lemma 33 to sort the string. After sorting, those items with
a common sort key will form a contiguous block. We apply the sorting method
again to each block of items, where we now sort each block by the numbers of items
(as written on track K). To do this in O(log n) reversals, we must do this second
sorting for all the blocks simultaneously − our above method can be modified for
this. Q.E.D.

2.8.2 Reversal is as powerful as space, deterministically

We now have the tools to prove the main result of this subsection, which is an efficient
simulation of a space-bounded computation by a reversal-bounded computation (all
deterministic). The idea is roughly this: to simulate a machine using s(n) space, we
first use the Natural Number Generation lemma to generate all configurations using
space s(n). Then we use the Parallel Copying Lemma to obtain a string S containing
many copies of these configurations. With two identical copies of S, we can march
down these two copies in a staggered fashion (as in the proof of the Baker-Book
theorem), to extract a computation path. This method is reversal efficient because
most of the reversals are made when we generated S.

Theorem 35 Suppose s(n) = Ω(log n). Then any language L ∈ DSPACE(s(n))
can be accepted by a 2-tape deterministic Turing machine M within O(s(n)) rever-

sals.

Proof. First we assume that s(n) is reversal constructible and s(n) = Ω(n).

Let N be a deterministic Turing machine N that accepts L in space s(n). We
construct a 2-tape Turing machine M that accepts L in O(s(n)) reversals. Fix any
input x of length n.

(a) We first construct an integer s = θ(s(n)) in unary, using s reversals (recall the
definition of reversal constructible).

(b) Given an input x of length n, M first generates a string of the form

W1 = 0̄#1̄#2̄# · · ·#2s − 1#

2.8. SIMULATION BY REVERSAL 95

We can suppose that all the possible configurations of N on input x are included
in the string W1.

(c) From string W1, using O(1) reversals, we can construct another string

W2 = z0#z1# · · ·#z2s−1#

such that |zm| = s and zm is the ‘successor configuration’ of configuration m

in the string W1, m = 0, 1, . . . , 2s − 1. If m is a terminal configuration, we
may indicate this by using some suitable zm.

Combining strings W1 and W2 into one tape, we get a string

W3 = u1#u2# · · ·#u2s

with each um (m = 1, 2, . . . , 2s) is a 2-track string of the form

Cm

C
′
m

where Cm and C
′
m

are configurations of N on input x such that Cm ` C
′
m

.

(d) Next we construct two identical strings S1 and S2 on tapes 1 and 2 of M,
respectively, using O(s) reversals:

S1 = S2 = ((u1$)
2s

#(u2$)
2s

· · ·#(u2s$)2
s

%)
2s

We will call each substring of the form (u1$)
2s

#(u2$)
2s

· · ·#(u2s$)2
s

(as
determined by two consecutive %-symbols) a block of S1 or of S2. For each
j = 1, 2, . . . , 2s we call the substring (uj$)

2s

a uj -segment.

(e) With these two strings, we now construct the computation path

P = C0 ` C1 ` · · · ` Ci ` · · ·

of N on input x in another O(1) reversals as follows.

(e1) Consider the first ui1 -segment in S1 where the upper track of ui1 contains the
initial configuration C0 of N on input x. Begin by marking the first copy of ui1

in this segment and place head 1 between the first and second copies of u i1 in
the ui1-segment. (By ‘marking’ of a copy of ui1 , we mean a special symbol is
placed at the end of that copy on a separate track. This marking amounts to
nothing in the following procedure, but helps the visualization of the proof.)
Moreover, place head 2 at the beginning of the first block of string S2;

96 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

(e2) Inductively, suppose we have already found and marked a sequence u i1 , ui2 , . . . , uiq

on the string S1 on tape 1 such that the lower track of uij
is identical to the

upper track of uij+1 , j = 1, 2, . . . , q − 1. Hence the upper track of uil
contains

the configuration Cl in the above path P for l = 1, 2, . . . , q. Suppose also that
head 1 is placed between the first and second copies of uiq

in the qth block in
S1 and that head 2 is placed at beginning of the qth block in S2. Our goal is
to find a segment (uiq+1$)

2s

in the qth block of S2 such that the lower track
of uiq

is identical to the upper track of uiq+1 . Let Cq+1 be the configuration
in the lower track of uiq

. If Cq+1 is accepting (respectively, terminal), then
we accept (respectively, reject) at once. Otherwise, we look for an occurence
Cq+1 in the first upper configuration of each segment of the qth block of S2.
Note that to do this without any head reversals, we use the 2s − 1 successive
copies of Cq+1 in the current segment of S1.

We will surely find the desired segment (u iq+1$)
2s

in the qth block of the string
S2. In particular, if the 2s − 1 copies of Cq+1 in the current segment are used
up, the desired uiq+1 must be the very last segment (the u2s-segment) in the
qth block. Head 2 is now between the first and second copies of u iq+1 in the
uiq+1 -segment.

Our goal now is to return to the inductive basis: with head 1 between the
first and second copies of uiq+1 in the q + 1st block of S1, and head 2 at the
beginning of the q + 1st block of S2. But the procedure just described can be
applied with simple changes (viz., we reverse the roles of S 1 and S2 and look
for the first occurence of uiq+1 in the next block of S1). When this is done, we
are ready for next iteration looking for uiq+2 .

If we exhaust the entire string S1 without accepting or rejecting in the above
procedure, then N must be in a loop. Then M will reject.

We now return to two assumptions we made at the beginning of this proof: (a)
First we indicate how to modify the above proof for the case s(n) = o(n). The
above assumed that the entire input string x is stored with each configuration. This
information is now omitted, although the input head position is retained. Then by
sorting the string W1 by the positions of the input head, followed by one sweep
of the input x, we are able to record the ‘current input symbol’ into each of the
modified configurations. A similar sort can be applied to W 2 in its construction.
Then the entire procedure can be carried out as before. (b) Finally, we show how to
avoid the assumption that s(n) is reversal constructible. The problem arises because
we cannot do the usual trick of trying successive values of s by increments of one.
This is because reversal, unlike space, is not reusable and it would lead to s(n) 2

reversals overall. But we can easily fix this by doubling the value of s at each stage
(s = 1, 2, 4, 8, . . ., etc). Q.E.D.

2.8. SIMULATION BY REVERSAL 97

Corollary 36 For any s(n) = Ω(log n),

DSPACE(s) ⊆ DREVERSAL(s).

Thus, for deterministic Turing machines, reversal as a complexity resource is at
least as powerful as space. Combined with Savitch’s result, we obtain:

Corollary 37 For any s(n) = Ω(log n),

NSPACE(s(n)) ⊆ DREVERSAL(s(n)2).

Using the fact that DREVERSAL(r) ⊆ DSPACE(r2) for r(n) = Ω(log n) (see
previous section), we get important consequences:

Corollary 38

PLOG := DSPACE(logO(1)
n) = DREVERSAL(logO(1)

n)

PSPACE := DSPACE(nO(1)) = DREVERSAL(nO(1))

EXPS := DSPACE(O(1)n) = DREVERSAL(O(1)n)

In short, in the fundamental mode of computation, space and reversals are poly-
nomially related.

Finally, it turns out that the above results and techniques yields a tape-reduction
theorem of the form:

Theorem 39 (Tape reduction for reversals) Let r(n) = Ω(log n). If L is accepted

by a determinisitic multitape machine within r(n) reversals then it is accepted by a

2-tape deterministic machine within O(r(n)2) reversals.

Further results on reversal complexity can be found in [9].

2.8.3 Reversal is more powerful than time, deterministically

We now prove a result of Lískiewicz [26] showing that deterministic reversal is
stronger than deterministic time by a square factor:

Theorem 40 For all complexity function t(n) ≥ n, DTIME(t) ⊆ DREVERSAL(
√

t).

A fundamental problem that we need to solve is the problem of retrieving data
from a table. We have already seen this problem, but let us now give it an abstract
description. A table T is just a m× 2 matrix,

T = k1$d1#k2$d2# · · ·#km$dm, (ki, di ∈ Σ∗).

98 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

Each ki is called a key and di is called the data item associated to ki. We may assume
that the keys ki’s are distinct. The retrieval problem is formulated as follows: given
the table T on tape 1 and a key k ∈ Σ∗ on tape 2, to locate k in T and then write its
associated data d out to some specified output tape; if k is not a key in T , we output
some special symbol. Using the previous techniques, we can solve this problem in
O(log m) reversals: first, we generate (k$)m on tape 3 in O(log m) reversals. Then
we can search for occurence of k in T in the obvious way: compare the ith copy of
k on tape 3 to ki in tape 2. If they are equal, we can output di on the output tape,
otherwise, we go to the next i.

A key idea in Lískiewicz’s proof is what we shall call turbo-charged retrieval: the
table T is now replaced by

T
′ = (k1$d1$)

m#(k2$d2$)
m# · · ·#(kmdm)m

and the search argument k is replaced by (k$)m. We want the output to be (d$)m

where d is the data associated to k.

Lemma 41 The turbo-charged retrieval problem can be solved in O(1) reversals.

Proof. We proceed as in the retrieval method above that uses O(log m) reversals,
except that we skip the O(log m) reversals needed to make m copies of k. Once a
copy of the key k is located in T

′, it is a simple matter to write out the desired
output (d$)m in O(1) additional reversals. Q.E.D.

Next, we reduce the problem of simulating a deterministic machine M that ac-
cepts in time t(n) to a sequence of retrievals. On input of length n, let h =

√

t(n).
If C,D are of configurations of M, we say that D is a h-successor of C if C derives
D in exactly h steps, unless the computation path from C terminates in less than h

steps in which case D is the terminal configuration. Intuitively, we want to construct
a table T whose pairs (ki, di) correspond to pairs (C,D) where D is a h-sucessor
of C. Then, starting from the initial configuration C0, we can do a sequence of h

retrievals from T to obtain C1, C2, . . . , Ch where Ci+1 is the h-successor of Ci. Of
course, we should turbo-charge T and C0 so that we only use O(1) reversals per
turbo-charged retrieval. The problem with this scenario is that the turbo-charging
is too expensive because there are Ω(2t) distinct configurations in T and this would
require Ω(t) reversals for turbo-charging.

This brings us to the second idea of the simulation: we shall consider fragments

of configurations. Let M have k work tapes. We first partition each tape (input
tape as well as work tapes) into h-blocks where each block consists of h consecutive
cells. We may assume that an h-block occupies the cells numbered (i− 1)h +1, (i−
1)h + 2, . . . , i · h for some i ∈ Z; we may call this the ith block. An extended h-block

is just 3 consecutive blocks on some tape; these blocks are called the left-, center-
and right-blocks, respectively, of the extended block. An h-fragment is a sequence

F = F0%F1% · · ·%Fk

2.8. SIMULATION BY REVERSAL 99

where each Fi is the contents of an extended h-block of tape i. (We simply say
‘block’, ‘fragment’, etc, when the h is understood or irrelevant.) The ‘contents’ of a
cell shall include the current state q if that cell is currently scanned: if a cell contains
symbol a and is currently being scanned, then its contents is the pair (q, a). We say
that the fragment F = F0% · · ·%Fk is centered if, for each i = 0, . . . , k, some cell in
the center-block of Fi is being scanned. Note that in a centered fragment, the state
q is duplicated k + 1 times. For any configuration C, there is a unique centered
h-fragment associated to C.

The importances of h-fragments is that there are O(1)h of them. If F is a
centered h-fragment, we define an h-fragment G to be the h-successor of F as follows:
let F be associated to some configuration C, and D be the h-successor of C. Then
G is the h-fragment obtained from D by considering the contents of the blocks used
in F . Note that G need not be centered; it is also easy to see that G is uniquely
defined (it is independent of our choice of C). Let Th be the search table whose
keys are precisely all the O(1)h centered h-fragments, and the data associated to a
fragment F is just the h-successors G of F .

Lemma 42 Given h in unary, we can set up the search table Th in O(h) reversals.

Proof. We first generate a sequence

k1#k2# · · ·#km

of all centered h-fragments. This is done using the number generation technique
and discarding those “numbers” that do not correspond to centered h-fragments. In
O(1) reversals, convert this to the trivial identity table:

Th = k1$d1#k2$d2# · · ·#km$dm

where di = ki for each i. Next, we ‘scan’ this table h times, and each time we replace
the data di by its 1-successor fragment. Each ‘scan’ actually takes O(1) reversals.
Q.E.D.

We then turbo-charge table Th to

T
′
h

= (k1$d1$)
m#(k2$d2$)

m# · · ·#(kmdm)m

This amounts to parallel copying, and can be done in O(h) reversals. The final step
is to carry out the simulation.

We need to describe the representation of configurations. Let C be a configura-
tion of M. For i = 0, . . . , k, let the nonblank contents Wi of tape i be contained in
blocks ` to u:

Wi = B`B`+1 · · ·Bu−1Bu.

Let us note that W0 always uses dn/he blocks; but for i = 1, . . . , k, we initially
represent only one block in Wi (this block is all blank except for the indication of

100 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

the position of head i). During the simulation, we will add more blocks of blanks as
needed. Normally, we would represent C as W0%W1% · · ·%Wk. But to turbo-charge
the representation, we represent C as C = W

′
0%W

′
1% · · ·%W

′
k

where

W
′
i

= (B`$)
m#(B`+1$)

m# · · ·#(Bu$)m.

We now return to the proof of the main theorem. We shall operate in stages.
In stage i = 1, 2, 3, . . . , we store the value h = 2i in unary on tape 1. Using the
stored valued of h, we can set up the turbo-charged table Th on tape 2, and the
turbo-charged initial configuration C0 on tape 3. Setting up tapes 2 and 3 each
takes O(h) reversals. We now do the following “block simulation step” for a total
of h times:

Block Simulation Step. Inductively, let tape 3 contain some turbo-charged con-
figuration C. We first extract onto tape 4 the extended blocks corresponding to head
positions on each tape of M:

(B0
L
$)m#(B0

C
$)m#(B0

R
$)m% · · ·%(Bk

L
$)m#(Bk

C
$)m#(Bk

R
$)m. (2.5)

Here, B
i

L
B

i

C
B

i

R
represents an extended block of tape i. This can be done in O(1)

reversals. Using the matrix transpose technique, in O(1) reversals, we convert this
into

(B0
L
B

0
C
B

0
R
$)m#(B1

L
B

1
C
B

1
R
$)m# · · ·#(Bk

L
B

k

C
B

k

R
$)m.

Doing this one more time, we convert it to the “turbo-charged h-fragment”

(F%)m = (B0
L
B

0
C
B

0
R
#B

1
L
B

1
C
B

1
R
· · ·#B

k

L
B

k

C
B

k

R
%)m.

We can use this as the search key for a turbo-charged retrieval on the table Th. We
may assume that the retrieved data (G%)m is placed in tape 4, replacing (F%)m.
By reversing the above process, we convert (G%)m into the form equation (2.5) in
O(1) reversals; this is still stored in tape 4. Then in O(1) reversals, we can update
the configuration C in tape 3 using the contents of tape 4. This ends a “block
simulation step”. The number of reversals in O(1).

Clearly, if C is the configuration at time t then after a block simulation step, C

is the configuration at time t+h (or else it is the terminal configuration). Thus after
h block simulation steps, we have reached terminal configuration if the computation
path terminates in ≤ h

2 steps. If a terminal configuration, we can accept or reject
accordingly. Otherwise, we double h and go to the next stage. The total number
of reversals in stage h is O(h). Clearly if the input is accepted in ≤ t(n) steps then
the value of h is bounded by 2

√

t(n). Hence the total number of reversals is easily
seen to be O(

√

t(n)). This proves the theorem of Lískiewicz.

2.9. COMPLEMENTATION OF SPACE CLASSES 101

2.9 Complementation of Space Classes

In this section, we prove that deterministic and nondeterministic space classes, with
some reasonable technical restrictions, are closed under complement. This result for
nondeterministic space classes solves a major open problem problem dating back
to Kuroda in 1964. The solution was independently obtained by Immerman [22]
and Szelepcsényi [37]. Their solution was a surprise in two ways: the solution was
surprisingly simple, and many researchers had expected the opposite result. The
technique for this result has wider applications that the interested reader may further
pursue (e.g., [28, 38, 24, 6]).

This section uses running complexity rather than accepting complexity. Recall
our notation for running complexity classes uses the subscript ‘r’, as in DSPACE r(s)
or NSPACE r(s). It is also crucial that the complexity function s = s(n) has the
property that for all n ∈ N, s(n) is defined and <∞. Suppose a machine M has such
a running space complexity s(n). Then for all computation paths, on any input, use
only a finite amount of space. It is important to realize that this does not preclude
infinite computation paths.

2.9.1 Complement of Deterministic Classes

To motivate the proof, observe that deterministic running time classes are closed
under complementation:

co-DTIME r(t) = DTIME r(t) (2.6)

In proof, suppose a deterministic acceptor M runs in time t. We can easily define a
deterministic acceptor N that runs in time t such that co-L(M) = L(N): N simply
rejects iff M accepts, but in all other respects, N behaves exactly as M. This proves
(2.6). Note that the restriction t(n) < ∞ is essential and implies that M always
halts. The main result of this subsection is to show the space analogue of (2.6) using
a technique of Sipser [36].

Theorem 43 (Complement of deterministic space classes) If s(n) < ∞ for all n,

then co-DSPACE r(s) = DSPACE r(s).

The above trick of reversing the roles of acceptance and rejection is insufficient
because the fact that M runs in a finite amount of space does not guarantee that
M halts. The proof of theorem 43 therefore hinges upon the ability to guarantee
halting; indeed it is easily seen to be an immediate consequence of:

Lemma 44 For every deterministic Turing acceptor M that runs in space s(·), there

is a deterministic N that runs in space s such that L(M) = L(N) and N halts on all

computation paths.

102 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

One idea for proving this result is to keep two running counts for the number
of steps t taken and the amount of space s used: if t > nOM(1)s, we know that we
must be looping. However, this proof requires that s(n) ≥ log n in order to store
the value of t (why?). The following proof places no such restrictions on s(·).

Proof of lemma 44. Without loss of generality, assume that M has only one work
tape. This means that if C ` C

′ then space(C ′) − space(C) is 0 or 1. Let us
also fix an input x of M throughout the following proof. For any h > 0, let V =
CONFIGSh(x) be the set of configurations of M on input x using space at most h.
Let G = Gh = (V,E) be the digraph whose edges comprises (C,C

′) ∈ V
2 such that

C `M C
′. Since M is deterministic, each node of G has outdegree at most 1. It is

also not hard to see that G has indegree bounded by some constant OM(1). The
graph G has many properties, as illustrated by figure 2.4.

Figure 2.4: Components of a digraph G with outdegree ≤ 1.

Each acyclic component of G will just be a rooted tree. If a component is not
a rooted tree, then it has a unique cycle C and has a set of trees, each rooted at
some node of C. In this discussion, the edges of a tree are always directed towards
the root.

For any configuration C ∈ V , let T (C) denote the subgraph of G induced by
the subset of configurations C

′ ∈ V that can reach C. Note that by our machine
conventions, if C ` C

′ then space(C) ≤ space(C ′); hence the space usage of each
configurations in T (C) is at most space(C). If C is a node in a directed cycle of G

then T (C) an the entire component of G; otherwise, T (C) is a tree. Unfortunately,
to discover if C is in a cycle may take a long time. For our application, an alternative
easy-to-check condition is sufficient: we say C is expectant if C ` C

′ and space(C ′) >

space(C). The following is immediate:

Fact. If C is expectant or terminal then T (C) is a tree.

We describe a search procedure for T (C) where C is expectant or accepting
(hence terminal). This procedure returns “success” if the initial configuration C 0(x)

2.9. COMPLEMENTATION OF SPACE CLASSES 103

is in T (C), and “failure” otherwise. We will use the standard depth-first search
(DFS) order of visiting the nodes. In the usual implementation of DFS, we need
to represent the path from the root to the currently visited node, maintained on a
(recursion) stack. This information is needed to return from a node to its parent.
However, in a DFS on T (C) we can avoid storing this information since the parent
of a node C

′ is simply the successor of C
′. This trick allows us to implement the

search in O(h) space.

Search(C):Input: configuration C such that T (C) is a tree.if C = C0(x), return(“success”).
for each child C

′ of C

Recursively search(C ′).
If search of C

′ is successful, return(“success”).
return(“failure”). //no recursive calls were successful.

Let us show how to implement this search on a Turing machine N using O(space(C))
amount of space, assuming that x is available on the input tape. Let N use two work
tapes only. Tape 0 stores the input x; tape 1, it stores the current node C that is
being visited; tape 2 is used as scratch space. At the start of the recursive call, N
checks if C is equal to C0(x) and if so, returns with “success”. Else, if C is a leaf,
return with “failure”. Otherwise, N will generate the first child C 1 of C and store
it on tape 1, and recursively call search on C1. We leave as an exercise to work
out the details of this generation. In general, suppose we have just returned from a
recursive search on some child Ci of C. By assumption, we a copy of Ci on tape 1.
It is easy to generate C from Ci, since Ci ` C. If the search of Ci is a success, we
return success from C; otherwise, we try to generate the next child C i+1 to repeat
the recursive search. If C has no more children, we return “failure”. This completes
the description of search.

To conclude the proof of the lemma, we show how to use the search procedure.
N will compute in stages. In stage h (h = 1, 2, . . .) N systematically generates all
configurations C that use space h. At the start of stage h, we initialize a found flag
to false. For each expectant or accepting C, N calls the search(C). If the search is
successful we take one of two actions: if C is accepting, we accept (terminating the
entire computation). Otherwise, C is expectant, and we set the found flag to true.
After we have examined all configurations using space h, we check the found flag.
This flag is true iff C0(x) can reach some expectant configuration using space h. In
this case N proceeds to stage h+1. Otherwise, we terminate the entire computation
and reject.

Why is this procedure correct? If this procedure accepts, then C0(x) reaches
some accepting configuration. If this procedure rejects, C0(x) does not reach any
accepting configuration using space ≤ h, and moreover, it can never reach any
configuration using more than space h. Hence we may safely reject. Thus acceptance

104 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

or rejection decisions by our procedure are always correct. But we must guard
against the possibility of looping. But our requirement for proceeding from stage
h to the stage h + 1 ensures that the original machine M actually runs in at least
h +1 space if we reach stage h +1. Since s(n) <∞, we must get a decision in some
finite stage. Q.E.D.

As an interesting consequence of the previous lemma, we have:

Theorem 45 If n ≤ s(n) < ∞ is an exact space-complexity then s(n) is space-

constructible.

Proof. Let M run in space exactly s. By the previous lemma, we may assume
that M halts on all inputs. Now construct another acceptor N as follows: given an
input of length n, N ignores the input except for noting its length. Then for each
word x of length n, N simulates M on x, marking out the number of cells used. It is
clear that N will mark out exactly s(n) cells. The condition that s(n) ≥ n is needed
in order to cycle through all words of length n. Q.E.D.

Note: Hopcroft and Ullman, [21] originally showed that DSPACE r(s) is closed
under complementation under the restriction s(n) = Ω(log n)s, using the idea of a
counter mentioned above. Later Hartmanis and Berman [12] proved that, in case
the input alphabet is unary, we can drop the assumption s(n) = Ω(log n). The
above proof from Sipser shows that we can drop this assumption in general.

Jianer Chen has shown that deterministic reversal classes are also closed under
complement:

Theorem 46 Let M accept in f(n) < ∞ reversals where f is time-constructible.

Then there is a machine N that accepts L(M) in O(f) reversals and always halts.

2.9.2 Complement of Nondeterministic Classes

We prove the Immerman-Szelepcsényi result:

Theorem 47 (Complement of nondeterministic space classes) If log n ≤ s(n) <∞

for all n then NSPACE r(s) = co-NSPACE r(s).

For the proof, let us fix M to be any acceptor running in space s(n) ≥ log n. We
also fix the input word x. For any h ≥ 0,m ≥ 0, let REACHh(m) denote the set of
all configurations of M using space at most h that can be reached from the initial
configuration C0(x) in at most m steps. The (reachability) census function αh(m)
(or simply αh(m)) is given by

αh(m) = |REACHh(m)|.

Note that αh(0) = 1 and αh(m) ≤ αh(m+1). Moreover, if αh(m) = αh(m+1) then
for all j > m, αh(m) = αh(j). Our basic goal is to compute this census function.

2.9. COMPLEMENTATION OF SPACE CLASSES 105

But first, let us see how such a census function is used. This is seen in a nonde-
terministic subroutine

Check(C, h,m, αh(m))

that “accepts” iff C ∈ REACHh(m).

Check(C, h,m, αh(m)):
begin checking

c0 ← 0; // Initialize counter

For each configuration C
′ using space at most h,

begin // iteration

Nondeterministically guess a path using ≤ h space
and ≤ m steps, starting from C0(x);

If this path reaches C then accept;
If this path reaches C

′ then increment c0 by 1;
end // iteration

If c0 = αh(m) then reject;
Else loop;
end // checking.

Note that this procedure terminates in one of three ways: accept, reject, loop.
These are indicated (respectively) by entering state qa, state qr or reaching any
terminal configuration that is neither accepting nor rejecting. Assuming h ≥ log |x|,
it is not hard to see that the space used by the algorithm is

h + log m

(the log m space to count the number of steps in guessed paths). This algorithm
is remarkable in three ways. First, we notice that this algorithm does not take all
inputs, but only those 〈C, h,m, p〉 whose last three arguments are constrained by the
equation p = αh(m). Such inputs are called well-formed for this algorithm. 10 Logi-
cally speaking, the last argument is redundant because h and m determines αh(m).
However, from a complexity viewpoint, this argument is not redundant because it is
not easy to compute αh(m) from h and m. Second, we make a distinction between
rejection (i.e., halting in the reject state qr) and looping. In general, looping means
that the machine either does not halt or enters a terminal state that is neither ac-
cepting nor rejecting. Third, our acceptor has the property that on any well-formed
input:
(a) at least one path accepts or rejects;
(b) there does not exist two paths, one accepting and the other rejecting.

10Cf. assumption (C) in chapter 1 (§4).

106 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

In general, we call a nondeterministic acceptor M unequivocal if it satisfies (a)
and (b) above. We then say that M unequivocally accepts its (well-formed) inputs.

Recall in section 2 the definition of univalent (nondeterministic) transducers that
compute transformations. We want to use such transducers to compute αh(m). The
input k and output αh(m) are represented in binary.

Lemma 48 Let h ≥ log |x|. There is a univalent transducer N that computes αh(m)
for any h,m ≥ 0. The running space of N is O(h + log m).

Proof. Suppose that we have recursively computed αh(m − 1); note that this
value can be stored in space O(h + log |x|). This is computed univalently, meaning
that at least one partial computation path that leads to the value αh(m − 1) and
enters a special state q1; furthermore, all paths that lead to state q1 yield the same
value. Assuming that we have reached this special state q1, we then call the following
Count subroutine that computes αh(m) from αh(m− 1):

Count(h,m, αh(m− 1)):
begin counting;

c1 ← 0; // initialize counter

For each configuration C using space at most h,
begin // outer iteration

c2 := 0; // initialize counter

For each configuration C
′ using space at most h,

begin // inner iteration

res ← Check(C ′
, h,m− 1, αh(m− 1));

If ((res=“accepts”) and (C ′ = C or C
′ ` C)) then c1 ← c1 + 1 and break;

end // inner iteration

end // outer iteration

Return(c1);
end // counting.

The counter c1 is incremented if we found C that can be reached in at most m

steps. Note that once counter c1 is incremented, we break out of the inner loop.
Hence, c1 counts the number of configurations that are reachable in at most m steps.
If the nondeterministic subroutine Check loops, then we automatically loop.

Let us verify that the procedure for computing αh(m) is univalent. The key
observation is that for every configuration C, the paths (restricted to the inner
iteration only) have these properties:

• If C ∈ REACHh(m) then there is a non-looping path that increments c1.
Moreover, every path that fails to increment c1 must loop.

2.10. *THE COMPLEXITY OF PALINDROMES 107

• If C 6∈ REACHh(m) then c1 is never incremented. Moreover, there is a non-
looping path.

The space used is O(h + log m). Our lemma is proved. Q.E.D.

We conclude the proof of the main theorem. On input x, we show how to accept
x if and only if x is not accepted by M.

MAIN PROCEDURE

0. h← log |x|. // initialize

1. // Start of stage h

2. For m = 1, . . . ,m0, compute the αh(m),
where m0 is the first value satisfying αh(m0) = αh(m0 − 1).

3. For each accepting configuration C using space ≤ h,
3.1. Call Check (C, h,m0, αh(m0));
3.2. If Check accepts, we reject.
3.3. (N.B. If Check loops, we automatically loop.)
4. “Either accept or else increment h and go back to step 2.”

Note that since h ≥ log |x|, and m0 = |x|OM(1)h, the previous lemma ensures that
we use only O(h) space. Since Check is an unequivocal procedure, it is clear that the
main procedure is also unequivocal. We must now explain step 4. We must decide
whether to accept or to repeat the procedure with a larger value of h. Perhaps
Check did not accept within the for-loop in step 3 because h is not “large enough”,
i.e., M could accept the input with more space. How do we know whether this is
the case? Well, this is the case provided there is a path in which M attempts to
use more than h space. To detect this situation, it is easy to put a ‘hook’ into the
Count procedure that will set a flag Continue to true iff there exists a configuration
C ∈ REACHh(m) where C ` C

′ for some C
′ that uses ≥ h + 1 space. (So C is

‘expectant’ in the sense of the proof of the deterministic result.) So the Continue

flag is properly set after step 2. Now in step 4 we will accept if Continue=false;
otherwise we increment h and go back to step 2.

This concludes our proof.

2.10 *The Complexity of Palindromes

We consider the palindrome language over {0, 1},

Lpal = {w : w ∈ {0, 1}∗ and w = w
R
}.

The simultaneous time-space complexity of Lpal is remarkably well-understood (in
view of what little we know about the complexity of other languages). We first prove

10* This optional section is independent of the rest of the book.

108 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

a lower bound on the simultaneous time-space complexity of Lpal using an counting
technique based on ‘crossing sequences’. The notion of crossing sequences is fairly
general. It was originally developed by Hennie [18] for deterministic simple Turing
machines, but we shall see that the technique extends to nondeterministic compu-
tations. It has recently resurfaced in proving lower bounds on VLSI computations.

Consider a computation path C̄ = (Ct : t ≥ 0) of a Turing machine M on a fixed
input w0 of length n. Recall (§6, proof of theorem 16) that the storage configuration

of M (at instant t) refers to the (2k +1)-tuple 〈q, w1, n1, . . . , wk, nk〉 that is identical
to the configuration Ct except that the input word w0 and input head position n0

are omitted. For integer i, the i-crossing sequence of C̄ is (s1, . . . , sm) where m ≥ 0
is the number of times the input head crosses the boundary between the ith and
the (i + 1)st cells of tape 0, and sj is the storage configuration of M during the
jth crossing. Note that i may be restricted to 0, . . . , n by our standard machine
convention. Consecutive storage configurations in a crossing sequence represent
crossings in opposite directions. The sum of the lengths of crossing sequences of
C̄ at positions i, for all i = 0, . . . , n, is at most the time of the computation path.
Observe that crossing sequences combine elements of time and of space, so it is not
surprising to see that they will be used to obtain a simultaneous lower bound on
these two resources. The basic property we exploit is described in the following
simple lemma:

Lemma 49 (fooling lemma) Let M be a nondeterministic machine that accepts the

words u = u1u2 and v = v1v2. If there exist accepting computations paths πu, πv for

u and v such that the crossing sequences of these paths at position |u1| for input u

and at position |v1| for input v are identical then M also accepts u1v2 and v1u2.

Proof. By induction on the length of the |u1|-crossing sequence, we can splice to-
gether an accepting computation path for u1v2 composing of sections that come
alternately from πu and πv. Q.E.D.

The following is a useful inequality:

Lemma 50 Let A = (ai,j) be an m×n matrix where the ai,j are real numbers. Let

cj = 1
m

∑

m

i=1 ai,j be the average value of the numbers on the jth column. Then

max
i=1,...,m





n
∑

j=1

ai,j



 ≥

n
∑

j=1

cj .

Proof. The left-hand side of the inequality is at least

1

m





n
∑

j=1

a1,j



+
1

m





n
∑

j=1

a2,j



+ · · · +
1

m





n
∑

j=1

am,j



 =
1

m

m
∑

i=1

n
∑

j=1

ai,j,

which is seen to equal the right-hand side. Q.E.D.

2.10. *THE COMPLEXITY OF PALINDROMES 109

Hennie originally showed that a simple Turing machine requires time Ω(n 2) to
Lpal. We now generalize this result to nondeterministic multi-tape machines; in this
more general setting, we only lower bound the product of time and space.

Theorem 51 Let t and s be non-decreasing complexity functions. If

Lpal ∈ N-TIME-SPACE(t, s)

then

t(n) · s(n) = Ω(n2).

Proof. Suppose Lpal is accepted by some nondeterministic M in time t and space s.
Without loss of generality, consider palindromes of even length; the same proof can
be modified for palindromes of odd length. Let Sn denote the set of palindromes
of length 2n. Thus |Sn| = 2n. For each w ∈ Sn, let C̄w denote some accepting
computation path for w. Let Rn be the set consisting of all the C̄w’s, w ∈ Sn. For
i = 0, . . . , n, let Rn,i denote the multiset11 of i-crossing sequences of computation
paths in Rn. For u, v ∈ Sn, let u1 and v1 denote the prefixes of u and v of length
i. If u1 6= v1 then the fooling lemma implies that the i-crossing sequences of C̄u

and C̄v are distinct. Since there are 2i distinct prefixes of length i in Sn, it follows
that |Rn,i| ≥ 2i. Let rn,i denote the average length of crossing sequences in Rn,i –
since Rn,i is a multiset, this is a weighted average which takes the multiplicity of
a crossing sequence into account. Applying the inequality in the preceding lemma
yields

t(2n) ≥
n
∑

i=1

rn,i

where the matrix entries ai,j correspond to the length of the jth crossing sequence
in the ith computation path. Since at most |Rn,i|/2 of these crossing sequences
have length ≥ 2rn,i, hence at least |Rn,i|/2 ≥ 2i−1 of these crossing sequences have
length < 2rn,i. Now there are σ = OM(1)s(2n) storage configurations since M accepts
in space s(2n). Let τn,i = σ

2rn,i . So there are at most τn,i crossing sequences of
length < 2rn,i. Hence τn,i ≥ 2i−1, or OM(1)s(2n)2rn,i ≥ 2i−1. Taking logarithms,
s(2n)rn,i = ΩM(i). Hence

s(2n) · t(2n) ≥ s(2n)
n
∑

i=1

rn,i =
n
∑

i=1

ΩM(i) = ΩM(n2).

Q.E.D.

The preceding lower bound is essentially tight in the sense of the next result. Its
proof is left as an exercise.

11We say ‘multiset’ instead of ‘set’ here to indicate that each i-crossing sequence χ ∈ Rn,i is
associated with a multiplicity. In other words, each χ is tagged with the computation path C̄w ∈ Rn

from which χ is derived. The number of distinct tags for χ is its multiplicity.

110 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

Theorem 52 Let s(n) ≥ log n be space-constructible. Then

Lpal ∈ D-TIME-SPACE(
n

2

s(n)
, s(n)).

We might add that the above proofs go through if we had used marked palin-

dromes instead; this is defined as the language over {0, 1,#} consisting of words of
the form x#x

R for all x ∈ {0, 1}∗. The language of marked palindromes is intrinsi-
cally less complex than palindromes.12 The above results on palindromes motivate
an interesting composite-complexity class:

Definition 9 Let f be a complexity function, M a nondeterministic machine. We
say M accepts in time-space product f if for each w ∈ L(M), there is an accepting
computation path of w that uses time-space (p, q) such that pq ≤ f(|w|). We denote
the class of such languages by NTIME × SPACE(f).

Thus the time-space product complexity of palindromes is Θ(n 2). This definition
extends to products of other pairs (or tuples) of resources. Observe that for any
complexity functions t, s,

N-TIME-SPACE(t, s) ⊆ NTIME × SPACE(t · s).

In the next section we will consider space-reversal product complexity classes.

2.11 Absolute Lower Bounds

The well-known class of regular languages is equal to NSPACE(0), i.e., those lan-
guages accepted by acceptors using no space. As noted, machines using no space
must be 0-tape Turing acceptors: these machines are also called (nondeterministic)
finite automata. The properties of regular languages are very well understood. For
instance, we know that

NSPACE(0) = NSPACE(O(1)) = DSPACE(0).

It is generally regarded that space bounds of o(log n) or time bounds of o(n) are
uninteresting for Complexity Theory. In particular, we generally consider

D-TIME-SPACE(n + 1, log n)

as the smallest interesting class for Complexity Theory. This section shows that,
for a certain resource ρ, there are absolute lower limits on the complexity in the
following sense: there exists a complexity function g ρ such that if L is a non-regular

12The language of palindromes is context-free but not deterministic context-free. Marked palin-
dromes are deterministic context-free.

2.11. ABSOLUTE LOWER BOUNDS 111

language accepted in f units of resource ρ then f = Ω(gρ). Thus gρ is a lower bound
on the ρ complexity of any non-regular language. We show two results of this kind.
Both proofs have the same structure. But before we do that, it is instructive to
dispose of the following simple observation:

Lemma 53 If t(n) ≤ n for any n then NTIME(t(n)) is regular.

Proof. Let an acceptor M accept in time t(n) and suppose t(n0) ≤ n0 for some n0.
So for each word x of length n0, M does not attempt to read the first blank symbol
to the right of x. This means that for any word with prefix x, M would behave in
exactly the same way. Since x is arbitrary, every input of length greater than n 0 is
accepted or rejected according to the behavior of M on its prefix of length n0. Any
such language is seen to be regular. Q.E.D.

We now prove a result from Hong [19]. Recall the definition of product complex-
ity classes in the last section.

Theorem 54 Let f be complexity function such that f(n) = o(n). Then the product

class NSPACE ×REVERSAL(f) is precisely the class of regular languages. In this

result, reversals made by the input head are not counted.

We remark that if reversals by input heads are counted (as in our usual definition
of reversal complexity) then this theorem would have been a direct consequence of
our previous lemma (using the fact that the product of space and reversal is big-Oh
of time).

Proof. Suppose L is accepted by a k-tape M in space-reversal product f . To show
the theorem, it suffices to prove that L is regular. Let M have as tape alphabet Γ
(including the blank), input alphabet Σ, and state set Q. Let

∆ = {first, last} ×Q× Γk

where first and last are two special symbols. Let w ∈ Σ∗ with |w| ≥ 2. In the
following, if d = first then w[d] denotes the first symbol of w and if d = last then
w[d] denotes the last symbol. We define the binary relation Rw on ∆ as follows. Let

t = 〈d, q, b1, . . . , bk〉, t
′ = 〈d′, q′, b′1, . . . , b

′
k
〉

be tuples in ∆. Then 〈t, t′〉 ∈ Rw iff there is a sub-computation path C̄ = (C1, . . . , Cm)
where:

(i) C1 corresponds to starting M in state q with w as input, with its input head
scanning w[d], and the head i scanning bi (for i = 1, . . . , k).

(ii) The head on each work-tape stays stationary throughout C̄. The input head
may move. The symbols under the work heads may change.

112 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

(iii) In Cm−1, the input head is scanning w[d′] and in Cm, it is scanning a blank
(so it has left the region on the tape containing w). The state and symbols
scanned by the work-tape heads in Cm are q

′
, b

′
1, . . . , b

′
k
.

For instance, Rw is empty implies that if we start the machine with w as the input
word, in any initial state, with the input head at the first or last symbol of w and
with any symbols under the work-tape heads, then one of two things must happen:

(1) The input-head never leaves the area of w, thus violating (iii).

(2) Eventually some work-tape head will make a move while the input head is still
scanning w, violating (ii).

Note that since |∆| = OM(1), there are OM(1) distinct relations of the form Rw

(over all w). Let α1 denote the number of such relations Rw. We call Rw the
characteristic relation of w.

For each h ≥ 0, let L
[h] denote those words w in L for which the minimal space-

reversal product of any accepting computation of M for w is h. (Reversals by input
head not counted.) Hence the sets L

[h] form a partition of L. If L
[h] is empty for all

but finitely many values of h, then it is easy to show that L is regular (we leave this
as an exercise). So for the sake of contradiction, let us assume L

[h] is non-empty
for infinitely many h. If L

[h] is non-empty, then let µ(h) denote the length of the
shortest word in L

[h]; else, we define µ(h) = 0.
We claim that µ(h) < (α1 +2)(h+1), where α1 is the constant described earlier.

To see this, suppose otherwise. Then for some w ∈ L
[h], we have µ(h) = |w| ≥

(α1 + 2)(h + 1). Let C̄ be the accepting computation path on input w that has
space-reversal product of h. Let an active step of C̄ refer to one in which at least
one of the work heads actually moves (the input head’s movement does not count).
If C̄ makes (r, s) reversal-space then the number of active steps of C̄ is at most
rs ≤ h. Divide w into h + 1 subwords each of length at least α1 + 2: a simple
pigeon-hole argument shows that for some such subword u, all the work heads of M
are stationary whenever the input head is scanning u. More precisely, every step of
the form C ` C

′ where the input head in C is scanning a symbol in u is an inactive
step. Among the α1 + 1 of prefixes of u of length ≥ 2, there must be two prefixes
v and v

′ with the same characteristic relation, Rv = R
′
v
. If v

′ is the shorter of the
two prefixes, replace v with v

′ in w to obtain a shorter word w
′. It follows from the

definition of characteristic relations that w
′ is also accepted by M, with the same

space-reversal product complexity as w. (This is essentially the fooling lemma in
the previous section.) This contradicts our choice of w as the shortest word in L

[h].
We conclude that for any shortest length word w in L

[h], |w| < (α1 +2)(h+1) or
h = ΩM(|w|). Since f(|w|) ≥ h, and there are infinitely many such w’s, we conclude
f(n) 6= o(n). This contradicts our assumption on f . Q.E.D.

We next prove a similar result of Hopcroft and Ullman [21]. To do this, we
extend the notion of characteristic relations to allow the work-tape heads to move.

2.11. ABSOLUTE LOWER BOUNDS 113

With M, Q, Σ and Γ as above, we now define for any integer h ≥ 1:

∆h = {first, last} ×Q× (Γh)k × {1, . . . , h}k.

(The previous definition of ∆ may by identified with the case h = 1.) Consider a
tuple

t = 〈d, q, w1, . . . , wk, n1, . . . , nk〉 ∈ ∆h.

Each word wi is of length h and, roughly speaking, denotes the contents of the ith
tape of M and ni indicates the position of head i in w i. For any w ∈ Σ∗, |w| ≥ 2,
we again define a binary relation R

h

w
over ∆h as follows. Let t ∈ ∆h be as given

above and t
′ ∈ ∆h be the primed version. A pair 〈t, t′〉 is in R

h

w
iff there is a

sub-computation path C̄ = (C1, . . . , Cm) such that

(i) C1 corresponds to starting M with w as input string, input head scanning w[d],
and for i = 1, . . . , k: the non-blank part of tape i is wi with head i scanning
wi[ni].

(ii) The work-tape heads stays within the w i’s throughout the computation. The
input head similarly stays within w except during the last configuration C m.

(iii) In Cm−1, the input head is scanning w[d′] and in Cm, the input head has left
the region of w. The state, contents of the work-tapes and the corresponding
head positions in Cm are given by the rest of the tuple t

′.

Note that
|∆h| = h

k
OM(1)h = OM(1)h.

For any set X with n elements, the number of binary relations over X is 2n
2
. Hence

if αh denotes the number of distinct relations R
h

w
, over all possible words w, then

there exists some constant C = OM(1) that does not depend on h such that

αh ≤ 2C
h

We can now prove the result of Hopcroft and Ullman:

Theorem 55 Let s be a complexity function such that s(n) = o(log log n). Then

DSPACE(s) is the set of regular languages.

Proof. Let L be accepted by some M in space s(n). The proof proceeds quite
similarly to the previous one. For each h ≥ 0, let L

[h] be the set of words in L

accepted in space h but not in space h− 1. If L
[h] is empty for all but finitely many

values of h then L is regular. So for the sake of contradiction, assume otherwise.
Define µ(h) to be the length of the shortest word in L

[h] when L
[h] is non-empty;

otherwise µ(h) = 0. If w is a word of shortest length in a non-empty L
[h] then we

claim
|w| = µ(h) ≤ 2C

s(|w|)
. (2.7)

114 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

Otherwise, there exists a pair of distinct prefixes u and v of w that have identical
characteristic relations, R

h

u
= R

h

v
. Assuming that u is the longer of the two prefixes,

we can decompose w into w = vv
′
w

′ = uw
′ where v

′ 6= ε. It is easy to verify that
vw

′ is also accepted by M in the same space h (again, the fooling lemma argument).
This contradicts our choice of w as the shortest word. From (2.7) and the fact that
there are infinitely many such words w, we conclude that s(n) 6= o(log log n). This
contradicts our assumption on s(n). Q.E.D.

We can conceive of other methods of defining languages and complexity that
admit non-regular languages with space complexity bounded by functions growing
slower than log log n. A simple way to do this would be to assume that the Turing
machine comes equipped with a complexity function h such that on input of length
n, h(n) cells are automatically marked out before the computation begins, and that
the Turing machine never exceeds the marked cells. Hence the machine uses space
h(n), which of course can be chosen arbitrarily slowly growing. Our preceding proofs
would no longer be valid; indeed, it is easy to see that even non-recursively enumer-
able languages can be accepted this way (how?). We refer to [30] for languages with
such low space complexity.

To end this section, we note that the preceding absolute lower bounds are essen-
tially tight in the following sense:
(i) There are non-regular languages whose space-reversal product is O(n). This is
illustrated by the palindrome language: it is non-regular and it can be accepted in
linear space and O(1) reversals.
(ii) There non-regular languages in the class DSPACE(log log n). In fact, the fol-
lowing language is an example.

L0 = {1̄#2̄# · · ·#n− 1#n̄ : n is a natural number}

where m̄ denotes the binary representation of the integer m. There is another
candidate language due to Mehlhorn and Alt[29]. It is rather interesting because it
is over a single letter alphabet. First let q(n) denote the smallest number that does
not divide an integer n.

L1 = {1n : n is a natural number and q(n) is a power of two }

where 1n is the unadic representation of n.

We leave it as an exercise to show that both these languages have the required
properties.

2.12 Final remarks

This chapter introduces the basic model of computation that is to be the basis for
comparing all future models of computation. This choice is not essential to the
theory because of the computational theses in chapter 1. The results in this chapter

2.12. FINAL REMARKS 115

are of two types: (I) technical ones about Turing machines in particular and (II)
relationships about complexity classes. Although we are mainly interested type-
(II) results, some of the model-specific results are unavoidable. This would be true
regardless of our choice of model of computation. Our choice of the Turing model
is particularly fortunate in this regard because the literature contains a wealth of
these model-specific results. We have restricted ourselves to those type (I) results
that are needed later.

The three simulation sections use the very distinct techniques for each resource.
They illustrate the fundamentally different properties of these resources. A common
aphorism expressing this difference between time and space is the following: time is

irreversible but space is reusable.13 Both the Savitch and Istvan Simon techniques
exploit the reusability of space. But what of reversals? Within a phase of a com-
putation, all the individual actions are independent of one another. This is exactly
the nature of time in parallel computation. This prompted Hong Jia-wei to identify
reversals with parallel time. This identification is essentially correct except for low
level complexity; we will return to the precise relationships in later chapters. Since
time and space without reversal is useless (why?), we offer this complement to the
above aphorism: reversal is the ingredient to convert reusable space into time.

The interplay of the triumvirate is best illustrated by deterministic computation:
if tM(n), sM(n) and rM(n) are the exact running time, space and reversal of a halting
deterministic Turing machine M, then there are constants c1, c2, c3 > 0 that make
the following fundamental inequalities true:

sM + rM ≤ c1tM ≤ c2(n + sM)rM ≤ c3t
2
M.

A basic challenge of complexity theory is to refine these inequalities and to extend
them to other computational modes.

13Algebraically, this means that we must sum (respectively, take the maximum of) the time
(respectively, space) used by several independent computations.

116 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

Exercises

[2.1] Construct a simple Turing machine that on input x ∈ {0, 1}∗ converts x to
x− 1 where we regard x as a binary integer. Hence the machine decrements
its input. For instance if x = 0110100 then the machine halts with 0110011.
Write out the transition function δ of your machine explicitly.

[2.2] (i) Give a nondeterministic Turing acceptor that accepts the complement of
the palindrome language Lpal using acceptance space of log n. The exercise
in last question is useful here. (Note that the acceptor in example 2 uses
linear space).
(ii) Show (or ensure) that your machine accepts in linear time. (It is probably
obvious that it accepts in O(n log n) time.)

[2.3] Give an algorithm for obtaining δ(N) from δ(M) having the nondeterministic
speedup properties described in theorem 2. What is the complexity of your
algorithm?

[2.4] Consider the recognition problem corresponding to multiplying binary num-
bers: MUL is the language comprising those triples of the form 〈a, b, c〉 where
a, b, c are binary numbers and ab = c. Show that MUL is in DLOG.

[2.5] Define ‘rejection complexity’ for deterministic machines such that the accep-
tance and rejection time complexity of L are both f(·) iff the running time
complexity of L is also f . Can this be extended to nondeterministic ma-
chines? Remark: If acceptance complexity corresponds to ‘proofs’ in formal
proof systems then rejection complexity corresponds to ‘disproofs’ of (or,
counter-examples to) non-theorems.

[2.6] (i) Show that if f(n) = ω(n) and f is time-constructible, then XTIME r(f) =
XTIME(f), X = D,N .
(ii) Show a similar result for space-constructible f , but no longer assuming
f(n) = ω(n).

[2.7] * Show that the following functions are time-constructible for any positive
integer k:
(i) n logk

n, (ii) n
k, (iii) n! (factorial), (iv) k

n. (See [23] for a systematic
treatment of such proofs.)

[2.8] Redo the last problem for reversal-constructible. (Recall that reversal-constructible
is defined slightly differently than in the case of time or space.)

[2.9] Suppose f(n) ≥ n and g(n) is an integer for all n, and both f and g are
time-constructible.
(i) Show that the functional composition f ◦ g is time-constructible. (Note:

2.12. FINAL REMARKS 117

f ◦g(n) = f(g(n)). It is easy to see that f(n)+g(f(n)) is time-constructible,
but we want f(g(n)).)
(ii) If f(n) is also an integer for all n, show that f · g (product) is time-
constructible.

[2.10] * (i) Show that log n is space-constructible.
(ii) Define log∗

n to be the largest integer m such that exp(m) ≤ n where
exp(0) = 0 and exp(m+1) = 2exp(m). Show that n log∗ n is space-constructible.
(iii) (Ladner, Freedman) Show that there exists a space-constructible f such
that f(n) = O(log log n) and, for some C > 0, f(n) ≥ C log log n infinitely
often. Hint: f(n) is the largest prime p such that every prime q ≤ p divides
n. Some basic knowledge of number theory (mainly the prime number the-
orem) is required for this problem.
(iv) (Seiferas) Show that log log n is not space-constructible. Hint: prove
that any space-constructible function not in Ω(log n) must be O(1) infinitely
often.

[2.11] For most applications, a weaker notion of constructibility suffices: A func-
tion f is approximately time-constructible if there is a time-constructible
function f

′ such that f = Θ(f ′). Redo the above exercises but using the
“approximate” version of time-constructibility instead. It should be much
easier.

[2.12] Show that the two languages at the end of section 9 are non-regular and
can be accepted in O(log log n) space. For non-regularity, the reader should
use the ‘pumping lemma for regular languages’.

[2.13] Show that if a function is time-constructible, then it is space-constructible.

[2.14] Prove that for any constant k, NTIME(k) is a proper subclass of
NSPACE(0).

[2.15] There are three possible responses to the following statements: True, False
or Perhaps. ‘Perhaps’ reflects the uncertainty from what we know (assume
only the results in this chapter). If your answer is True or False, you must
give brief reasons in order to obtain full credit.
(a) T/F/P: NSPACE(n) ⊆ DTIME(O(1)n).
(b) T/F/P: NTIME(n) ⊆ DTIME(2n).
(c) T/F/P: NREVERSAL(n) ⊆ DREVERSAL(O(1)n).

[2.16] (Hartmanis) For every t(n) ≥ n log n, if M is a simple Turing machine
accepting in time t then M accepts in space O(t(n)/ log t(n)). Note: This
result has been improved in two ways: First, this result has been shown for
multitape Turing machine by Hopcroft, Valiant and Paul (but Adleman and

118 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

Loui provided a very different proof). For simple Turing machines, Paterson
shows that if a language is accepted by a simple Turing machine in time t

then it can be accepted in space t
1/2. See chapter 7 for these results and

references.

[2.17] (i) Construct a Turing machine that computes the Boolean matrix µx,h and
then the transitive closure µ

∗
x,h

(say, using the Floyd-Warshall algorithm) in

time O(m3) where the matrix µc is m×m. (We already know that transitive
closure can be computed in O(m3) time on a random access machine – the
question is whether a Turing machine can achieve the same time bound. The
organization of the Boolean matrix on the tapes is crucial.)
(ii) Give an alternative proof of theorem 16 using the previous result on
computing transitive closure.

[2.18] Modify the proof of theorem 18 for the corresponding result for running
complexity.

[2.19] * Show that DTIME(n + 1) 6= DTIME(O(n)).

[2.20] (Hopcroft-Greibach) If L ∈ NTIME(n+1) then L has the form h(L1∩· · ·∩

Lk) where the Li’s are context-free languages and h is a letter homomor-
phism.

[2.21] This exercise gives a characterization of NTIME(t) for any complexity func-
tion t. Let h : Σ → Γ∗ be a homomorphism and t a complexity function.
We say h is t-bounded on L if for all n large enough, for all x ∈ h(L) with
|x| ≥ n, there exists w ∈ L such that h(w) = x and |w| ≤ t(|x|). 14 For any
complexity class K, define Ht[K] to be

{h(L) : L ∈ K ∧ h is t-bounded on L}.

Prove that for all t, NTIME(t)=Ht[NTIME(n + 1)]. Conclude from this
that NTIME(n + 1) is closed under non-erasing homomorphism. (Note: h

is non-erasing if h(b) 6= ε for all b ∈ Σ.)

[2.22] Prove theorem 52.

[2.23] (Hennie) Show that every simple Turing acceptor for the palindrome lan-
guage Lpal takes time Ω(n2).

[2.24] (Ó’Dúnlaing) For k ≥ 1, let ({0, 1}∗, Lk) be the language consisting of bi-
nary strings of period k: say a word w has period k if |w| ≥ k and for all
i = 1, 2, . . . , |w| − k − 1, w[i] = w[i + k + 1].

14Our definition here differs from the the literature because of our use of acceptance time rather
than running time. The usual definition simply says: ∃c > 0, for all w ∈ L, |w| ≤ ct(|x|).

2.12. FINAL REMARKS 119

(i) Show that the complement of Lk can be accepted by a ‘small’ nondeter-
ministic finite automaton, say with 2k + 2 states.
(ii) Prove that Lk cannot be accepted by any nondeterministic finite au-
tomaton with less than 2k states.

[2.25] A worktape of a Turing machine is said to be a pushdown store if it is
initialized with one special symbol (called bottom symbol) which is never
erased, and tape head is constrained so that (1) if it moves left, it must
write a blank on the current cell (this is called a pop move, and (2) the
blank symbol is never written under any other circumstances. When the
head moves moves right, we call it push move. These requirements imply
that the tape head is always scanning the rightmost non-blank cell on the
tape (called the top symbol) or (temporarily for one moment only) the blank
symbol on the right of the top symbol. An auxiliary pushdown automata

(apda) is a nondeterministic 2-tape Turing acceptor in which tape 1 is a
pushdown store and tape 2 is an ordinary worktape. For apda’s, we only
count the space usage on tape 2; that is, space on the pushdown store is not
counted. Show the following to be equivalent:
(a) L is acceptd by a deterministic apda using space s(n).
(b) L is acceptd by a nondeterministic apda using space s(n).
(c) L ∈ DTIME(O(1)s(n)).

[2.26] (Fischer, Meyer, Rosenberg) A counter machine (CM) is a multitape Turing
machine except that instead of tapes, the CM has ‘counters’. A counter
contains a non-negative integer which the CM can increment, decrement or
test to see if it is equal to zero. More precisely, if the CM has k counters,
we may represent its transition table by a set of tuples (instructions) of the
form

〈q, a, z1, . . . , zk, q
′
, d0, d1, . . . , dk〉

where q, q
′ are states, a is an input symbol, z1, . . . , zk ∈ 0, 1 and d0, d1, . . . , dk

∈ {−1, 0,+1}. The above instruction is applicable if the current state is q,
the input head is scanning the symbol a, and the ith counter (i = 1, . . . , k)
contains a zero iff zi = 0. To apply the instruction, make the next state
q
′, move the input head in the direction indicated by d0, and increment or

decrement the i
t
h counter by di. The space used by the counter on an input w

is the largest integer attained by any counter during the computation. Show
that for any CM accepting in space f , there is another CM accepting the
same language but using space only f

1/2. (Thus counter machines exhibit
a ‘polynomial space speedup’.) Hint: show how to replace one counter by
two counters where the new counters never contain a number larger than
the square-root of the largest number in the original counter.

[2.27] (P. Fischer) Show a linear speedup result for simple Turing machines. Hint:

120 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

the Linear Speedup theorem as stated fails but what stronger assumption
about t(·) must be made?

[2.28] Show how to reduce the retrieval problem (section 2.8.3) to the sorting
problem, thereby giving another O(log m) deterministic reversal solution.
[Recall the retrieval problem is where we are given, say, on tape 1 an integer
h ≥ 1 in unary, on tape 2 a word c ∈ {0, 1}∗, and on tape 3 the table

c1$d1#c2$d2# · · · cmdm, (ci, di ∈ {0, 1}
∗)

where m = 2h, and the ci’s are assumed distinct. We want to output di on
tape 4 where c = ci for some i = 1, . . . ,m. You may assume that c does

occur among c1, . . . , cm.

[2.29] (Chrobak and Rytter) Show that if we do not count reversals made by the
input head then DLOG can be simulated in constant reversals.

[2.30] Give a proof that the class DSPACE(s(n)) is closed under complementation
if s(n) ≥ log n, using the idea of counters described in section 8.

[2.31] Show that the census technique can also be used to show that the class
NSPACEe(s(n)) of languages accepted by unequivocal acceptors in space
s(n) ≥ log n is closed under complementation. Recall that on any input,
the computation tree of an unequivocal acceptor has at least one accepting
path or one rejecting path (rejection is by entering the special state q r only).
Moreover, the computation tree cannot have both accepting and a rejecting
path.

[2.32] (Fischer, Meyer, Rosenberg) Suppose we allow each work-tape to have more
than one reading head, but the number is fixed for each tape, depending on
the particular machine. Furthermore, when two or more tape heads are
scanning the same cell, this information is known to the machine. Formalize
this multihead multitape model of Turing machines. Show that any such
machine can be simulated by ordinary multitape machines without time
loss.

[2.33] Let t, s, r be the running time, space and reversal of a halting Turing ma-
chine M. Does the fundamental inequalities s+r = OM(t) = OM((s+n)r) =
OM(t2) (see the concluding section) hold for nondeterministic M?

[2.34] * Define the static complexity of a problem L to be the smallest sized
Turing machine that will accept L. ‘Machine size’ here can be variously
interpretated, but should surely be a function of the tape alphabet size, the
number of tapes and the number of states. Does every problem L have
a unique static complexity? How sensitive is this complexity to change in
Turing machine conventions?

2.12. FINAL REMARKS 121

[2.35] * Is there some form of linear speedup theorem for reversal complexity?

[2.36] * Can the tape reduction theorem for reversal complexity be improved?

[2.37] * In the inclusion D-SPACE-REVERSAL(s, r) ⊆ DSPACE(r log s), can we
replace the left-hand side by N-SPACE-REVERSAL(s, r) possibly at the ex-
pense of a large space bound on the right-hand side? E.g., N-SPACE-REVERSAL(s, r) ⊆
DSPACE(rs/ log s).

[2.38] * Prove or disprove: let t(n) = Ω(n2), r(n) = Ω(log t(n)), s(n) = Ω(log t(n)),
r(n) · s(n) = O(t(n)). Then DTIME(t)−D-SPACE-REVERSAL(s, r) 6= ∅.

122 CHAPTER 2. THE TURING MODEL: BASIC RESULTS

Bibliography

[1] S. O. Aanderaa. On k-tape versus (k − 1)-tape real time computation. In
R. M. Karp, editor, Complexity of computation, pages 74–96. Amer. Math.
Soc., Providence, Rhode Island, 1974.

[2] B. S. Baker and R. V. Book. Reversal-bounded multipushdown machines. Jour-

nal of Computers and Systems Science, 8:315–322, 1974.

[3] R. V. Book and S. A. Greibach. Quasi-realtime languages. Math. Systems

Theory, 4:97–111, 1970.

[4] R. V. Book, S. A. Greibach, and B. Wegbreit. Time and tape bounded Turing
acceptors and AFL’s. Journal of Computers and Systems Science, 4:606–621,
1970.

[5] R.V. Book and Chee Yap. On the computational power of reversal-bounded
machines. ICALP ’77, 52:111–119, 1977. Lecture Notes in Computer Science,
Springer-Verlag.

[6] S.R. Buss, S.A. Cook, P.W. Dymond, and L. Hay. The log space oracle hierarchy
collapses. Technical Report CS103, Department of Comp. Sci. and Engin.,
University of California, San Diego, 1987.

[7] Ee-Chien Chang and Chee K. Yap. Improved deterministic time simulation of
nondeterministic space for small space: a note. Information Processing Letters,
55:155–157, 1995.

[8] Martin Davis. Why Gödel didn’t have Church’s Thesis. Information and Com-

putation, 54(1/2):3–24, 1982.

[9] Jian er Chen. Tape reversal and parallel computation time. PhD thesis, Courant
Institute, New York University, 1987.

[10] Jian er Chen and Chee-Keng Yap. Reversal complexity. SIAM J. Computing,
to appear, 1991.

[11] Patrick C. Fisher. The reduction of tape reversal for off-line one-tape Turing
machines. Journal of Computers and Systems Science, 2:136–147, 1968.

123

124 BIBLIOGRAPHY

[12] J. Hartmanis and L. Berman. A note on tape bounds for sla language process-
ing. 16th Proc. IEEE Symp. Found. Comput. Sci., pages 65–70, 1975.

[13] J. Hartmanis, P. M. Lewis II, and R. E. Stearns. Hierarchies of memory limited
computations. IEEE Conf. Record on Switching Circuit Theory and Logical

Design, pages 179–190, 1965.

[14] J. Hartmanis and R. E. Stearns. On the computational complexity of algo-
rithms. Trans. Amer. Math. Soc., 117:285–306, 1965.

[15] Juris Hartmanis. Computational complexity of one-tape Turing machine com-
putations. Journal of the ACM, 15:325–339, 1968.

[16] Juris Hartmanis. Tape-reversal bounded Turing machine computations. Jour-

nal of Computers and Systems Science, 2:117–135, 1968.

[17] F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape Turing
machines. Journal of the ACM, 13(4):533–546, 1966.

[18] Frederick C. Hennie. One-tape, off-line Turing machine computations. Infor-

mation and Computation, 8(6):553–578, 1965.

[19] Jia-wei Hong. A tradeoff theorem for space and reversal. Theoretical Computer

Science, 32:221–224, 1984.

[20] Jia-wei Hong. Computation: Computability, Similarity and Duality. Research
notices in theoretical Computer Science. Pitman Publishing Ltd., London, 1986.
(available from John Wiley & Sons, New York).

[21] J. Hopcroft and J. Ullman. Some results on tape bounded Turing machines.
Journal of the ACM, 16:168–188, 1969.

[22] Neil Immerman. Nondeterministic space is closed under complement. Structure

in Complexity Theory, 3:112–115, 1988.

[23] Kojiro Kobayashi. On proving time constructibility of functions. Theoretical

Computer Science, 35:215–225, 1985.

[24] K.-J. Lange, B. Jenner, and B. Kirsig. The logarithmic alternation hierarchy
collapses: AΣL

2 = AΠL

2 . Proc. Automata, Languages and Programming, 14:531–
541, 1987.

[25] Ming Li. On one tape versus two stacks. Technical Report Tech. Report TR84-
591, Computer Science Dept., Cornell Univ., Jan. 1984.

[26] Maciej Lískiewicz. On the relationship between deterministic time and deter-
ministic reversal. Information Processing Letters, 45:143–146, 1993.

BIBLIOGRAPHY 125

[27] Wolfgang Maass. Quadratic lower bounds for deterministic and nondetermin-
istic one-tape Turing machines. 16th Proc. ACM Symp. Theory of Comp. Sci.,
pages 401–408, 1984.

[28] Stephen R. Mahaney. Sparse complete sets for NP : solution to a conjecture of
Berman and Hartmanis. Journal of Computers and Systems Science, 25:130–
143, 1982.

[29] H. Altand K. Mehlhorn. A language over a one symbol alphabet requiring only
O(log log n) space. SIGACT news, 7(4):31–33, Nov, 1975.

[30] Burkhard Monien and Ivan Hal Sudborough. On eliminating nondeterminism
from Turing machines which use less than logarithm worktape space. In Lecture

Notes in Computer Science, volume 71, pages 431–445, Berlin, 1979. Springer-
Verlag. Proc. Symposium on Automata, Languages and Programming.

[31] W. J. Paul, J. I. Seiferas, and J. Simon. An information-theoretic approach
to time bounds for on-line computation. Journal of Computers and Systems

Science, 23:108–126, 1981.

[32] Michael O. Rabin. Real time computation. Israel J. of Math., 1(4):203–211,
1963.

[33] W. Rytter and M. Chrobak. A characterization of reversal-bounded multipush-
down machine languages. Theoretical Computer Science, 36:341–344, 1985.

[34] W. J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computers and Systems Science, 4:177–192, 1970.

[35] Istvan Simon. On some subrecursive reducibilities. Technical Report Tech. Rep.
STAN-CS-77-608, Computer Sci. Dept., Stanford Univ., April, 1977. (PhD
Thesis).

[36] Michael Sipser. Halting space-bounded computations. Theoretical Computer

Science, 10:335–338, 1980.

[37] Róbert Szelepcsényi. The method of forcing for nondeterministic automata.
Bull. European Association Theor. Comp. Sci., pages 96–100, 1987.

[38] Seinosuke Toda. Σ2SPACE(n) is closed under complement. Journal of Com-

puters and Systems Science, 35:145–152, 1987.

126 BIBLIOGRAPHY

Contents

2 The Turing Model: Basic Results 51

2.1 Introduction . 51
2.2 Turing Machines . 53
2.3 Complexity . 59
2.4 Linear Reduction of Complexity . 65
2.5 Tape Reduction . 71
2.6 Simulation by Time . 75
2.7 Simulation by Space . 81
2.8 Simulation by Reversal . 87

2.8.1 Basic Techniques for Reversals 88
2.8.2 Reversal is as powerful as space, deterministically 94
2.8.3 Reversal is more powerful than time, deterministically 97

2.9 Complementation of Space Classes 101
2.9.1 Complement of Deterministic Classes 101
2.9.2 Complement of Nondeterministic Classes 104

2.10 *The Complexity of Palindromes . 107
2.11 Absolute Lower Bounds . 110
2.12 Final remarks . 114

127

Chapter 3

Introduction to the Class NP

February 10, 1999

3.1 Introduction

According to the principles outlined in chapter 1, the class P = DTIME(nO(1))
(resp. NP = NTIME(nO(1))) corresponds to those problems that are time-tractable
when we compute in the fundamental (resp. nondeterministic) mode. Clearly P ⊆

NP ; the P versus NP (or ‘P 6= NP ’) question asks if this inclusion is proper. Since
most real world computers operate in the fundamental mode, P is clearly very
important. The practical significance of NP is not immediately evident. In 1971,
Cook [4] proved a theorem connecting P and NP that was destined to play a decisive
role in Complexity Theory. Cook showed that the well-known problem of recognizing
satisfiable Boolean formulas1 is the “hardest” problem in NP in the sense that if
this problem is in P then P = NP . Shortly afterwards, Karp [7] showed that a large
list of problems that are of practical importance in the field of operations research
and combinatorial optimization are also hardest in this sense. Independently, Levin
[11] proved a theorem similar to Cook’s result. The list of hardest problems has
since grown to include hundreds of problems arising in practically every area of the
computational literature: see Garey and Johnson [5] for a comprehensive catalog up
till 1979. The list highlights the fact that NP is empirically (not just theoretically)
a very important class. The added significance of the Cook-Karp discoveries is that
these problems in NP have defied persistent attempts by researchers to show that
they are in P . Although we are probably a long way from settling the P versus NP

question, most researchers believe that P is not equal to NP . Because of this belief,
a proof that a certain problem is hardest for NP is taken as strong evidence of the

1Actually, Cook stated his theorem in terms of recognizing the set of tautologous Boolean
formulas.

117

118 CHAPTER 3. INTRODUCTION TO THE CLASS NP

fundamental intractability2 of the problem. For designers of efficient algorithms,
this is invaluable information: it warns that unless one has new and deep insights
to these problems that escaped previous researchers, one should not expect to find
polynomial time solutions.

We introduce a well-known problem that is not known to be fundamentally
tractable:

Traveling Salesman Optimization Problem (TSO)
Given: An n× n matrix D = (di,j) whose entries are either

non-negative integers or ∞, and di,i = 0 for all i.
Find: A cyclic permutation π = (π(1), π(2), . . . , π(n)) of the integers

1, 2, . . . , n such that D(π) is minimized:
D(π) := dπ(1),π(2) + dπ(2),π(3) + · · ·+ dπ(n−1),π(n) + dπ(n),π(1).

The TSO represents the problem of a salesman who wants to visit each of n
cities exactly once and then return to his original city. The entry d i,j of the ma-
trix D represents the distance from city i to city j. Each cyclic permutation π

corresponds to a tour of the n cities where the traveling salesman visits the cities
π(1), π(2), · · · , π(n), and π(1) in turn: here it does not matter which is the first city
and, without loss of generality, we always let π(1) = 1. D(π) is called the length of
the tour.

The brute force method of solving this problem involves generating all (n− 1)!
cyclic permutations and choosing the permutation with the minimal tour length.
Thus the method takes Ω((n− 1)!) time. There is a dynamic programming method
due to Karp and Held that improves on this, giving O(n2n) time (see Exercises).

The reader may have observed that the TSO is not a recognition problem which
is what our theory normally treats. In the next section we illustrate the empirical
fact that for most optimization or functional problems Q that are not known to be
fundamentally tractable, we can easily derive a corresponding recognition problem
Q

′ with the property that Q can be solved in polynomial time iff Q
′ is in the class

P . We say that Q and Q
′ are polynomially equivalent in this case. Note that we

have not defined what it means for a functional problem like TSO to be solved in
polynomial time (in the fundamental mode): this can easily be done and we leave
it to the reader.

3.2 Equivalence of Functional and Recognition prob-

lems

In this section, we consider three important functional problems, and in each case
give a related recognition problem that is polynomially equivalent to the functional

2We use the term ‘fundamental intractability’ for any problem (not necessarily a recognition
problem) that cannot be solved in polynomial time when computing in the fundamental mode.

3.2. EQUIVALENCE OF FUNCTIONAL AND RECOGNITION PROBLEMS119

problem. This will give evidence for our claim in chapter one that recognition
problems are adequate for the study of tractability.

We have just described the traveling salesman optimization problem. The cor-
responding recognition problem is

Traveling Salesman Decision Problem (TSD)
Given: A matrix D as in TSO and an integer b.
Property: There exists a tour π such that D(π) ≤ b.

This example illustrates the typical way we describe recognition problems in
this book: the well-formed inputs for the problem are described under the heading
Given, where some fixed but reasonable encoding (as discussed in section 5, chapter
1) of these inputs is implicitly assumed. We then identify the recognition problem
with the language whose members encode those well-formed inputs satisfying the
predicate given under the heading Property. We want to show the following

Proposition A. The TSO problem is fundamentally tractable iff the TSD is in

P.

Suppose that the TSO problem is fundamentally tractable. To solve the decision
problem (on input 〈D, b〉), first find the optimal tour πopt. Compute D(πopt) and
accept iff D(πopt) ≤ b. Under reasonable assumptions, and using the fact that πopt

can be found in polynomial time, the described procedure for the TSD clearly takes
polynomial time.

Conversely, suppose that TSD is fundamentally tractable. Let R be an algorithm
that solves the TSD problem in polynomial time in the fundamental mode. First, we
find bmin, the minimal tour length using a binary search of the range [0, m] where m
is the sum of all the finite entries of D: each probe of the binary search involves a call
to the algorithm R as subroutine. The number of probes is O(logm) which is linear
in the size of the input. Next we construct the minimal tour as follows. We regard D
as representing a directed graph G(D) on n vertices where an edge {i, j} is present
iff di,j <∞. Now we successively ‘test’ each edge {i, j} (in any order) to see if the
removal of that edge would result in an increase in the minimal tour length. More
precisely, we replace di,j with∞ and call the subroutine R to see if the minimal tour
length of the modified matrix D exceeds bmin. If it does not increase the minimal
tour length, we will permanently remove edge {i, j}; otherwise we conclude that the
edge {i, j} is necessary in any minimal tour involving the remaining edges of G(D).
Proceeding in this fashion, we will terminate after at most n 2− 2n tests. Note that
exactly n edges will remain in the final graph, and this gives the required tour. The
entire procedure is seen to require only a polynomial number of calls to R. This
completes the proof of the proposition.

The transformation of the TSO problem into TSD is typical. We now illus-
trate a similar transformation on a graph coloring problem. Let G = (V,E) be an
(undirected) graph. For any positive integer k, a function C : V → {1, . . . , k} is

120 CHAPTER 3. INTRODUCTION TO THE CLASS NP

called a k-coloring of G if adjacent vertices in G are assigned distinct ‘colors’, i.e.,
{u, v} ∈ E implies C(u) 6= C(v). If a k-coloring exists for G, then G is k-colorable.
The chromatic number of G denoted by χ(G) is the minimum number k such that
G is k-colorable. The graph coloring problem asks for a coloring of an input graph G
using the χ(G) colors. The chromatic number problem is to determine χ(G) for any
input graph G. Both problems are abstractions of problems such as constructing
examination time tables: the vertices represent courses such as Computer Science I

or Introduction to Ichthyology. We have an edge {u, v} if there are students taking
both courses u and v. Nodes colored with the same color will hold examinations in
the same time slot. So the graph is k-colorable iff there is a conflict-free examina-
tion time table with k time slots. Determining the chromatic number is clearly an
optimization problem and again there is no known polynomial-time algorithm for
it. We can derive a corresponding recognition problem as follows:

Graph Colorability Problem

Given: Graph G and integer k.
Property: G is k-colorable.

Proposition B. The graph coloring problem, the chromatic number problem

and the graph colorability are polynomially equivalent. (see Exercises for proof)
The last pair of problems considered in this section relate to the satisfiability

problem that arises in the subjects of logic and mechanical theorem proving. The
satisfying assignment problem is the problem where, given a CNF formula F , we are
required to find an assignment that satisfies F (if F is satisfiable). The definitions
for this problem appear in the appendix of this chapter. The recognition problem
version of this problem is the following:

Satisfiability Problem (SAT)
Given : A CNF formula F .
Property : F is satisfiable.

Proposition C. The satisfying assignment problem and SAT are polynomially

equivalent. (see Exercises for a proof)

3.3 Many-One Reducibility

In showing that the TSO is tractable if the TSD is tractable (or vice-versa), we
have illustrated the very important idea of ‘reducing one problem to another’. In
this section, we formalize one version of this idea; chapter 4 embarks on a more
systematic study.

We now use the concept of a transformation and transducer as defined in chapter
2 (section 2).

3.3. MANY-ONE REDUCIBILITY 121

Definition 1 Let (Σ, L), (Γ, L′) be languages, and f : Σ∗ → Γ∗ be a transformation
computed by a transducer M. We say that L is many-one reducible to L ′ via f (or
via M) if for all x ∈ Σ∗,

x ∈ L iff f(x) ∈ L′
.

If, in addition, M runs in deterministic polynomial time, then we say L is many-one

reducible to L′ in polynomial time and write

L ≤
P

m
L
′
.

The above reducibility is also known as Karp reducibility. To illustrate this
reducibility, we consider a simplification of the satisfiability problem. If k is any
positive integer, a kCNF formula is one whose clauses have exactly k literals. Con-
sider the problem of recognizing satisfiable 3CNF formulas: call this problem 3SAT.
Thus 3SAT ⊆ SAT (as languages). We show:

Lemma 1 SAT ≤P

m
3SAT.

In a formal proof of this lemma, we would have to construct a deterministic
transducer M running in polynomial time such that for any input word x over the
alphabet of SAT, if x encodes (resp. does not encode) a satisfiable CNF formula,
then fM(x) encodes (resp. does not encode) a satisfiable 3CNF formula. First of all,
note that it is not hard for M to verify whether the input is well-formed (i.e. encodes
a CNF formula) or not. If x is ill-formed, M can easily output a fixed unsatisfiable
formula. So assume that x does encode a CNF formula F . We will show how to
systematically construct another 3CNF formula G such that G is satisfiable iff F

is. The actual construction of the transducer M to do this is a straightforward but
tedious exercise which we omit. (However, the reader should convince himself that
it can be done.)

For each clause C in F we will introduce a set of clauses in G. Let C =
{u1, u2, . . . , um}. First assume m > 3. We introduce the set of clauses

{u1, u2, z1}, {z̄1, u3, z2}, {z̄2, u4, z3}, . . . , {z̄m−4, um−2, zm−3}, {z̄m−3, um−1, um}

where zi, (i = 1, . . . ,m− 3) are new variables. If m = 3, then we simply put C into
G. If m = 2, we introduce the following two clauses:

{u1, u2, z1}, {z̄1, u1, u2}.

If m = 1, we introduce the following four clauses:

{u1, z1, z2}, {u1, z̄1, z2}, {u1, z1, z̄2}, {u1, z̄1, z̄2}.

122 CHAPTER 3. INTRODUCTION TO THE CLASS NP

G has no other clauses except those introduced for each C in F as described
above. To show that G is satisfiable iff F is satisfiable, it is easy to verify that
for any satisfying assignment I to the variables occurring in F , we can extend I to
the newly introduced variables (the zi’s) so that the extension also satisfies all the
clauses in G. Conversely, if I is an assignment that satisfies G, then the restriction
of I to the variables occurring in F will satisfy F . The reader should check these
claims. This concludes the proof of lemma 1.

The following two lemmas concerning ≤P

m
are basic.

Lemma 2 If L ≤P

m
L
′ and L′ ∈ P then L ∈ P .

Proof. By definition, there is a deterministic transducer M running in p(n) time (for
some polynomial p(n)) such that L ≤P

m
L
′ via fM. Also, there exists an acceptor

M′ which accepts L′ in p
′(n) time (for some polynomial p ′(n)). We construct a

machine N which accepts L by ‘calling’ M and M ′ as ‘subroutines’. On input x, N
first computes fM(x) by simulating M. Then N imitates the actions of M ′ on input
fM(x), accepting iff M′ accepts. Clearly N accepts L and runs in O(p(n)+ p

′(p(n)))
time, which is still polynomial. Q.E.D.

Lemma 3 ≤P

m
is transitive.

Proof. Let L ≤P

m
L
′ via some transducer M and L

′ ≤P

m
L
′′ via some M′, where

both M and M′ run in polynomial time. The lemma follows if we construct another
polynomial-time M′′ such that L is many-one reducible to L ′′ via M′′. This is done
in a straightforward manner where M′′ on input x simulates M on x, and if y is the
output of M then M′′ simulates M′ on y. The output of M′′ is the output of M′ on y.
Clearly |y| is polynomial in |x| and hence M ′′ takes time polynomial in |x|. Q.E.D.

The next definition embodies some of the most important ideas in this subject.

Definition 2 Let K be a class of languages. A language L ′ is K-hard (under ≤P

m
)

if for all L ∈ K, L ≤P

m
L
′. L′ is K-complete (under ≤P

m
) if L′ is K-hard (under ≤P

m
)

and L′ ∈ K.

Since we will not consider other types of reducibilities in this chapter, we will
omit the qualification ‘under ≤P

m
’ when referring to hard or complete problems. We

also say L is hard (resp. complete) for K if L is K-hard (resp. K-complete). From
lemma 2, we have

Corollary 4 Let L be NP-complete. Then L ∈ P iff P = NP.

Thus the question whether P = NP is reduced to the fundamental tractability
of any NP -complete problem. But it is not evident from the definitions that NP

contains any complete problem.

3.4. COOK’S THEOREM 123

3.4 Cook’s Theorem

In this section we shall prove

Theorem 5 (Cook) SAT is NP-complete.

This was historically the first problem shown to be NP -complete 3 and it remains
a natural problem whereby many other problems L can be shown to be NP-hard by
reducing SAT to L (perhaps by using transitivity). This avoids the tedious proof
that would be necessary if we had to directly show that every language in NP can
be reduced to L. We just have to go through this tedium once, as in the proof of
Cook’s theorem below.

To show that a problem L is NP-complete we have to show two facts: that L is in
fact in NP and that every problem in NP can be reduced to L in polynomial time.
For most NP -complete problems the first fact is easy to establish. In particular,
the three recognition problems in section 2 are easily shown to be in NP : for the
TSD problem, we can easily construct a Turing acceptor which on input 〈D, b〉 uses
nondeterminism to guess a tour π and then deterministically computes the tour
length D(π), accepting iff D(π) ≤ b. To see that this is a correct nondeterministic
procedure, we note that if the input is in TSD, then there is a π which satisfies
D(π) ≤ b and the acceptor will accept since it will guess π along some computation
path. Conversely, if the input is not in TSD, then every choice of π will lead to
a rejection and by definition, the acceptor rejects the input. Since the procedure
clearly takes only a polynomial number of steps, we conclude that TSD is in NP .
Similarly, for the graph colorability problem (resp. SAT), the acceptor guesses a
coloring of the vertices (resp. an assignment to the variables) and verifies if the
coloring (resp. assignment) is valid. Let us record these observations in:

Lemma 6 The TSD, the graph colorability problem and SAT are in NP.

We will use simple Turing machines as defined in chapter 2. In particular, the
transition table δ(M) of simple Turing acceptor M is a set of quintuples

〈q, b, q
′
, b

′
, d〉

saying that in state q and scanning b on the tape, M can move to state q ′, change b to
b
′, and move the tape-head in the direction indicated by d ∈ {−1, 0,+1}. In chapter

2 we showed that a multi-tape machine can be simulated by a 1-tape machine with
at most a quadratic blow-up in the time usage. A very similar proof will show:

3Cook’s theorem in Complexity Theory is comparable to Gödel’s Incompleteness Theorem in
Computability Theory: both play a paradigmatic role (in the sense of Kuhn [10]). In Kuhn’s
analysis, a scientific paradigm involves a system of views, methodology and normative values for
doing research. A further parallel is that the relation of P to NP can be compared to the relation
between the recursive sets and the recursively enumerable sets.

124 CHAPTER 3. INTRODUCTION TO THE CLASS NP

Lemma 7 If M is a multi-tape Turing acceptor accepting in time t(n) then there

exists a simple Turing acceptor N accepting the same language in time (t(n) + n)2.

Moreover, N is deterministic if M is deterministic.

The import of this lemma is that for the purposes of defining the class of lan-
guages accepted in polynomial time in deterministic (resp. nondeterministic) mode
we could have used the simple Turing machines instead of multitape Turing ma-
chines. This is also a simple demonstration of the polynomial simulation thesis
described in chapter 1.

Proof that every language L ∈ NP is reducible to SAT: The rest of this section is
devoted to this proof. By the preceding lemma, we may assume that L is accepted
by a simple Turing acceptor M in time p(n) for some polynomial p(n). To show that
L is reducible to SAT, we must show a transducer N (computing the transformation
fN) running in polynomial time such that for each input word x over the alphabet
of L, fN(x) is in SAT iff x is in L. The word fN(x) will encode a CNF formula. We
shall describe this formula only, omitting the tedious construction of N. As usual,
once the transformation fN is understood, the reader should have no conceptual
difficulty in carrying out the necessary construction.

For the following discussion, let x be a fixed input of M where |x| = n. Let

C0, C1, . . . , Cp(n) (3.1)

be the first p(n) configurations in some computation path of M on x. (If the compu-
tation path has less than p(n) configurations, then its last configuration is repeated.)
The CNF formula (encoded by) fN(x) will specify conditions for the existence of an
accepting computation path of the form (3.1), i.e., the formula will be satisfiable iff
there exists an accepting computation path (3.1). In order to do this, fN(x) uses
a large number of Boolean variables which we now describe. Each variable denotes
a proposition (‘elementary statement’) about some hypothetical computation path
given by (3.1). We will assume that the instructions (tuples) in δ(M) are numbered
in some canonical way from 1 to |δ(M)|.

Variable Proposition

S(q, t) Configuration Ct is in State q.
H(h, t) The tape-Head is scanning cell h in configuration C t.
T (b, h, t) Cell h contains the Tape symbol b in configuration C t.
I(j, t) Instruction j in δ(M) is executed in the transition C t ` Ct+1.

In this table, the meta-variable4
t is the ‘time indicator’ that ranges from 0 to

p(n), the meta-variable q ranges over the states in M, and the meta-variableb ranges

4I.e., the variable we use in describing actual Boolean variables of fN(x). These meta-variables
do not actually appear in fN(x).

3.4. COOK’S THEOREM 125

over the tape symbols (including the blank) of M. The meta-variable h is the ‘head
position indication’: it ranges over the 2p(n) + 1 values

−p(n),−p(n) + 1, . . . ,−1, 0, 1, 2, . . . , p(n)− 1, p(n)

since in p(n) steps, M cannot visit any cell outside this range. The meta-variable j is
the “instruction indicator” that ranges from 1 to |δ(M)|, the number of instructions
in δ(M). Since the number of values for q, b and j is OM(1), and there are O(p(n))
values for t and h, we see that there are O((p(n))2) variables in all. Therefore each
variable can be encoded by a word of length O(logn). We emphasize that these
are Boolean variables; so the above propositions associated with them are purely
informal.

We now introduce clauses into the CNF formula fN(x) that enforce the above
interpretation of the Boolean variables. By this we mean that if v is a Boolean
variable that stands for the proposition Pv as described in the above table then for
any satisfying assignment I to fN(x), there exists an accepting computation path of
the form (3.1) such that I(v) = 1 precisely when the proposition Pv is true of (3.1).
For instance, the variable S(q0, 0) stands for the proposition

The state in configuration C0 is the initial state q0.

It is clear that this proposition is true of (3.1). Hence we must set-up fN(x) so that
if assignment I satisfies it then necessarily I(S(q0, 0)) = 1.

The clauses in fN(x) correspond to the following eight conditions. For each
condition we specify a set of clauses that we will include in fN(x).

1. The configuration C0 is the initial configuration of M on input x. Suppose
that x = a1a2 · · · an where ai are input symbols. To enforce condition 1, we
introduce the following set of clauses, each containing only one variable:

{S(q0, 0)},

{T (a1, 1, 0)}, {T (a2 , 2, 0)}, . . . , {T (an−1, n− 1, 0)}, {T (an , n, 0)}

{T (, h, 0)} for h 6∈ {1, . . . , n}

Thus, for the first clause to be true, the variable S(q0, 0) must be assigned 1,
a fact that we have already concluded must hold. Similarly, the next n clauses
ensure that the input x is contained in cells 1 to n. The remaining clauses
ensure that the rest of the cells contain the blank symbol .

2. In each configuration Ct, M is in exactly one state.
Let St be the set of variables {S(q, t) : q is a state of M}. Then condition 2
amounts to ensuring that exactly one variable in S t is assigned ‘1’. For this,

126 CHAPTER 3. INTRODUCTION TO THE CLASS NP

we have a convenient abbreviation. If X is any set of Boolean variables, let
U(X) denote the set of clauses consisting of the clause X and the clause {ū, v̄}
for each pair of distinct variables u, v in X. For example, if X = {x, y, z} then

U(X) = {{x, y, z}, {x̄, ȳ}, {x̄, z̄}, {ȳ, z̄}}.

Note that an assignment to X satisfies U(X) iff the assignment assigns a value
of ‘1’ to exactly one variable inX. (U stands for ‘unique’.) Therefore, for each
t, condition 2 is enforced by introducing into fN(x) all the clauses in U(St).

3. There is a unique symbol in each cell h of each C t.
For each h, t, condition 3 is enforced by the clauses in U(Th,t) where Th,t is
defined to be the set {T (b, h, t) : b is a tape symbol of M}.

4. There is a unique head position h in each C t. This is enforced by the clauses
in U(Ht) where Ht = {H(h, t) : h = −p(n),−p(n) + 1, . . . ,−1, 0, 1, . . . , p(n)}.

5. The last configuration is accepting.
Introduce the single clause {S(qa, p(n))} where qa is the accept state.

6. Cells that are not currently scanned in Ct must contain the same symbol as
in Ct+1.
This can be ensured by introducing the three-literal clause

{T (b, h, t), T (c, h, t + 1),H(h, t)}.

for all h, t and tape symbols b, c, where b 6= c.

7. For each t < p(n) there is a unique instruction that causes the transition
Ct ` Ct+1.
This is ensured by the clauses in U(It) where It = {I(j, t) : j = 1, . . . , |δ(M)|}.

8. Changes in successive configurations follow according to the transition table
of M.
For each state q, and tape symbol b (possibly), let δ(q, b) ⊆ {1, . . . , |δ(M)|} be
the set instruction numbers such that j ∈ δ(q, b) iff the first two components
of the jth instruction are q and b. In other words, j ∈ δ(q, b) iff the jth
instruction is applicable to any configuration whose state and scanned symbol
are q and b respectively. For each t, h, we introduce this clause:

{T (b, h, t), S(q, t),H(h, t)} ∪ {I(j, t) : j ∈ δ(b, q)}.

In addition, for each j where the jth instruction is 〈q, b, q ′, b′, d〉, introduce
three clauses:

{I(j, t), S(q′, t+ 1)},

{I(j, t),H(h, t), T (b′, h, t+ 1)}

3.5. SOME BASIC NP-COMPLETE PROBLEMS IN GRAPH THEORY 127

{I(j, t),H(h, t),H(h + d, t+ 1)}

We ought to remark that to ensure that if the machine gets stuck or halts in
less than p(n) steps, then we assume there are rules in δ(M) to replicate such
configurations.

It is curious to observe that, with the exception of the first condition, the rest
of the clauses in fN(x) are not directly related to the input x.

To show that the CNF formula fN(x) consisting of all the clauses introduced
under the above eight conditions is correct, we have to show that fN(x) is satisfiable
iff x is in L. Suppose fN(x) is satisfiable by some assignment I. Then we claim that
an accepting computation path of the form (3.1) exists. This is seen inductively.
Clearly the configuration C1 is uniquely ‘determined’ by condition 1. Suppose that
C1, . . . , Ct are already defined. Then it is easy to define Ct+1. Hence sequence (3.1)
can be defined. But condition 5 implies that Cp(n) is accepting. Conversely, if an
accepting computation path exists then it determines an assignment that satisfies
fN(x).

Finally, we indicate why N can be constructed to run in polynomial time. Note
that for any set X of k variables, the formula U(X) contains O(k 2) clauses, and
these clauses can be generated in O(k3) time. It is not hard to verify that all the
clauses in conditions 1-8 can be generated in O((p(n))3) time. This concludes the
proof of Cook’s theorem.

We have the following interesting by-product of the above proof:

Corollary 8 There is a polynomial-time computable transformation t of an arbi-

trary Boolean formula F to a CNF formula t(F) such that F and t(F) are co-

satisfiable (i.e., F is satisfiable iff t(F) is satisfiable).

See the Exercises for a direct proof of this result.

3.5 Some Basic NP-Complete Problems in Graph The-

ory

We study a few more NP -complete problems. This will give the reader a feeling
for some of the techniques used in proving NP -completeness. We typically prove
that a language L is NP-hard by reducing a known NP -hard problem L

′ to L. This
indirect approach is particularly effective if one chooses an L ′ that is rather similar
to L: the list of over 300 NP -complete problems in [5] is a good resource when
making this choice. We will assume the standard terminology of graph theory and
throughout this book, the terms ‘node’ and ‘vertex’ are fully interchangeable. The
following four problems will be considered in this section.

128 CHAPTER 3. INTRODUCTION TO THE CLASS NP

v v v v v v v v
v v

v v v v v v v v
v

#
#

#
#

#

#
#

#
#

#

#
#

#
#

#

c
c

c
c

c

J

J
J
J

(a) (b) (c) (d)

w u v

v x w

u

Figure 3.1: Some graphs

Vertex Cover Problem.

Given: Graph G = (V,E) and integer k.
Property: G has a vertex cover of size ≤ k.

A vertex cover of G is a subset V ′ ⊆ V such that {u, v} ∈ E implies that u or v
is in V ′. For example, the graph in Figure 3.1(a) has a vertex cover {u, v, w} of size
3 but none of size 2.

Clique Problem.

Given: G = (V,E) and k.
Property: There exists a clique of size ≥ k in G.

A clique of G is a subset V ′ ⊆ V such that each pair of distinct vertices u and
v in V ′ are adjacent in G. For example, the graph in Figure 3.1(b) has two cliques
{u, v, w} and {u, x, w} of size 3 but none of size 4.

Independent Set Problem.

Given: G = (V,E) and k.
Property: There exists an independent set of size ≥ k in G.

An independent set of G is a subset V ′ ⊆ V such that no two distinct vertices u
and v in V ′ are adjacent in G. Thus, the graph in Figure 3.1(b) has an independent
set {v, x} of size 2 but none of size ≥ 3.

Hamiltonian Circuit Problem.

Given: G = (V,E).
Property: G has a Hamiltonian circuit.

3.5. SOME BASIC NP-COMPLETE PROBLEMS IN GRAPH THEORY 129

A Hamiltonian circuit C = (v1, v2, . . . , vn) of G is a cyclic ordering of the set
of vertices of G such that {vi, vi+1} (for i = 1, . . . , n) are edges of G (here vn+1 is
taken to be v1). For instance, the graph in Figure 3.1(d) has a Hamiltonian circuit,
but the one in Figure 3.1(c) has none.

These four problems are easily seen to be in NP using the usual trick of guessing
and verifying. The first three problems appear very similar. The precise relationship
between vertex covers, cliques and independent sets is given by the following result.
The complement of G = (V,E) is co-G = (V̄ , Ē) where V̄ = V , Ē = {{u, v} : u 6=
v, {u, v} 6∈ E}.

Lemma 9 The following statements are equivalent:

(a) V
′ is a vertex cover for G.

(b) V − V ′ is an independent set for G.

(c) V − V ′ is a clique in co-G.

The proof is straightforward and left to the reader. From this lemma, it is evident
that the three problems are inter-reducible problems. So it is sufficient to show one
of them NP-complete. We begin by showing that Vertex Cover is NP -hard; this
was shown by Karp.

Theorem 10 3SAT ≤P

m
Vertex Cover.

Proof. Let F be a 3CNF formula with m clauses and n variables. We will describe
a graph G = (V,E) derived from F such that G has a vertex cover of size at most
2m + n iff F is satisfiable. The actual construction of a transducer to accomplish
the task is a routine exercise which we omit.

The graph G contains two types of subgraphs: For each variable x in F , we
introduce a pair of adjacent nodes labeled by x and x̄, as in Figure 3.2(a).

For each clause {u1, u2, u3}, we introduce a triangle with nodes labeled by the
literals in the clause (Figure 3.2(b)). To complete the description of G, we introduce
edges connecting a node in any pair with a node in any triangle whenever the two
nodes are labeled by the same literal. For example, the graph for the formula
{{x1, x2, x3}, {x̄1, x2, x3}, {x̄1, x̄2, x3}} is shown in Figure 3.3.

We now claim that F is satisfiable iff G has a vertex cover of size 2m+ n. If F
is satisfied by some assignment I, then we choose V ′ to consist of (a) those nodes
in the pairs of G labeled by literals u where I(u)=1 and (b) any two nodes from
each triangle of G, provided that all the nodes labeled by literals u where I(u)=0
(there are at most two such per triangle) are among those chosen. There are n nodes
chosen in (a) and 2m nodes chosen in (b). Furthermore, one observes that every
edge of G is incident to some node in V ′, and thus V ′ is a vertex cover. Conversely,
if G has a vertex cover V ′ of size at most 2m+ n, then we easily see that each pair
(resp. triangle) must contain at least one (resp. two) nodes in V ′. This means that

130 CHAPTER 3. INTRODUCTION TO THE CLASS NP

(a) pair (b) triangle

v

v

v v
v

J
J

JJ

x

x̄

u1 u2

u3

Figure 3.2: Constructions for vertex cover

v v v v v v
v v v

v v v
v v v

x1 x2 x̄1 x2 x̄1 x̄2

x3 x3 x3

x1 x2 x3

x̄1 x̄2 x̄3

%
%
%

%
%
%

%
%
%

e
e

e

e
e

e

e
e

e
����������������������������

�
�

�
�

�
�

�
�

�
�

�
�

��

S
S

S
S

S
S

S
S

S
S

S
S

S
S

SS

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q�
�

�
�

�
�

�
�

�
�

��

��
�
�
�
�
�
�
�
�
��

�
L

L
L

L
L

L
L

L
L

%
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

ZZ

Figure 3.3: Reduction of 3SAT to Vertex Cover

3.5. SOME BASIC NP-COMPLETE PROBLEMS IN GRAPH THEORY 131

(a) ring (b) gadet

v v vp p p p p p p p p p pv v
v
v
v
v
v

v
v
v
v
v
v

PPPPP

' $

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

a1 a2 a3

ak

[e, u]out [e, v]out

[e, u]in [e, v]in

Figure 3.4: Constructions for Hamiltonian circuit

in fact the vertex cover has exactly one vertex from each pair and two vertices from
each triangle. The assignment which assigns to each variable x a value of 1 (resp.
0) iff the node in a pair labeled by x (resp. x̄) is in V ′ is seen to satisfy F . Q.E.D.

We next show that the Hamiltonian Circuit problem is NP-hard, a result of
Karp.

Theorem 11 Vertex Cover ≤P

m
Hamiltonian Circuit.

Proof. Given G = (V,E) and k, we construct Ḡ = (V̄ , Ē) such that G has a vertex
cover with at most k nodes iff Ḡ has a Hamiltonian circuit. Ḡ has two types of
vertices. The first type consists of k nodes a1, . . . , ak connected in a ring, i.e., ai is
adjacent to both ai+1 and ai−1 where subscript arithmetic is modulo k. See Figure
3.4(a). The second type of vertices is introduced by constructing a ‘gadget’ of 12
nodes for each edge e = {u, v} ∈ E (Figure 3.4(b)). Four nodes in the gadget are
specially labeled as

[e, u]in, [e, u]out, [e, v]in, [e, v]out.

So the total number of vertices in V̄ is k + 12|E|. In addition to the edges in the
ring and the gadgets, other edges are introduced corresponding to each node u in V
thus: let e1, . . . , em be the edges in E which are incident on u. We form a ‘u-chain’
by introducing the following edges:

{[e1, u]out, [e2, u]in}, {[e2, u]out, [e3, u]in}, . . . , {[em−1, u]out, [em, u]in}. (3.2)

These edges string together the gadgets corresponding to the edges e1, . . . , em. This
stringing of the gadgets imposes an arbitrary ordering of the e i’s. We also connect

132 CHAPTER 3. INTRODUCTION TO THE CLASS NP

tt
tt
tt

tt
tt
tt

tt
tt
tt

tt
tt
tt

tt
tt
tt

tt
tt
tt

tt
tt
tt

tt
tt
tt

ttt pt

�
�

�

�
�

�

@
@

@

@
@

@

�
�

�

�
�

�

@
@

@

@
@

@

�
�

�

�
�

�

@
@

@

@
@

@

�
�

�

�
�

�

@
@

@

@
@

@

e1 e2 e3 em

a1
a2

a3

ak

& & &% %

� � �

p p p p p p p p p p p % & %
& %

hhhhhhhhhh
& %

' $

,
,

,
,

,
,

,
,

,
,

,
,,

�
�

�
�

�
�

�
�

�
�
�

&
&

$
$

Figure 3.5: A u-chain: e1, . . . , em are edges incident on node u

[e1, u]in and [em, u]out to each of the nodes ai(i = 1, . . . , k) in the ring. See Figure
3.5. Our description of Ḡ is now complete. It remains to show that G has a vertex
cover of size at most k iff Ḡ has a Hamiltonian circuit. Suppose U = {u1, . . . , uh}

is a vertex cover of G, h ≤ k. For each node uj in U , we define a path pj from aj to
aj+1. Suppose e1, . . . , em are the edges in E which are incident on uj . Let e1, . . . , em

appear in the order as determined by the uj-chain. The path pj will include all the
edges in (3.2) and the two edges {aj , [e1, uj]in} and {[em, uj]out, aj+1}. The path
pj must also connect the nodes [ei, uj]in and [ei, uj]out for each i = 1, . . . ,m. We
consider two ways to do this:

The first way (Figure 3.6(a)) visits every node in the gadget of e i but the second
way (Figure 3.6(b)) visits only half of the nodes. We route p j through the gadget
of ei using the first way if the other node that ej is incident upon is not in the
vertex cover U ; otherwise we use the second way. This completes the definition of
the path pj. The concatenation of p1, p2, . . . , ph is seen to be a path P (U) from a1

3.6. **THREE MORE HARD PROBLEMS 133

(a) (b)

[e, u]out [e, u]out

[e, u]in [e, u]in

v
v
v
v
v
v

v
v
v
v
v
v

v
v
v
v
v
v

v
v
v
v
v
v

?

?

?

?

?

?

?

?

?

?

?

?

?

?@
@

@
@

@I

�
�

�
�

��

p p p p p p p p
p p p p p p p p

p p p p

p p p p p p p p p p p p p p p p p p p p

p p p p p p p p
p p p p p p p p

p p p p
p p p p p p p p

p p p p p p p p
p p p p

p p p p p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p p p p

� �
? ?

	 	� �

Figure 3.6: The only two ways a Hamiltonian path can route through a gadget

to ah+1 which visits every node in each gadget. Finally, this path P (U) is made into
a circuit by connecting ah+1, ah+2, . . . , ak and a1 using edges in the ring structure.
The result is a Hamiltonian circuit for Ḡ.

Conversely, suppose there is a Hamiltonian circuit C for Ḡ. The circuit is natu-
rally broken up into paths whose end-points (but not other vertices) are in the ring.
For each such path p that is non-trivial (i.e., has more than one edge), we claim that
there exists a unique vertex u(p) ∈ V , such that p visits all and only the gadgets in
the u-chain: this is because if p visits any gadget associated with an edge e = {u, v},
it must either enter and exit from the nodes [e, u]in, [e, u]out or enter and exit from
the nodes [e, v]in, [e, v]out. For instance, it is not possible to enter at [e, v] in and exit
from [e, u]out (why?). In fact, if p enters and exits from the gadget using the nodes
[e, u]in and [e, u]out, then there are essentially two ways to do this, as indicated in
Figure 3.6. It is easily seen that set of all such vertices u(p) forms a vertex cover
U(C) of G. Since there are at most k such paths in C, the vertex cover U(C) has
size at most k. Q.E.D.

3.6 **Three More Hard Problems

4** Optional section. The problems are hard in the sense of being non-trivial to show in NP .

134 CHAPTER 3. INTRODUCTION TO THE CLASS NP

In all the problems seen so far, it was rather easy to show that they are in NP ,
but showing them to be NP -hard required a bit more work. We now consider two
problems for which it is non-trivial to show that they are in NP .

Primality Testing (Primes)
Given: Given a binary number n.
Property: n is a prime.

Integer Linear Programming (ILP)
Given: An integer m× n matrix A, and an integer m-vector b.
Property: There is an integer n-vector x such that the system of

linear inequalities Ax ≥ b hold.

These problems have practical importance. One important use of primes is
in cryptographic techniques that rely on the availability of large prime numbers
(several hundred bits in length). We note first that the complement of Primes is
Composites, the problem of testing if a binary number is composite. It is easy to see
that Composites is in NP : to test if n is composite, first guess a factor m less than
n and then check if m divides n exactly. Combined with the result that Primes is
in NP , we conclude

Primes ∈ NP ∩ co-NP . (3.3)

Now Primes is not known to be NP-complete and (3.3) gives strong evidence that
it is not. This is because if it were NP -complete then it would be easy 5 to con-
clude from (3.3) that NP=co-NP . This is unlikely, for example, based on extensive
experience in the area of mechanical theorem proving.

The ILP problem is also known as the Diophantine linear programming problem

and is studied in [12]. Let Rational LP (or RLP) denote the variant of ILP where
we allow the input numbers and output numbers to be rationals. The rational LP
problem was shown to be in P in 1979 by Khachian [8]; this solved a long standing
open problem. See [1] for an account. Previously, all algorithms for the rational
linear programming problem had been based on the Simplex Method, and it was
shown by Klee and Minty[9] that such an approach can be exponential in the worst
case.6 Alternatives to Khachian’s algorithm are now known but they do not seem
competitive with the simplex method(s) in practice. However, this situation may
have changed recently because of a new polynomial algorithm given by Karmarkar.

5See chapter 4.
6Recently major progress have been made in understanding the average behavior of the Simplex-

based algorithms. They essentially confirm the experimental evidence that, on the average, these
methods take time linear in the number m of constraints, and a small polynomial in the dimension
n. See [2].

3.6. **THREE MORE HARD PROBLEMS 135

3.6.1 Primality testing

This subsection requires some elementary number theory; Hardy and Wright [6] may
serve as an excellent reference. We follow the usual convention that the number 1
does not count as a prime: thus the smallest prime is the number 2. The greatest
common divisor of two integersm and n is denoted by gcd(m,n), with the convention
gcd(0, 0) = 0. Note that gcd(0, n) = gcd(n, 0) = |n|. Two numbers m,n are
relatively prime if gcd(m,n) = 1. Let

Zn = {0, 1, . . . , n− 1} and Z
∗
n

= {m ∈ Zn : gcd(m,n) = 1}.

Euler’s totient function φ(n) is defined be the number of integers in {1, 2, . . . , n}
that are relatively prime to n; thus φ(n) = |Z ∗

n
|. For example,

φ(1) = φ(2) = 1, φ(3) = φ(4) = φ(6) = 2, φ(5) = 4.

The result that Primes is in NP is due to Pratt [13]. To motivate Pratt’s
technique, we state a gem of number theory [6, p.63]:

Theorem 12 (Fermat’s little theorem) If p is prime and p does not divide x then

x
p−1 ≡ 1(modp).

For example, if p = 5 and x = 3 then we have x2 ≡ 4, x4 ≡ 16 ≡ 1 (all mod5).
We have a partial converse to this theorem, due to Lucas [6, p.72]

Theorem 13 Let n, x be any numbers. If xn−1 ≡ 1(modn) and xm 6≡ 1(modn) for

all divisors m of n− 1, then n is prime.

Proof. We first note two well-known facts: (i) the congruence ax ≡ b(modn) has a
solution in x iff gcd(a, n) divides b [6, p.51]. (ii) Euler’s totient function satisfies
φ(n) ≤ n− 1 with equality iff n is prime.

To prove the theorem, we assume xn−1 ≡ 1(modn) and x
m 6≡ 1(modn) for all

divisors m of n− 1. We will show that n is prime. Using fact (i), we conclude from
x

n−1 ≡ 1(modn) that gcd(x, n) = 1. We claim that x1
, x

2
, . . . , x

n−1 are distinct
elements (modn): otherwise if xi ≡ x

i+m(modn) for some 1 ≤ i < i +m < n, then
x

m ≡ 1(modn). The smallest positivem with this property must divide n−1: for the
sake of contradiction, let us suppose otherwise. So m > 1 and n− 1 may be written
as n − 1 = am + b where 1 ≤ b < m. Then 1 ≡ x

n−1 ≡ x
b(modn), contradicting

our choice of m. On the other hand, we have assumed that xm ≡ 1(modn) fails for
all divisors m of n− 1, again a contradiction. Therefore x 1

, x
2
, . . . , x

n−1 (all modn)
are distinct members of Z

∗
n
. We conclude that φ(n) ≥ n− 1 and the primeness of n

follows from fact (ii). Q.E.D.

If we directly apply the test of Lucas to see if a given n is prime, we must check
each divisor of n− 1 for the desired property. In the worst case, this requires non-
polynomial time since there can be many divisors. To see this we must remember
that the size of the input n is only log n. Pratt noticed that we only need to check
all primes that divide n− 1:

136 CHAPTER 3. INTRODUCTION TO THE CLASS NP

Lemma 14 Let x, n be any numbers and x
n−1 ≡ 1(modn). If for every prime p

dividing n− 1, we have x
n−1

p 6≡ 1(modn) then n is prime.

Proof. Suppose that for every prime p dividing n−1, we have x
n−1

p 6≡ 1(modn). Our
desired result follows from the previous lemma if we show that for every divisor m
of n− 1, xm 6≡ 1(modn). Suppose to the contrary that xm ≡ 1 for some m > 0. If
m is the smallest positive number with this property then we have already argued
in the last proof that m divides n− 1. Hence there is a prime p that divides n−1

m
.

Then xm ≡ 1 implies x
(n−1)

p ≡ 1(modm), a contradiction. Q.E.D.

To show that the last two results are not vacuous, we have([6, theorem 111,
p.86]):

Theorem 15 If n is prime then there exists an x ∈ Z
∗
n

satisfying the conditions of

the preceding lemma: x
n−1 ≡ 1(modn) and x

m 6≡ 1(modn) for all m that divides

n− 1.

This result is equivalent to the statement that Z
∗
n

is a cyclic multiplicative group,
with generator x. The exercises contain a proof. We may now show that Primes is in
NP : on input n, we guess an x ∈ Zn and a prime factorization of n− 1 (represented
as a set of prime numbers together their multiplicities). If p 1, . . . , pk are the distinct
guessed primes, note that k ≤ log n. We then check that each of the following holds:

(a) Verify that xn−1 ≡ 1(modn).

(b) Verify that the product of the pi’s, taken to the power of their guessed multi-
plicities, is equal to n− 1.

(c) Verify that x
n−1
pi 6≡ 1(modn), for each i.

(d) Recursively verify that each of the pi is a prime.

To verify (a) we must raise x to the (n− 1)st power. Using the squaring technique,
we need use only a linear number (i.e., O(log n)) of multiplications of numbers whose
magnitudes are each less than n (this is done by repeatedly reducing the intermediate
results modulo n). Hence this takes at most cubic time. To verify (b), there are at
most log n factors (counting multiplicities), and again cubic time suffices. Part (c) is
similarly cubic time. Hence, if t(n) is the time of this (non-deterministic) algorithm
on input n, then

t(n) = O(log3
n) +

k
∑

i=1

t(pi)

It is easy to verify inductively that t(n) = O(log 4
n). Thus Primes is in NP .

3.6. **THREE MORE HARD PROBLEMS 137

3.6.2 Complexity of ILP

We begin by showing that ILP is NP -hard. This is quite easy, via a reduction from
3CNF: given a 3CNF formula F consisting of the clauses

C1, C2, . . . , Cm

we introduce a set of inequalities. For each variable v, if v or its negation v̄ occurs
in F , we introduce the inequalities:

v ≥ 0, v̄ ≥ 0, v + v̄ = 1.

For each clause C = {α, β, γ}, introduce

α+ β + γ ≥ 1.

It is easy to write all these inequalities in the form Ax ≥ b for a suitable matrix A
and vector b. Furthermore, this system of inequalities has an integer solution iff F

is satisfiable.
The original proof7 that ILP is in NP is by von zur Gathen and Sieveking[14].

To show that ILP is in NP , we want to guess an x and check if the system Ax ≥ b

holds on input A,b. However we cannot do this checking in polynomial time if the
smallest size solution x is too large. The basic issue is to show that if there is a
solution then there is one of small size. In this context, the size of a number or a
matrix is the number of bits sufficient to encode it in standard ways. More precisely,
we define the size of a number n as logarithm of its magnitude |n|; the size of a m×n
matrix is defined as mn plus the sum of the sizes of its entries; the size of the input
to ILP is defined as the sum of the sizes of A and b. The proof which takes up the
remainder of this subsection requires some elementary linear algebra. The basis of
our estimates is the following simple inequality:

Lemma 16 Let B be an n square matrix whose entries each have size at most β.

Then the determinant det(B) is bounded by n!βn
< s

2s, where s is the size of B.

This result is seen by summing up the n! terms in the definition of a determinant.
In the remainder of this subsection, except noted otherwise, the following notations
will be fixed:

A = (Ai,j) : an m× n matrix with integer entries with m ≥ n.
b = (bi) : an m-vector with integer entries.
α : the maximum magnitude (not size) of entries in A,b.
s : the size of the A plus the size of b.
ai : the ith row of A.

7The present proof is partly based on notes by Ó’Dúnlaing. Kozen points out that the usual
attribution of this result to [3] is incorrect. Borosh and Treybig showed a weaker version of the Key
lemma above: namely, if Ax = b has a solution then it has a small solution. It does not appear
that the Key lemma can be deduced from this.

138 CHAPTER 3. INTRODUCTION TO THE CLASS NP

Lemma 17 (Key lemma) Let A,b be given as above. If there exists an integer

solution x to the system Ax ≥ b then there is a solution x each of whose entries

has magnitude at most 2s7s.

It is easy to see that this implies that ILP is in NP : First observe that the size
s of the input 〈A,b〉 satisfies

s ≥ mn+ logα.

On input 〈A,b〉, guess some vector x each of whose entries has magnitude at most
2s7s. Since each entry has size O(s2), the guessing takes time O(ns2). Compute Ax

and compare to b, using time O(mn2
s
3) = O(s5). Accept if and only if Ax ≥ b.

We prove some lemmas leading to the Key lemma. The kth principal submatrix

of any matrix B is the k × k submatrix of B formed by the first k columns of the
first k rows of B; let B(k) denote this submatrix.

Lemma 18 Suppose the hth principal submatrix A(h) of A is non-singular. If h <

rank(A) then there exists an integer n-vector z, z 6= 0, such that

(i) aiz = 0 for i = 1, . . . , h,

(ii) each of the first h + 1 components of z has magnitude at most s2s, but all

the remaining components are zero.

Proof. If the c is the h-vector composed of the first h entries of the (h+1)st column
of A then there is an h-vector v = (v1, . . . , vh) such that A(h)

v = c. In fact,
Cramer’s rule tells us that the entries of v are given by v i = ±Ci/∆ where Ci,∆
are determinants of the h × h submatrices of the h × (h + 1) matrix (A(h)|c). We
define the required z by

zi =











vi∆ = ±Ci if 1 ≤ i ≤ h
−∆ if i = h+ 1
0 otherwise.

It is easy to see that z is a non-zero integer vector and aiz = 0 for i = 1, . . . , h.
Each zi has magnitude ≤ s2s. Q.E.D.

Lemma 19 Assume 0 ≤ h < rank(A). Suppose that the hth principal submatrix

A
(h) is non-singular and Ax ≥ b has an integer solution x such that for 1 ≤ i ≤ h,

the ith row of A satisfies

bi ≤ aix < bi + s
4s
. (3.4)

Then there is a matrix A′ obtained by permuting the rows and columns of A such

that

(i) the (h+ 1)st principal submatrix A′(h+1) is non-singular, and

3.6. **THREE MORE HARD PROBLEMS 139

(ii) Let b
′ = (b′1, . . . , b

′
m

) be the permutation of b corresponding to the permu-

tation of the columns of A to derive A′. There is a solution x
′ to A

′
x
′ ≥ b

′

such that for all 1 ≤ i ≤ h+ 1, the following inequality holds:

b
′
i
≤ a

′
ix

′
< b

′
i
+ s

4s
.

Proof. In the statement of this lemma, the principal submatrix A (0) is conventionally
taken to be non-singular. By permuting the columns of A if necessary, we can assume
that the first h+ 1 columns of A are linearly independent. By the previous lemma,
there is a non-zero vector z such that (i) aiz = 0 for all i = 1, . . . , h, and (ii) the first
h+ 1 components of z are at most s2s and the remaining components are 0. Since
the first h + 1 columns of A are linearly independent, there exists i, (h < i ≤ n),
such that aiz 6= 0. Assume that there exists some i such that aiz is positive (the
case aiz < 0 is similar), and let J ⊆ {h + 1, . . . ,m − 1,m} consist of all those j
satisfying

ajz > 0.

Let δ be the smallest non-negative integer such that if x
′′ = x − δz then for some

j0 ∈ J , bj0 ≤ aj0x
′′
< bj0 + s

4s. We claim that

(a) aix
′′ = aix for i = 1, . . . , h, and

(b) aix
′′ ≥ bi for i = h+ 1, . . . ,m.

It is easy to see that (a) follows from our choice of z. As for (b), the case δ = 0
is trivial so assume δ > 0. When i 6∈ J , (b) follows from the fact that a ix

′′ ≥ aix.
When i ∈ J , our choice of δ implies that

bi + s
4s
≤ aix− (δ − 1)aiz

But aiz ≤ nαs
2s ≤ s

4s implies aix
′′ ≥ bi. This proves (b). By exchanging a pair

of rows of (A|b|x′′) to make the j0th row of A the new (h + 1)st row, we get the
desired (A′|b′|x′). Q.E.D.

We are finally ready to prove the Key lemma. Let x = (x1, . . . , xn) be an integer
solution to Ax ≥ b. For each i, clearly xi ≥ 0 or −xi ≥ 0. Hence there exists an n

square matrix M whose entries are all zero except for the diagonal elements which
are all +1 or −1 such that Mx ≥ 0. Let A′ be the (m+ n)× n matrix

(

A

M

)

and b
′ be the (m+n)-vector obtained by appending zeroes to b. Thus A ′

x ≥ b
′ has

a solution. But observe that A′ has at least as many rows as columns and it has full
rank (equal to the number n of columns). Hence the previous lemma is applicable
to A′

,b
′ successively, for h = 0, 1, . . . , n− 1. This shows the existence of an integer

140 CHAPTER 3. INTRODUCTION TO THE CLASS NP

solution x
′ to A′′

x
′ ≥ b

′, where A′′ is a row and column permutation of A′ and the
individual components of A ′′

x
′ are bounded by s+ s

4s ≤ 2s4s. Since rank(A′′) = n,
there is an n× n nonsingular submatrix B of A ′′. If Bx

′ = c then x
′ = B

−1
c.

We now bound the size of the entries of x
′. We claim that each entry of B−1 has

magnitude at most s2s: to see this, each entry of B−1 has the form Bi,j/∆ where
∆ is the determinant of B and Bi,j is the co-factor of the (i, j)th entry of B. Since
a co-factor is, up to its sign, equal to a (n − 1) × (n − 1) subdeterminant of B,
our bound on determinants (lemma 16) provides the claimed upper bound of s 2s.
Now each entry of c has magnitude at most 2s4s. Thus each entry of x

′ = B
−1

c

has magnitude at most 2ns6s
< 2s7s. Finally observe that some permutation of x

′

corresponds to a solution to Ax ≥ b. This concludes our proof of the Key lemma.

3.7 Final Remarks

This chapter not only introduces the class NP but opens the door to the core
activities in Complexity Theory: many questions that researchers ask can be traced
back to the desire to understand the relationship between NP (which encompasses
many problems of interest) and P (which constitutes the feasably solvable problems
in the fundamental mode). For instance, the concepts of reducibilities and complete
languages will be extended and serve as subject matters for the next two chapters.

We began this chapter with the traveling salesman problems, TSO and TSD.
Now we can easily show the recognition problem TSD is NP -complete. It is enough
to show how to transform any graph G = (V,E) into an input 〈D, b〉 for the TSD
problem such that G has a Hamiltonian circuit iff 〈D, b〉 ∈ TSD. Assume that the
vertices of G are 1, 2, . . . , n. The n × n matrix D = di,j is defined by di,j = 1 if
{i, j} ∈ E; otherwise di,j = 2. It is easy to see that D has a tour of length b = n iff
G has a Hamiltonian circuit. The simplicity of this reduction illustrates an earlier
remark that showing a problem L to be NP -hard can be facilitated if we have a
closely related problem L

′ already known to be NP -hard.

Arithmetic versus Bit Models of complexity In computational problems in-
volving numbers, typically problems in computational geometry, we have two natural
models of complexity. One is the Turing machine model where all numbers must
ultimately be encoded as finite bit-strings; the other is where we view each num-
ber as elementary objects and we count only the number of arithmetic operations.
These two complexity models are distinguished by calling them the bit-model and
arithmetic-model, respectively. We warn that despite its name, the arithmetic-model
may sometimes allow non-arithmetic basic operations such as extracting radicals.

Complexity in the two models are often closely related. However, we point out
that these models may be independent from a complexity viewpoint. More precisely,
there may be problems requiring non-polynomial time in one model but which uses
only polynomial time in the other. For instance, the linear programming problem

3.7. FINAL REMARKS 141

is polynomial time under the bit-model, but unknown to be polynomial time in the
arithmetic-model. On the other hand, the problem of shortest paths between two
points amidst polygonal obstacles is polynomial time in the arithmetic-model, but
not known to be in polynomial time in the bit-model.

142 CHAPTER 3. INTRODUCTION TO THE CLASS NP

Exercises

[3.1] Prove propositions B and C.

[3.2] Construct the Turing transducer N that computes the transformation in the
proof of Cook’s theorem.

[3.3] * Convert the satisfying assignment problem into an optimization problem
by asking for an assignment which satisfies the maximum number of clauses
in a given CNF formula F . Is this problem is polynomially equivalent to
SAT?

[3.4] Show that 2SAT, the set of satisfiable CNF formulas with exactly two literals
per clause can be recognized in polynomial time.

[3.5] Let X be a set of n Boolean variables and k be a positive integer less than
n. Construct a CNF formula Tk(X,Y) containing the variables in the set
X∪Y where Y is an auxiliary set of variables depending on your construction
satisfying the following property: an assignment I : X ∪Y → {0, 1} satisfies
Tk(X) iff I makes at least k variables in X true. Let us call T k(X,Y) the
k-threshold formula. Your formula should have size polynomial in n. What
is the smallest size you can achieve for this formula? Hint: it is easy to
construct a formula where Y has kn variables. Can you do better?

[3.6] Show a log-space reduction of the following problems to SAT. Note that
there are well-known deterministic polynomial time algorithms for these
problems. However, you should give direct solutions, i.e., without going
through Cook’s theorem or appeal to the known deterministic polynomial
time algorithms. Hopefully, your reductions to SAT here are less expensive
than solving the problems directly! So your goal should be to give as ‘effi-
cient’ a reduction as possible. In particular, none of your transformations
should take more than quadratic time (you should do better for the sorting
problem).

(i) Graph matching: input is a pair 〈G, k〉 where k is a positive integer
and G is n by n Boolean matrix representing an undirected graph;
the desired property is that G has a matching of cardinality k. The
threshold formulas in the previous problem are useful here.

(ii) Sorting: input is a pair 〈L,L ′〉 of lists where each list consists of a
sequence of the form

#k1#d1#k2#d2# · · ·#kn#dn#

where ki and di are binary strings. Regarding ki as the ‘key’ and di as
the corresponding ‘data’, this language corresponds to the problem of

3.7. FINAL REMARKS 143

sorting the data items according to their key values. The ‘input’ list L
is arbitrary but the ‘output’ list L ′ is the sorted version of L: L′ ought
to contain precisely the same (key, data) pairs as L, and the keys in L ′

are in non-decreasing order.

(iii) Non-planarity testing: input is a graph G and the property is that
G is non-planar. (Use the two forbidden subgraphs characterization of
Kuratowski.)

(iv) Network flow: input is 〈G, s, t, C, k〉 where G is a directed graph, s and
t are distinct nodes of G (called the source and sink), C assigns non-
negative integer values to the nodes of G (C(u) is the capacity of node
u), and k ≥ 0 is an integer. The desired property is that the maximum
value of a flow from s to t is k. Note that integers are represented in
binary, and C can be encoded by a list of pairs of the form (u,C(u))
for each node u. (Use the max-flow-min-cut theorem and the fact that
we can restrict flows to be integral.)

[3.5] Recall that a 3DNF formula has the form

m
∨∨

i=1

3
∧∧

j=1
ui,j

where ui,j are literals. We also let 3DNF-SAT denote the set of satisfi-
able (encoded) 3DNF formulas. Show that 3DNF-SAT can be recognized in
polynomial time.

[3.6] (Bauer-Brand-Fisher-Meyer-Paterson) Let F be a Boolean formula. Show
a systematic transformation of F to another 3CNF G such that they are
co-satisfiable (i.e., both are satisfiable or both are not). Furthermore, |G| =
O(|F |) where |G| denotes the size of the formula G. Hint: For each sub-
formula H of F , introduce an additional variable αH . We want to ensure
that any assignment I to the variables of H assigns to αH the value of the
subformula H under I (i.e., if I makes H false then I(αH) = 0). For in-
stance, H = H1∨H2. Then we introduce clauses that enforce the equivalence
αH ≡ αH1 ∨ αH2 .

[3.7] The parity function on n variables is x1⊕x2⊕· · ·⊕xn where ⊕ is exclusive-
or. Thus the function is 1 precisely when an odd number of its inputs are
1. Show that the smallest CNF formula equivalent to the parity function is
exponential in n. (Note that this shows that we could not strengthen the
previous exercise such that F and G become equivalent rather than just co-
satisfiable.) Hint: Consider the following CNF formula

∧

k

i=1

∨

Ji where each
Ji is a set of literals over x1, . . . , xn. Show that if this is the parity function
then |Ji| = n.

144 CHAPTER 3. INTRODUCTION TO THE CLASS NP

[3.8] Show that the problem of graph coloring is NP-complete.

[3.9] Show that the problem of deciding if a graph contains a pre-specified set
of vertex-disjoint paths is NP -complete. The input is an undirected graph
together with some set {(ui, vi) : i = 1, . . . , k} of pairs of vertices. The re-
quired property is that there are k pairwise vertex-disjoint paths connecting
the given pairs of vertices. Hint: Reduce from 3SAT.

[3.10] (Burr) A graph G = (V,E) is NMT-colorable (‘no monochromatic trian-
gle’) if it can be 2-colored such that no triangle (3-cycle) has the same color.
Show that the problem of recognizing NMT-colorable graphs is NP -complete.
Hint: Construct three gadgets (I), (II) and (III) with the following proper-
ties. Gadget (I) has two distinguished nodes such that any NMT-coloring of
(I) must give them the same color. Gadget (II) has two distinguished nodes
such that any NMT-coloring of (II) must give them distinct colors. Gadget
(III) has four distinguished nodes A,B,C,D such that in any NMT-coloring
of this gadget must make at least one of A,B or C the same color as D.
When the various gadgets are strung together, the D node of all copies of
Gadget (III) should be common.

[3.11] Consider the regular expressions over some alphabet Σ involving the op-
erators of concatenation (·), union (+), and Kleene-star (∗). Each regular
expression α denotes a subset of Σ∗. We now consider a class of modified
regular expressions in which Kleener-star is not used but where we allow in-
tersection (∩). Show that the problem of recognizing those modified regular
expressions α where L(α) 6= Σ∗ is NP -hard. Hint: imitate Cook’s theo-
rem, but use such expressions to denote those strings that do not represent
accepting computations.

[3.12] (Cook) Show that the problem of recognizing input pairs 〈G,G ′〉 of undi-
rected graphs with the property that G is isomorphic to a subgraph of G ′ is
NP -complete.

[3.13] * (Stockmeyer) Show that the problem of recognizing those graphs G that
are planar and 3-colorable is NP -complete. (Note: we can assume that the
input graph is planar because planarity testing can be done in linear time.)
Hint: Reduce 3SAT to the present problem.

[3.14] * (Kozen) Show that the problem of recognizing valid sentences of the first-
order predicate calculus with the equality symbol but without negation is
NP -complete. The language contains the usual logical symbols (∧,∨,∀,∃)
sans negation (¬), individual variables x i, relation symbols Rm

i
and func-

tion symbols Fm

i
(where m ≥ 0 denotes the arity of the relation or function

symbol, and for i = 0, 1, . . .). We further assume that Rm

0 is the standard

3.7. FINAL REMARKS 145

equality symbol ‘=’. We are interested in valid sentences, i.e., closed for-
mulas that are true in all models under all interpretations (but equality is
standard). Called this the validity problem for positive first-order logic.

[3.15] (a) Show that the tiling problem is NP -complete. The input to this problem
has the form 〈n, k, S〉 where n and k are positive integers and S is a finite
set of ‘tile patterns’. Each tile pattern in S is a sequence of the form p =
〈c1, c2, c3, c4〉 where ci ∈ {1, . . . , k}. Any oriented unit square whose top,
bottom, left and right edges are colored with the colors c1, c2, c3 and c4,
respectively, is said to have pattern p. The problem is to decide whether
it is possible to cover an n by n square area using n2 unit tiles satisfying
the following condition: (i) each unit tile has a pattern from S, and (ii) for
any two tiles that abut, their two adjacent edges have the same color. Hint:

simulate a Turing machine computation using tiles.

(b) For fixed k, let the k-tiling problem be the restriction of the tiling problem
to k colors. What is the smallest k for which you can show that the k-tiling
problem remains NP-complete? What is the largest k for which you can
show that the problem is in P?

[3.16] (Karp-Held) Give a dynamic programming solution to TSO which has a
running time of O(n2n). Hint: Let S ⊆ {2, 3, . . . , n} be a subset of the n
cities, and k ∈ S. Let C(S, k) denote the minimum cost of a route which
starts at city 1, visiting all the cities in S exactly once, terminating at k.
Give an expression for C(S, k) in terms of C(T, i) for all T where T ⊆ S and
|T | = |S| − 1.

[3.17] (a) Show that if p is prime and x is an integer, 1 ≤ x < p, then p divides
(

p

x

)

where

(

p

x

)

= p(p−1)···(p−x+1)
x! .

(b) Conclude (using induction on k) that if p is prime then for all x 1, . . . , xk,
(

k
∑

i=1

xi

)p

≡

(

k
∑

i=1

x
p

i

)

(mod p).

[3.18] Prove Fermat’s little theorem. Hint: x =
∑

x

j=i
yi where each yi = 1 and

use the previous exercise.

[3.19] Prove that if G is an Abelian group, and s and t are elements of G of orders
m and n (respectively) then G has an element of order lcm(m,n). Hint: by
replacing s with s

gcd(m,n), we may assume that lcm(m,n) = mn. What is
the order of st?

[3.20] Prove that Z
∗
p

is a cyclic group where p is prime. Hint: Let n be the
maximal order of an element of Z

∗
p
. Conclude from the previous exercise

that xn − 1 ≡ 0(modp) has p− 1 distinct solutions.

146 CHAPTER 3. INTRODUCTION TO THE CLASS NP

[3.21] We want to demonstrate that if we allow the output tape of transducers to
be a 2-way (but still read-only) tape then we have a more powerful model.
Recall the non-regular language L0 in the last section of chapter 2. Consider
the problem where, given an integer n in binary, we want to output the
string 1̄#2̄# · · ·#n̄ in the language L0. The input size is O(logn) and the
output size is O(n log n). (a) Show that if the output tape is 1-way as in
our standard definition of transducers, then the space used is linear, i.e.
O(log n). (b) Show that if we have a 2-way read-only output tape then
logarithmic space (i.e. O(log logn)) suffices.

[3.22] * (Berman) Show that if there is a tally language L ⊆ {1}∗ that is complete
for NP (under ≤P

m
) then P=NP .

[3.23] * The Euclidean Travelling Salesman’s Problem (ETS) is the following:
given a set {p1, . . . , pn} of points in the plane, find the shortest tour that
connects all these points. It is assumed that the points have integer coordi-
nates and the distance between any pair of points p, q is the usual Euclidean
distance:

d(p, q) =
√

(px − qx)2 + (py − qy)2

where p = (px, py), q = (qx, qy). ETS is known to be NP -hard, but why is
it not obviously NP -complete? Give a single-exponential time upper bound
on the complexity of ETS.
Hint: Reduce the problem to comparing a sum of square-roots to zero.

Appendix A

Propositional Logic

A Boolean variable is a variable that assumes a value of ‘1’ or ‘0’ (alternatively ‘true’
or ‘false’). If x is a Boolean variable, then its negation is denoted either x̄ or ¬x.
A literal is either a Boolean variable or the negation of one. A (Boolean) formula is
either a variable or recursively has one of the three forms:

conjunction: (φ ∧ ψ)

disjunction: (φ ∨ ψ)

negation: (¬φ)

where φ and ψ are Boolean formulas. As an example of a Boolean formula, we have

((x1 ∨ x2) ∨ x3) ∧ (((x̄1 ∨ x2) ∨ x2) ∧ (x̄2 ∨ x̄3)). (A.1)

It is important to realize that formulas are syntactic objects, i.e., a sequence
of marks laid out according to the preceding rules, where the marks comes from
∨,∧,¬, (,), and a unique mark for each variable xi, i = 1, 2, 3, When encoding
formulas to apply our theory, we cannot assume an infinite number of marks. Hence
we must encode each xi by a sequence from a (finite) alphabet Σ. A simple choice,
and the one assumed in this book, is the following: let

Σ = {∨,∧,¬, (,), x, 0, 1}

and each xi is encoded by the symbol ‘x’ followed by b0b1 · · · bm ∈ {0, 1}
∗ where

b0 · · · bm is the integer i in binary. Using this convention, and assuming that no
variable xi+1 is used unless xi is also used, it is easy to see that the size of a formula
φ is O(k +m logm) where k is the number of Boolean operator occurrences and m
is the number of variable occurrences.

A variable x occurs in a formula F if either x or its negation syntactically appears
in F . If all the variables occurring in F are among x 1, x2, . . . , xn, we indicate this

147

148 APPENDIX A. PROPOSITIONAL LOGIC

by writing F (x1, x2, . . . , xn). In this notation, some (possibly all) x i may not occur
in F . An assignment to a set X of Boolean variables is a function I : X → {0, 1}.
If X contains all the variables occurring in F , and I is an assignment to X then I

(by induction on the size of F) assigns a Boolean value I(F) to F as follows: if F
is a variable x, I(F) = I(x); otherwise:

if F is the negation (¬φ) then I(F) = 1− I(φ);
if F is the conjunct (φ ∧ ψ) then I(F) = min{I(φ), I(ψ)};
if F is the disjunct (φ ∨ ψ) then I(F) = max{I(φ), I(ψ)}.

We say I satisfies F if I(F) = 1. A formula F is satisfiable if there exists an
assignment which satisfies it. Thus the formula in equation (A.1) is satisfied by I

with I(x1) = I(x2) = 1, I(x3) = 0.
Two formulas φ and ψ are equivalent, written φ ≡ ψ, if for any assignment I

to the variables occurring in both formulas, I(φ) = I(ψ). The formulas are co-

satisfiable if they are either both satisfiable or both unsatisfiable.
As seen in the example (A.1), parentheses in formulas get to be tedious. We can

avoid these parenthesis by using the properties that conjunctions and disjunctions
are associative, i.e.,

φ1 ∧ (φ2 ∧ φ3) ≡ (φ1 ∧ φ2) ∧ φ3; φ1 ∨ (φ2 ∨ φ3) ≡ (φ1 ∨ φ2) ∨ φ3,

and commutative, i.e.,

φ1 ∧ φ2 ≡ φ2 ∧ φ1; φ1 ∨ φ2 ≡ φ2 ∨ φ1,

and using the fact that
φ ∨ φ ≡ φ; φ ∧ φ ≡ φ.

Thus (A.1) can be simply written as

(x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x2) ∧ (x̄2 ∨ x̄3). (A.2)

If S = {u1, . . . , un} is a set of literals, we also write

∨∨

S or
∨∨

u∈S

u or
n
∨∨

i=1
ui

for the conjunction of the literals in S. We use
∧∧

in a similar way for conjunctions.
A formula that is a conjunction of disjunctions of literals is said to be in conjunctive

normal form (CNF). The example (A.2) is such a formula. The disjunctive normal

form (DNF) is similarly defined.
From the properties noted above, formulas in CNF can be given a convenient

alternative form: A CNF formula in clause form is a set of clauses, where a clause

is a set of literals. There is an obvious way to transform a CNF formula in the usual
form to one in clause form; for example, the formula (A.2) in the clause form is

{{x1, x2, x3}, {x̄1, x2}, {x̄2, x̄3}}.

149

Note that since clauses are defined as sets, repeated literals are removed, as in the
case of the second clause above. Satisfiability of CNF formulas in the clause form
is particularly simple: let X be the set of variables occurring in the CNF formula
F and let I be an assignment to X. Then I satisfies a clause C in F iff for some
literal u in C we have I(u) = 1. I satisfies F iff I satisfies each clause in F . For
instance, the following CNF formula

{{x1, x̄2}, {x̄1, x2}, {x1}, {x̄2}}

is unsatisfiable.

150 APPENDIX A. PROPOSITIONAL LOGIC

Bibliography

[1] M. Akgül. Topics in relaxation and ellipsoidal methods. Pitman Advanced Pub-
lishing Program, Boston-London-Melbourne, 1981. (U. Waterloo PhD Thesis).

[2] Karl Heinz Borgwardt. The Simplex Method: a probabilistic analysis. Springer-
Verlag, 1987.

[3] I. Borosh and L. B. Treybig. Bounds on positive integral solutions of linear
Diophantine equations. Proc. AMS, 55:299–304, 1976.

[4] Steven A. Cook. The complexity of theorem-proving procedures. 3rd Proc.

ACM Symp. Theory of Comp. Sci., pages 151–158, 1971.

[5] Michael R. Garey and David S. Johnson. Computers and Intractibility: A Guide

to the Theory of NP-completeness. Freeman, New York, 1979.

[6] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, London, 1938.

[7] Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages
85–104. Plenum Press, New York, 1972.

[8] L. G. Khachian. A polynomial algorithm for linear programming. Doklady

Akad. Nauk USSR, 244:5:1093–96, 1979. (tr. Soviet Math. Doklady 20 191-
194).

[9] V. Klee and G. J. Minty. How good is the simplex algorithm? In O. Shisha,
editor, Inequalities III, pages 159–175. Academic Press, 1972.

[10] Thomas S. Kuhn. The structure of scientific revolutions. Chicago Univ. Press,
1970.

[11] L. A. Levin. Universal sorting problems. Problemi Peredachi Informatsii,
9:3:265–266, 1973.

[12] C. H. Papadimitriou. On the complexity of integer programming. Journal of

the ACM, 28:765–768, 1981.

151

152 BIBLIOGRAPHY

[13] Vaughn R. Pratt. Every prime has a succinct certificate. SIAM J. Computing,
4:214–220, 1975.

[14] J. von zur Gathen and M. Sieveking. A bound on solutions of linear integer
equalities and inequalities. Proc. AMS, 72:155–158, 1978.

Contents

3 Introduction to the Class NP 117

3.1 Introduction . 117
3.2 Equivalence of Functional and Recognition problems 118
3.3 Many-One Reducibility . 120
3.4 Cook’s Theorem . 123
3.5 Some Basic NP-Complete Problems in Graph Theory 127
3.6 **Three More Hard Problems . 133

3.6.1 Primality testing . 135
3.6.2 Complexity of ILP . 137

3.7 Final Remarks . 140

A Propositional Logic 147

153

Chapter 4

Reducibilities

March 1, 1999

4.1 Inclusion Questions

Many open problems of Complexity Theory are inclusion questions of the form:

Is K included in K
′ ? (4.1)

Here K,K
′ are two classes of languages. The oldest such inclusion (or containment)

question, dating back to 1960s, is the linear bounded automata (LBA) question: Is
NSPACE(n) included in DSPACE(n)? As explained in §2.9, these two classes are
also known as LBA and DLBA, respectively. The P versus NP problem is another
instance of the inclusion question. In chapter 3, we introduced Karp reducibility
and showed its value for studying this question. In general, reducibilities will be
the key tool for investigating inclusion questions. We begin now with a very general
notion of reducibility.

Definition 1 A reducibility is a reflexive binary relation on languages. Let ≤ denote
a reducibility. We use an infix notation to reducibility relations: if (L,L

′) belongs
to the relation ≤, we write L ≤ L

′. A reducibility is transitive if it is transitive as a
binary relation; otherwise it is intransitive.

In the literature, intransitive reducibilities are sometimes called “semi-reducibilities”
and “reducibilities” are reserved for transitive ones. Admittedly, our use of “≤” to
denote semi-reducibilities can be confusing, since the inequality symbol suggests
transitivity. Intransitive reducibilities typically arise when the reducibility concept
is defined using nondeterministic machines (see §9).

We say L is ≤-reducible to L
′ if the relation L ≤ L

′ holds. Two languages L and
L
′ are ≤-comparable if either L ≤ L

′ or L
′ ≤ L; otherwise they are ≤-incomparable.

155

156 CHAPTER 4. REDUCIBILITIES

We also write L 6≤ L
′ if L ≤ L

′ does not hold; and write L < L
′ if L ≤ L

′ and
L
′ 6≤ L.

Next assume that ≤ is transitive. If L ≤ L
′ and L

′ ≤ L then we say L and L
′

are ≤-equivalent. The ≤-degree of L is the class of languages ≤-equivalent to L.
The following generalizes some concepts from chapter 3.

Definition 2 Let K be a class of languages and ≤ a reducibility. Then L is K-hard
(under ≤) if for every L

′ in K, L
′ is ≤-reducible to L. L is K-complete (under ≤)

if L is K-hard and L is in K. K is closed under ≤-reducibility if for any L and L
′,

we have that L ≤ L
′ and L

′ ∈ K implies L ∈ K.

The importance of complete languages as a tool for studying the question (4.1)
comes from the following easy generalization of the corollary to lemma 2 in chapter
3.

Lemma 1 (The Basic Inclusion Lemma) Let K and K
′ be language classes and ≤

a reducibility. Assume

(a) K
′ is closed under ≤-reducibility, and

(b) L is a K-complete language (under ≤).

Then

K ⊆ K
′
⇐⇒ L ∈ K

′
.

Under hypotheses (a) and (b) of this lemma, the inclusion question (4.1) is equiv-
alent to the membership of a single language in K

′. Thus a K-complete language
serves as a representative of the entire class K. This lemma is the basis of most
applications of reducibilities to the inclusion questions.

Choice of reducibilities (I). Given that we want to study a particular inclu-
sion question, whether K ⊆ K

′, within the framework of this lemma, how do we
choose the reducibility ≤? One desirable property is that ≤ be transitive. Then,
we can show a language L ∈ K to be K-complete under ≤ simply by showing a
known K-complete language L0 is ≤-reducible to L. This tack is well-exploited in
the field of NP -completeness theory as described in chapter 3. More on the choice
of reducibilities in the next section.

We say a class K is closed under complementation if K = co-K. Observe that
the question of closure under complement is equivalent to a special kind of inclusion
question since

K = co-K ⇐⇒ K ⊆ co-K.

Of the many open inclusion questions, there is often a weaker conjecture involv-
ing the closure of a class under complementation. For instance, it is not known if
NP is closed under complementation. If P = NP then NP must be closed under
complementation. The converse is not known to be true. Hence it is conceivably
easier to prove that NP = co-NP than to prove that NP = P . Another example is
the LBA-question. While the LBA-question remains open, a general result about

4.2. MANY-ONE REDUCIBILITY 157

non-deterministic space classes in §2.9 implies that LBA is closed under complemen-
tation.

We often wish to compare two reducibilities ≤1 and ≤2. We say ≤1 is as strong

as ≤2 if L ≤2 L
′ implies L ≤1 L

′ for all L,L
′. It is important to note the direction

of implication in this definition since the literature sometimes gives it the opposite
sense.1 If ≤1 is as strong as than ≤2, and but not vice-versa, then ≤1 is stronger

than ≤2. Thus, the stronger reducibility strictly contains the weaker one, if we
regard a reducibility as a set of ordered pairs of languages.

As a historical note, reducibilities are extensively used in recursive function the-
ory. At the subrecursive level, Cook in the proof of his theorem, is an early example
of defining a reducibility that takes complexity into account. Meyer and McCreight
[13] used such reducibilities in relating complexity of problems. Following Meyer,
the reducibilities that take complexity into account may be generically called ‘effi-
cient reducibilities’. Systematic study of efficient reducibilities was first undertaken
by Ladner, Lynch, and Selman [10, 8, 9]. See also [3, 18].

Karp reducibility is denoted≤P

m
(§3.3). The superscript P here indicates polynomial-

time; similarly, the subscript m indicates Karp reducibility is a form of “many-one
reducibility”. Generally speaking, efficient reducibilities are classified along two
lines, and this is reflected in our notational scheme

≤
χ

τ

for reducibilities: the symbol τ indicates the type of the reducibility, and the symbol
χ indicates the complexity characteristics (see §4.4).

Convention. The following abuse of notation is often convenient. If M (resp. T)
is an acceptor (resp. transducer) we sometimes use it to also denote the language
(resp. transformation) defined by the indicated machine. Thus if x, y are words,
then we may say ‘x ∈ M’ or ‘y = T(x)’ with the obvious meaning.

4.2 Many-One Reducibility

Many-one reducibility (§3.3) is now treated in a more general setting. The terminol-
ogy begs the question: is there a one-one or a many-many reducibility? In recursive
function theory, and occasionally in complexity theory (e.g. [19]), one-one reducibil-
ity has been studied. Nondeterministic many-one reducibility (to be introduced in
section 9) may be regarded as a many-many reducibility.

1Our rationale is that the strength of the reducibility should be in direct proportion to the
power of the machines used in defining it: thus the polynomial time reducibility ought to be as
strong as one defined by logarithmic space bounds. The opposite sense is reasonable if we think of
“logical strength of implication”. Kenneth Regan suggests the term “finer” which seems avoid all
ambiguity.

158 CHAPTER 4. REDUCIBILITIES

Definition 3 Let Σ, Γ be alphabets, and Φ be a family of transformations. We say
a language (Σ, L) is many-one reducible to another language (Γ, L

′) via Φ if there
exists a transformation t : Σ∗ → Γ∗ in Φ such that for all x ∈ Σ∗,

x ∈ L ⇐⇒ t(x) ∈ L
′
.

We write L ≤Φ
m

L
′ in this case.

For any alphabet Σ, the identity transformation is t : Σ∗ → Σ∗ with t(x) = x

for all x. The following proposition is immediate.

Lemma 2

(i) If Φ contains all identity transformations then ≤Φ
m

is a reducibility.

(ii) If Φ is, in addition, closed under functional composition then ≤Φ
m

is a

transitive reducibility.

(iii) If Φ,Ψ are families of transformations where Φ ⊆ Ψ then ≤Ψ
m

is as strong

as ≤Φ
m

.

If Φ is understood or immaterial, we shall simply write ‘≤m’ instead of ‘≤Φ
m

’.
Recall that a language L is trivial if L or co-L is the empty set. It is easy to
see that no non-trivial language is many-one reducible to a trivial language and
conversely, a trivial language is many-one reducible to any non-trivial one via some
constant transformation (i.e., t(x) = t(y) for all x, y). To avoid these special cases,
we tacitly restrict all discussion to only non-trivial languages when discussing many-
one reducibilities.

In Karp reducibility, we considered the family Φ = P of transformations com-
puted by deterministic polynomial-time transducers. 2 We now consider another
important family, denoted DLOG, consisting of all transformations computed by
deterministic transducers running in logarithmic space. The corresponding re-
ducibility is denoted ≤L

m
and called log-space many-one reducibility. The proof that

DSPACE(s) ⊆ DTIME(n ·O(1)s(n)) in chapter 2 (§6) can easily be adapted to show
that

DLOG ⊆ P .

This implies that ≤P

m
is as strong as ≤L

m
.

Choice of reducibilities (II). An important instance of (4.1) is whether

NLOG ⊆ DLOG . (4.2)

Assuming that P 6= DLOG (as is generally conjectured), the class DLOG is not
closed under ≤P

m
(see Exercise). Thus hypothesis (a) of the Basic Inclusion Lemma

2We use bold letters to denote families of transformations.

4.2. MANY-ONE REDUCIBILITY 159

fails and we cannot use ≤P

m
-reducibility to investigate question (4.2). We say Karp

reducibility is too strong for distinguishing DLOG from NLOG . More generally,
hypothesis (a) places an upper limit on the power of the reducibility used in studying
inclusion questions. On the other hand, it is easy to see that DLOG is closed under
≤L

m
, and chapter 5 will show that NLOG has complete languages under ≤L

m
. This

is one of the motivations for introducing ≤L

m
.

We now show that ≤L

m
is a transitive reducibility. This follows immediately from

the following theorem of Jones [7] :

Theorem 3 The family DLOG of log-space transformations is closed under func-

tional composition.

Proof. Let Σ0,Σ1,Σ2 be alphabets. For i = 1, 2, let ti : Σ∗
i−1 → Σ∗

i
be computed

by the transducer Ni that runs in space log n. We shall construct a 2-tape trans-
ducer M that computes t0 : Σ∗

0 → Σ∗
2 that is the functional composition of t1 and

t2. To motivate the present proof, briefly recall the proof that ≤P

m
is a transitive

reducibility. A direct adaptation of that proof to the present problem would yield
a machine M′ which on input x, simulates N1 to produce t1(x) and then simulates
N2 on t1(x). In general such an M′ uses more than logarithmic space since |t1(x)|
may have length that is polynomial in |x|. To ensure that only logarithmic space
is used, we shall avoid storing t1(x), but rather recompute the symbols in t1(x) as
often as needed.

By our convention on transducers, tape 1 of M is the output tape. Tape 2 has
four tracks used as follows:

Track 1: Work-space of N1 on input x.

Track 2: Work-space of N2 on input t1(x).

Track 3: An integer indicating the position of the input head of N 2 on
the input t1(x).

Track 4: Counter used when simulating N1.

Initially, track 3 contains the integer 1 indicating that the input head of N 2 is
scanning the first symbol of t1(x). In general, if track 3 contains an integer i, M
will call a subroutine R that will determine the ith symbol of t 1(x). This is done
as follows: R initializes the counter on track 4 to 0 and begins to simulate N 1 using
track 1 as its work-tape. Each time N1 produces a new output symbol, R increments
the count on track 4 and checks if the new count equals the integer i on track 3;
if so, R can immediately return with the ith symbol of t1(x). The operations of
M are essentially driven by a direct simulation of N 2: to simulate a step of N2, M
first calls subroutine R to determine the symbol in t1(x) currently scanned by the
input head of N2. It can then update the work-tape of N2 represented on track 2,
and increment or decrement the integer on track 3 according to the motion of the
input head of N2. Clearly M computes t2(t1(x)). Finally, we must verify that M

160 CHAPTER 4. REDUCIBILITIES

uses O(log n) space. Track 1 uses log |x| space. It is not hard to see that track 2, 3
and 4 uses log(|t1(x)|) = O(log |x|) space. Q.E.D.

Choice of reducibilitites (III). For most of the open inclusion questions,
the consensus opinion generally favor a negative answer. Using smaller families
of transformations (such as DLOG instead of P) to define reducibilities gives us
sharper tools for proving negative answers to these questions. For instance, suppose
L is NP -complete under some ≤-reducibility and P is closed under ≤ (thus the
premises of the Basic Inclusion Lemma are satisfied). To show that NP is not
contained in P , it is sufficient to prove that L is not ≤-reducible to some P -complete
language L

′ (in the next chapter we shall show the P does have complete languages).
Clearly, it would be easier to prove this result if ≤ were in fact ≤L

m
rather than ≤P

m
.

However, there are inherent limits to this tact of tool sharpening, as illustrated by
the next result from [6].

Lemma 4 Let Φ be the families of transformations computed by transducers run-

ning in space f(n). If f(n)=o(log n) then there does not exist NP-complete lan-

guages under ≤Φ
m

-reducibility.

Proof. If t is a transformation computed by some transducer using f(n) = o(log n)
space then for all x, |t(x)| = |x|2O(f(|x|)) = o(|x|2). Let L0 ∈ NTIME(nk) for
some k ≥ 1. If L

′ ≤Φ
m

L0 via t then it is easy to see that L
′ ∈ NTIME(n2k). In

particular, if L0 is NP -complete under ≤Φ
m

-reducibility then NP = NTIME(n2k).
This contradicts the fact that NP 6= NTIME(nk) for any k (this result is shown in
chapter 6). Q.E.D.

Choice of reducibilities, conclusion (IV). This lemma says if the reducibility
is weakened below logarithmic space then it is useless for distinguishing P from NP .
Combined with preceding discussions, we draw the lesson that the strength of the
reducibility should chosen appropriately for the inclusion question of interest. It
turns out that because the major questions we ask center around the canonical list,
many-one log-space reducibility ≤L

m
is suitable for most of our needs.

Despite lemma 4, there are subfamilies of the logarithmic-space transformations
DLOG that are useful for a variety of purposes. We briefly describe three such
subfamilies of DLOG.

(a) Consider what is essentially the smallest non-trivial family of transformations,
namely, those computed by transducers that use no space (these are called fi-

nite state transducers). Denote this family by FST. This family is closed
under functional composition [1]. If the input head of the transducer is con-
strained to be one-way, we denote the corresponding subfamily by 1FST.3

We will show in chapter 6 that there are complete languages for DTIME(n k)
under such ≤1FST

m
-reducibilities.

3The 1-way finite state transducers are also called generalized sequential machines or gsm.

4.3. TURING REDUCIBILITY 161

(b) Let Llin denote the subfamily of DLOG where t ∈ Llin implies that for all x,
|t(x)| = O(|x|). Meyer, Lind and Stockmeyer first considered these ‘log-linear’
transformations and corresponding ≤Llin

m
-reducibilities. In chapter 6, we will

see applications of such transformations in lower bound proofs.

(c) Let 1DLOG denote the family of transformations computable by transduc-
ers that use logarithmic space but where the input tapes are one-way. The
corresponding reducibility ≤1L

m
has been studied by Hartmanis and his collab-

orators. In particular, they point out that many of the well-known complete
languages for DLOG ,NLOG ,P and NP remain complete under≤1L

m
reducibil-

ities. It is easy to see that such reducibilities are transitive.

We next prove some useful properties about the canonical list of complexity
classes of chapter 2 (§3):

DLOG, NLOG, PLOG , P, NP , PSPACE ,
DEXPT , NEXPT , DEXPTIME , NEXPTIME ,

EXPS , EXPSPACE .

Theorem 5

(i) All the classes in the canonical list are closed under ≤Llin

m
-reducibility.

(ii) Each class in the canonical list, except for DEXPT and NEXPT, is closed

under ≤L

m
-reducibility.

Proof. (i) We prove this for the case DEXPT . Say L ≤Llin

m
L
′ via some t ∈ Llin

and L
′ is accepted by some M in deterministic time 2O(n). To accept L, we operate

as follows: on input x compute t(x) and then simulate M on t(x). The time taken
is clearly O(1)|t(x)| = O(1)|x|.
(ii) Proofs similar to the above can be used except that, with log-space reducibilities,
the transformed output t(x) could have length polynomial in |x|. If M accepts in
time O(1)n then to simulate M on t(x) takes time O(1) |t(x)|, which is 6= O(1)|x|.
This accounts for the exclusion of the classes DEXPT and NEXPT . Q.E.D.

4.3 Turing Reducibility

We introduce the idea of computing relative to oracles. Such a computation is done
by a multitape Turing acceptor M equipped with a special one-way oracle tape and
with three distinguished states called QUERY, YES and NO. Such an M is called
an oracle or query machine. We allow M to be nondeterministic. Let L be any
language. A computation of M relative to the oracle set L proceeds in the usual
way until the machine enters the QUERY state. Then, depending on whether the
word written on the oracle tape is in L or not, M next enters the YES or NO state,

162 CHAPTER 4. REDUCIBILITIES

respectively. This transition is called an oracle query. The oracle tape is erased
(in an instant) after each oracle query, and we proceed with the computation. We
require that there are no transitions into the YES and NO states except from the
QUERY state. The machine M with oracle set L is denoted by M (L). Since other
oracle sets could have been used with M to produce different behavior, we denote the
query machine M without reference to any specific oracle by M (·). The acceptance
time, space and reversal of M(L) are defined as for ordinary Turing machines with
the provision that space used on the oracle tape is not counted. We do not feel
justified in charging for the space on the oracle tape since the oracle tape does not
allow space to be reused or even to be reexamined (so this ‘space’ has properties
more akin to time complexity). Clearly the time, space and reversal of M (·) depend
on the oracle. We say that the acceptance time of M(·) is f if for all oracles L,
M(L) accepts in time f . Similar definitions for acceptance space/reversals as well as
for running complexity can be made: we leave this to the reader. Query machines
define language operators (see appendix of chapter 2): the oracle operator φ = φM

corresponding to a query machine M(·) is defined by φ(L)=L
′ iff M(L) accepts L

′.
(The alphabet of L

′ is taken to be the input alphabet of M(·).)

Example 1 Recall the traveling salesman decision problem TSD in chapter 3. Con-
sider the following variation, called here the traveling salesman minimum tour prob-

lem (abbr. TSM):

Given: a pair 〈D,π〉 where D is a n × n matrix of non-negative integers
and π is a permutation on {1, . . . , n}.

Property: π represents a minimum cost tour.

It is easy to construct a query machine M(·) that solves TSM relative to an oracle
for TSD: on input 〈D,π〉, M begins by checking the input has the correct format
and then computing the cost c of the tour π. Then it asks the oracle two questions
(by writing these words on the tape): 〈D, c〉 and 〈D, c − 1〉. Our machine M will
accept if and only if the first answer is yes, and the second answer is no. Clearly
this oracle machine runs in polynomial time and reduces the problem TSM to the
problem TSD.

Extending our convention for acceptors and transducers, it is sometimes con-
venient to say ‘x ∈ M(L)’ to mean that x is accepted by the query machine M(L).

Definition 4 Let L
′ and L be languages and Ω a family of oracle operators. L

′

is Turing-reducible to L via Ω, denoted L
′ ≤Ω

T
L, if there exists an oracle operator

φ ∈ Ω such that φ(L)=L
′. If M is an oracle machine computing φ, we also write

L
′ ≤T L via φ or via M. If K any class of languages, then we let ΩK denote the class

of languages that are Turing-reducible to some language in K via some operator in
Ω. If K consists of a single language A, we also write ΩA.

4.3. TURING REDUCIBILITY 163

Notation. Resource bounded complexity classes are defined by suitable resource
bounded acceptors. If we replace these acceptors by oracle machines with corre-
sponding resource bounds, where the oracles come from some class K, then the
class of languages so defined is denoted in the original manner except that we add
K as a superscript. For instance, if F any family of complexity functions then
DTIMEK(F) denotes the class of languages accepted by oracle machines M (A) in
time t ∈ F with A ∈ K. Or again, N-TIME-SPACE K(nO(1)

, log n) is the class of
languages that are Turing-reducible to languages in K in simultaneous time-space
(nO(1)

, log n). We call the classes defined in this way relativized classes. The classes
in the canonical list can likewise be ‘relativized’, and we have:

DLOGK
,NLOGK

, P
K

,NPK
,PSPACEK

, etc.

Any question involving complexity classes can now be asked of relativized classes.
In particular, the inclusion questions can be relativized; for instance, the NP versus
P problem can be relativized as follows:

Does there exist an oracle A such that NPA
⊆ P

A?

The treatment of relative classes is given in chapter 9.

For the time being we consider the deterministic oracle operators; in section 9
we will return to the nondeterministic case. The two major families of deterministic
oracle operators are P and DLOG, consisting of those oracle operators computable
by some deterministic query machine that runs in polynomial time and logarithmic
space (respectively).4 If Ω = P, the corresponding polynomial-time reducibility is
denoted ≤P

T
. Similarly, if Ω = DLOG, we denote the reducibility by ≤L

T
. Cook’s

Theorem was originally stated using ≤P

T
instead of ≤P

m
. In the literature, ≤P

T
is also

known as Cook reducibility.

Lemma 6

(i) ≤P

T
is a transitive reducibility.

(ii) ≤L

T
is a transitive reducibility.

Lemma 7

(i) P is closed under ≤P

T
.

(ii) DLOG, NLOG and PLOG are closed under ≤L

T
.

4We use script letters for families of oracle operators.

164 CHAPTER 4. REDUCIBILITIES

The proofs of lemma 6(i) and 7(i) are straightforward, and the proofs of lemma
6(ii) and 7(ii) are similar to the proof of theorem 3. The nondeterministic version
of lemma 7(i) is not known to be true: it is not clear that NP is closed under ≤ P

T

(see Exercises).
Turing reducibility is the strongest notion of reducibility known. For example,

it is stronger than many-one reducibility if we view a transducer as a special type
of oracle machine in which the oracle is asked only one question at the end of the
computation (and furthermore, this oracle machine accepts if and only if the oracle
says yes).

Alternative oracle models. The oracle machines as defined above are called
one-way oracle machines. Although such machines will serve as the standard model
of oracle computation in this book, we will point out some unexpected properties
which points to other possibly better definitions. These properties have to do with
space-bounded oracle computation. Note that the oracle tape is not counted among
the work-tapes. The alternative is to allow the oracle tape to behave like an ordinary
work-tape until the machine enters the query state: then, as in the one-way model,
the machine next enters the YES or NO state, and the oracle tape is blanked in an
instant. We call this the two-way oracle machine. The amount of space used by the
oracle tape is now included when considering space usage. We give one motivation
for preferring the one-way model: we generally expect Turing reducibility to be as
strong as the corresponding many-one reducibility. For instance, it seems that ≤L

T

ought to be as strong as the many-one reducibility ≤L

m
. Note that a one-way oracle

machine using log-space may make queries of polynomial length. Under the two-way
oracle model the machine can only make queries of logarithmic length, and hence it
is no longer evident that ≤L

T
is as strong as ≤L

m
. In fact, ≤L

T
is not even a reducibility

(but ≤L

m
clearly is a reducibility) (Exercises). The next two results illustrate further

differences between the two oracle models.

Theorem 8 Under the two-way oracle model, for any oracle A and any complexity

function s:

(i) (Relativized Savitch’s theorem) NSPACEA(s) ⊆ DSPACEA(s2).

(ii) NSPACEA(s) ⊆ DTIMEA(n2 log nO(1)s(n)).

The relativized Savitch’s theorem was noted in [18]. The proof of this theorem
is an exercise but it is essentially the same as in the unrelativized cases. In contrast,
with respect to the one-way machine model, there are oracles that belie the above
result. We state such a result of Ladner and Lynch [8] here, but defer its proof till
chapter 9.

Theorem 9 Let s be a complexity function that is space-constructible. Then there

is an oracle A such that NSPACEA(s) 6⊆ DSPACEA(O(1)s).

4.4. UNIVERSAL MACHINES AND EFFICIENT PRESENTATION 165

This theorem contradicts the relativized Savitch’s theorem in a very strong sense:
there is an oracle A such NSPACE A(s) 6⊆ DSPACEA(sk) for every integer k. It also
contradicts the unrelativized result that NSPACE(s) is included in DTIME(O(1) s),
for s(n) ≥ log n. Such properties have suggested to researchers that our definitions
of oracle space may be “pathological”. To obtain a more reasonable notion, Gasarch
suggests the following:

Definition 5 A tame oracle machine is a one-way oracle machine that has a dis-
tinguished set of states called oracle states. The machine only writes on the oracle
tape when in these states, and transitions from oracle states are deterministic and
can only go into other oracle states or enter the QUERY state.

Tameness implies that the oracle machine precedes an oracle query by entering
the oracle states. If the machine uses s space, then it has n2O(s(n)) configurations,
where a configuration here does not include the contents on the oracle tape. Hence
the length of the query word in a tame oracle machine using space s(n) is n2O(s(n)).
It is now easy to prove the analog of theorem 8:

Theorem 10 Theorem 8 holds under the tame oracle model.

From now on, whenever space complexity is considered, we will assume that the
one-way oracles are tame.

4.4 Universal Machines and Efficient Presentation

We frequently want to restrict a class K to a subclass consisting of those languages
in K that have a common alphabet Σ: let K|Σ denote this subclass of K. Thus
“K = K|Σ” is an idiomatic way of saying that the all languages in K have alphabet
Σ. It turns out that all natural classes K have the property that K and K|Σ have
essentially the same complexity properties, provided |Σ| ≥ 2 (see Exercises). Indeed,
the literature sometimes restricts languages to have the binary alphabet Σ = {0, 1}.

Definition 6 A k-tape universal Turing acceptor U is a Turing acceptor with k

work-tapes and two read-only input tapes taking inputs of the form 〈i, x〉, i.e. with
i on the first input tape and x on the second input tape. We usually inteprete i as
an natural number (represented in a m-adic notation). Let K be any class and for
each i ≥ 0, let Li be the language

Li = {x : U accepts 〈i, x〉}

If K = K|Σ then we say that U is a universal acceptor for K (alternatively, either
U accepts K or U presents K) if

(i) For all i, Li ∈ K.

166 CHAPTER 4. REDUCIBILITIES

(ii) For all L ∈ K, there are infinitely many indices i such that L i = L. We
call this the recurrence property.

Finally, if K is an arbitrary class of languages, we say K has universal acceptors (or
is presentable) if for each Σ, K|Σ has a universal acceptor.

With any i fixed on the first input tape, we can regard U as a Turing acceptor
Ui that accepts L(Ui) = Li. The number i is also called the code or index of the
machine Ui. We sometimes identify U with the family {U i : i = 0, 1, 2, . . .} of
Turing acceptors. (However not every set of Turing acceptors qualifies to be called
a universal acceptor.) Note that U can be deterministic or nondeterministic.

Example 2 (A standard universal machine construction) Recall that RE is the
class of recursively enumerable languages. We construct a universal acceptor U

RE

for the class RE|Σ where Σ is any alphabet. Let k ≥ 1 be fixed. Let M0 be the
family of all nondeterministic k-tape Turing acceptors whose input alphabet is Σ. It
is easy to see that the class of languages accepted by the machines inM0 is precisely
the class RE|Σ. We represent each acceptor in M0 by its finite transition table,
listing in some arbitrary order the tuples in the table. Our universal Turing machine
U

RE will simulate each machine from this representation. Since the tape alphabets
of machines inM0 are unrestricted while U

RE must use a fixed alphabet, we must
encode each symbol in the universal symbol set Σ∞, say, as a word in {0, 1}∗. Once
this is done, each machine M in M0 is naturally represented by binary strings i

which we call codes of M. (Codes are not unique since the tuples the transition table
of M can be ordered in orbitrarily.) The string i can be interchangeably regarded
as an integer (in such contexts, when we write |i| we mean the length of the binary
string i, never the absolute value of the integer i). In case a binary string i does not
encode a valid machine description, we say it encodes the null machine that accepts
no inputs. The preceding conventions amount to an enumeration of the machines
inM0:

φ1, φ2, φ3, . . . (4.3)

where each machine inM0 occurs at least once in the list. Now it is easy to construct
U

RE that upon input 〈i, x〉 simulates the ith acceptor φi on input x in a step by
step fashion; we leave the details to the reader. Note that U

RE must be assumed
to be nondeterministic if it is to simulate nondeterministic steps of the simulated
machine. We can show that the recurrence property holds: for each r.e. language L,
L is accepted by U

RE

i
for infinitely many i’s. This follows from the following simple

observation: for each transition table δ, there are infinitely many other tables δ
′

that are obtained from δ by adding extra instructions (i.e., tuples) that can never
be executed. Hence if U

RE

i
accepts a language L, then there must in fact be infinitely

many other indices j such that U
RE

j
also accepts L. This completes our description

of the universal machine U
RE .

It is easy to see that our construction has the following fundamental property:

4.4. UNIVERSAL MACHINES AND EFFICIENT PRESENTATION 167

(4) For each machine φi inM0, if φi accepts in simultaneous time-space-reversal
(t, s, r) then there are infinitely many indices j such that U

RE

j
accepts L(φi) in

time-space-reversal (Oi(t), Oi(s), Oi(r)) = Oi(t, s, r).

Property (4) follows from the observation that U
RE

j
uses Oi(1) units of its resource

for each unit of the corresponding resource of the φi. The reader should understand
how this is so.

To continue this example, we consider the familyM1 of all k-tape deterministic
Turing machines. We want a universal simulator U

D forM1. One way to do this is
to use the same enumeration of the machines inM0, but to define the ith machine
φi as the null machine whenever i does not encode a deterministic acceptor. U

D

can easily check if φi is deterministic, in O(|i|2) = Oi(1) time. Again, a statement
similar to (4) can be made. An alternative is to regard each representation of
a nondeterministic acceptor as a representation of a deterministic one simply by
assuming that the first choice is to be taken whenever there are several choices for
a transition. U

D is deterministic, naturally.

The preceding example illustrates the basic principle that a reasonable family of
machines can often be systematically enumerated, leading to a universal machine.
The principle is also called the “arithmetization or Gödel numbering of machines”.
In Complexity Theory, it is not enough to say that a class K has a universal acceptor,
for we also want the universal machine to be ‘efficient’. Intuitively, the machine U

RE

in the above example is efficient because (4) holds. On the other hand, it is easy
to construct a universal acceptor U for the class NP such that each U i is a very
inefficient simulator of φi (the ith nondeterministic polynomial time machine), say,
Ui runs exponentially slower than φi.

Efficient Presentation. We would like to say that a universal machine is an
“efficient” presentation of a class of languages K. To be concrete, in what sense
can a universal machine U be said to “efficiently” present the class NP? We would
like this to mean that for each i, Ui accepts a language in NP in non-deterministic
polynomial time. Unfortunately, NP is simply a class of languages: despite the fact
that the definition NP involves the complexity characterization “non-deterministic
polynomial time”, there is no reason why this characterization is inherent to NP .
We therefore proceed as follows: we explicitly attach the complexity characterization
χ =“non-deterministic polynomial time” to the class NP and call the pair (NP , χ)
a “characteristic class” based on NP . Of course, we can obtain other characteristic
classes based on NP if we wish. For instance, if P = NP , then it is reasonable to
consider (NP , χ

′) where χ
′ =“deterministic polynomial time”. Now, the notion of

efficient presentation of a characteristic class is perfectly meaningful.

Definition 7 A resource bound is a pair β = (F, ρ) where F is a family of complex-

ity functions and ρ is a computational resource such as time or space. A complexity

168 CHAPTER 4. REDUCIBILITIES

characteristic χ is a pair of the form

(µ, β)

where µ is a computational mode, and β is a resource bound.

We usually write F -ρ instead of (F, ρ) for resource bounds. For instance,

n
O(1)-time, logO(1)

n-space

are resource bounds. This may be read as poly-time and polylog-space. This notation
extends naturally. As further examples, the complexity characteristics

(nondeterministic, log(n)-reversals), (deterministic, O(1)n-time).

are called nondeterministic log-reversals and deterministic exponential-time, respec-
tively.

Definition 8 Let χ = (µ, β), β = (F, ρ). Let MACHINES(χ) denote the family of

acceptors that have the characteristic χ, i.e., each M in MACHINES(χ) computes

in mode µ and accepts in resource bounds β = (F, ρ) (i.e., in f units of resource ρ,

for some f ∈ F). A characteristic class (of languages) is a pair (K,χ) where K is

a language class and χ a complexity characteristic such that for each L ∈ K, there

is some M in MACHINES(χ) that accepts L. We say (K,χ) is based on K.

It is easy to generalize the notion of complexity characteristics χ to more than
one resource bound: in general let χ = (µ, {β1, . . . , βk}). Then a machine in the
class MACHINES(χ) computes in mode µ and accepts in simultaneous resource
bounds of βi for each i = 1, . . . , k. For our present purposes, k = 1 is sufficient.
Although we have defined a complexity characteristic χ as a two parameter object,
it is conceivable to introduce further parameters such as: (i) the choice between
running and acceptance complexity, (ii) the number of work-tapes, and even (iii)
the computational model (we implicitly assumed Turing acceptors), etc.

Example 3 For each of the classes in the canonical list, there is a natural complex-
ity characteristic associated with its definition. Thus the class DLOG of determin-
istic log-space languages is associated with the characteristic

(deterministic, log n-space).

Indeed, the names for these classes implicitly refer to their characteristics. Hence-
forth, when we refer to a characteristic class K in the canonical list, we imply
the complexity characteristic of K used in its definition. As another example, ‘the
characteristic class NP ’ refers to

(NP , (nondeterministic, n
O(1)-time)).

4.4. UNIVERSAL MACHINES AND EFFICIENT PRESENTATION 169

More generally, for any characteristic class (K,χ), if χ is understood then we may
simply refer to K as the characteristic class itself.

Different complexity characteristic attached to a given class K. Thus, Savitch’s
theorem (chapter 2) tells us that the following are two characteristic classes based
on PSPACE :

(PSPACE , (deterministic, n
O(1)-space)),

(PSPACE , (nondeterministic, n
O(1)-space)).

In the literature, the distinction between a characteristic class and its underlying
abstract abstract class of languages is often only implicit.

Example 4 Note that in the definition of the characteristic class (K,χ), we allow
the possibility of some M in MACHINES(χ) that accepts a language not belonging
to K. This freedom gives rise to trivial ways of obtaining characteristic classes based
on any language class K, simply by choosing the complexity family F in χ to be
the family of all complexity functions. We next give a non-trivial example. Below
we will prove a result about the following characteristic class:

(NPC , (nondeterministic, n
O(1)-time))

where NPC ⊆ NP is the class of NP -complete languages (under Karp reducibility).
If P 6= NP then we see in section 7 that there exist languages accepted by machines
in MACHINES(nondeterministic, n

O(1)-time) that are not in NPC .

We come to our main definition.

Definition 9 Let (K,χ) be a characteristic class, K = K|Σ, and U a universal ma-
chine. We say U is an efficient universal acceptor for (or is an efficient presentation

of) the characteristic class (K,χ) if

(a) For each i, L(Ui) ∈ K.

(b) Each Ui has complexity characteristic χ. Here, reversals on the first input
tape (containing i) are not counted, and space on both input tapes is not
counted.

(c) Let χ = (µ, (F, ρ)). For each L
′ ∈ K, there is a f ∈ F such that for infinitely

many i ≥ 0, L
′ = L(Ui) and each Ui accepts in resource bound (f, ρ). This is

the efficient recurrence property of U .

In general, when K is not necessarily of the form K = K|Σ, we say (K,χ) has

efficient universal acceptors if for each alphabet Σ, there is an efficient universal
machine for (K|Σ, χ).

170 CHAPTER 4. REDUCIBILITIES

Example 5 (Efficient universal acceptors for P) Fix an alphabet Σ. We will con-
struct a universal acceptor U

P for the characteristic class (P |Σ, χ) where χ =
(deterministic, n

O(1)-time). In example 2, we described a universal acceptor U
D

for simulating the family M1 of k-tape deterministic Turing acceptors with input
alphabet Σ. We obtain U

P from U
D as follows: U

P , upon input 〈i, x〉 simulates
U

D on input 〈i, x〉 for at most |x||i| steps (these are steps of U
D

i
).5 If U

D

i
does not

accept x within |x||i| steps, then U
P rejects. U

P can keep track of the number of
simulated steps since f(n) = n

|i| is time-constructible and U
P can in parallel (i.e.,

on separate tapes) run for exactly f(n) steps while simulating U
D

i
. Furthermore,

we need the fact that the family of polynomials {nk : k = 1, 2, . . .} are uniformly
constructible (i.e., the two argument ‘universal-polynomial’ function p(n, k) := n

k

is time-constructible). (Exercises) We call U
P a ‘clocked’ version of U

D.
We claim that U

P is an efficient presentation of the characteristic class P |Σ.
Clearly U

P accepts only languages in P |Σ. Each language L in P |Σ is accepted by
some M in time O(nh) for some h ≥ 1. By a tape reduction result in chapter 2,
there is a 2-tape machine inM1 accepting L in time O(nh log n) = O(nh+1). Then
property (4) in example 2 implies that there exists an i such that U

P

i
accepts L in

time O(nh+1). Finally, we must show the efficient recurrence property of U
P : for

each L
′ ∈ P , there is a c > 0, and there are infinitely many i’s such that L(U i) = L

and Ui accepts in time c ·nh+1. This follows from our standard coding of machines.
(it is insufficient to appeal to the recurrence property of U

D).

We now show efficient universal machines for the characteristic classes in the
canonical list. The technique is simple and generally applicable; it involves attaching
a ‘clock’ to each Turing machine defined by a suitable universal machine. But this
is precisely the technique illustrated in the last example.

Definition 10 A universal machine U is total if for all inputs 〈i, x〉, U eventually
halts on that input. A class is recursively presentable if it has a total universal
machine.

Theorem 11 Each characteristic class in the canonical list is efficiently presentable

by a total universal machine.

Proof. The construction for P in the above example can be generalized to all
the other classes. Here we use the fact that the families of complexity functions
(nO(1)

, log n, etc) are all constructible in the corresponding complexity resource
(time or space). Q.E.D.

We extend the preceding definitions for acceptors to transducers and oracle ma-
chines. This can be done in a rather straightforward way by imitating the definitions
for acceptors. Hence we are contented with a very quick description. We define

5More precisely, if UD

i simulates the ith machine φi in the standard listing of M1, then each
step of φi is simulated by O(|i|) = Oi(1) steps of UD.

4.4. UNIVERSAL MACHINES AND EFFICIENT PRESENTATION 171

universal transducers and universal oracle machines, simply by giving an ordinary
transducer or oracle machine an extra read-only input tape, so that input is now
a pair 〈i, x〉. Let Φ and Ψ be families of transformations and oracle operators,
respectively. Again we need the concept of characteristic families of transducers or
oracles, denoted (Φ, χ) and (Ψ, χ) where χ is a complexity characteristic. For each
alphabet Σ, we may define Φ|Σ (resp. Ψ|Σ) to be the subfamily of transformations
(resp. oracle operators) whose input and output alphabets are Σ.6 For character-
istic families of transducers or oracles, there is a corresponding notion of efficient
presentation for the family. Using the idea of clocks, the reader may prove as an
exercise:

Lemma 12

(i) The characteristic families DLOG of log-space transformations and P of

polynomial-time transformations are each efficiently presentable.

(ii) The characteristic families DLOG of log-space oracle operators and P of

polynomial-time oracle operators are each efficiently presentable.

Definition 11 Two languages L,L
′ ⊆ Σ∗ are said to be finite variants of each other

if (L− L
′) ∪ (L′ − L) is a finite set.

We extend this definition by saying that two classes of languages K = K|Σ and
K

′ = K
′|Σ are finite variants of each other if for each L ∈ K, there is a finite variant

of L in K
′ and vice-versa. An arbitrary class K is closed under finite variations if

for each Σ,

(a) K contains the trivial languages ∅ and Σ∗ and

(b) for all L,L
′ ⊆ Σ∗ that are finite variants of each other, L ∈ K if and only if

L
′ ∈ K.

It is easy to see that all the complexity classes defined in this book are closed under
finite variation.

We next prove an interesting theorem by Landweber, Lipton and Robertson [11].
It concerns the characteristic class NPC of example 4 and depends on the efficient
presentability of the characteristic classes NP and P.

Theorem 13 The characteristic class NPC of NP-complete languages under Karp

reducibility is efficiently presentable.

Proof.

Let U = {Ui} be an efficient universal acceptor for the characteristic class NP

and let T = {Ti} be an efficient universal transducer for the polynomial time trans-
formations. (The notation ' next refers to the pairing function defined in the

6We do not need the more general case where the input and output alphabets are different.

172 CHAPTER 4. REDUCIBILITIES

appendix.) We construct U
′ = {U ′

i
} such that if i ' 〈j, k〉 then U

′
i

accepts L(Uj) if
SAT is Karp reducible to L(Uj) via Tk; otherwise U

′
i

accepts some finite variant of
SAT. We prove that U

′ is indeed the desired universal machine.

We show how U
′ operates: on input x of length n, U

′
i

deterministically verifies
for each y of length ≤ log log n that

y ∈ SAT ⇐⇒ Tk(y) ∈ L(Uj). (4.4)

We say the verification for a given y succeeds if and only if (4.4) can be verified
(using the procedure given below) within n steps. We say that x is a success if and
only if the verification succeeds for each y of length m ≤ log log n; otherwise x is a
failure. U

′ first marks out dlog log ne tape-cells in O(n) time. (We leave the details
for this to the reader – it is similar to the proof in the appendix that log ∗

n can
be computed in linear time.) To verify a particular y of length m, U

′ proceeds as
follows:

(i) Determine if y ∈ SAT. Fix any nondeterministic acceptor for SAT that takes
time m

c on y, m = |y|, for some constant c that does not depend on the input.
By results in chapter 2, we can simulate this acceptor deterministically in time
O(1)m

c

.

(ii) Compute Tk(y), using time m
d for some constant d that depends only on k.

(iii) Determine if Tk(y) ∈ L(Uj). Suppose Uj on an input of length n takes nonde-
terministic time n

e for some e depending on j. Since |Tk(y)| ≤ m
d, a determin-

istic simulation of the nondeterministic U j takes time O(1)(md)e

= O(1)m
de

.

For n sufficiently large, we see that (i–iii) can be done in n steps. Thus deciding if x

is a success or failure takes at most n
2 time since there are at most O(1)log log n ≤ n

values of y to check. If x is a success then Ui next simulates Uj on Tk(x); otherwise
it simulates the fixed nondeterministic acceptor for SAT on input x. This completes
our description of U

′.

We now show that U
′ is an efficient universal acceptor for NPC . Suppose i '

〈j, k〉. If SAT is Karp-reducible to L(Uj) via Tk then we see that for all inputs, U
′
i

behaves exactly like Uj. Conversely, if SAT is not Karp-reducible to L(U j) via Tk

then for large enough inputs, U
′
i

behaves like a particular acceptor for SAT. Since
NPC is closed under finite variation, the accepted language is still in NPC. For the
efficient recurrence property, it is not hard to show that for any L

′ ∈ NPC , there are
infinitely many i’s such that U

′
i

accepts L
′ using Oi(n

c) time, for some c. Q.E.D.

The above proof is rather formal, but it is really quite simple in outline: On
input x, U〈j,k〉 spends a small amount of time, say f(|x|) steps, looking for a counter
example to the assertion that SAT is reduced to L(Uj) via Tk. If it fails within f(n)
steps, it simulates an algorithm for SAT on input x; if it succeeds, it simulates U j

on input x. For j, k fixed, U〈j,k〉 is NP provided f(n) is polynomial-bounded (but

4.5. TRUTH-TABLE REDUCIBILITIES 173

clearly any unbounded non-decreasing function). It is easy to see that this machine
accepts Uj or some finite variant of SAT. The point is that if the assertion is false,
we will find the counterexample in finite time.

In contrast, we have the result of Chew and Machtey [4] that if P 6= NP then
NP − P has no recursive presentation.

4.5 Truth-table Reducibilities

This section introduces a reducibility based on the idea of ‘truth-tables’; it is inter-
mediate in strength compared to Turing-reducibility and many-one reducibility. We
may view many-one reducibility via a transformation t as a special case of Turing
reducibility where the query machine on input x asks only one question

“Is t(x) in the oracle language?”

at the end of the computation, with the decision to accept identical to the answer
from the oracle. In truth-table reducibility, this is generalized to the asking more
than one question with the decision to accept determined by some fixed function
of the answers to these questions. The difference between this and general Turing
reducibility is that the set of questions asked is solely a function of x, independent
of the oracle. Thus a query machine can be decomposed into two parts: a ‘query
generator’ which formulates a sequence of questions based on the input x, and a
‘query evaluator’ which evaluates a predicate on the sequence of answers. A simple
example is a query generator which on any input x produces two queries (strings)
f(x) and g(x), where f and g are transformations; the query evaluator accepts if
f(x) but not g(x) is in the oracle.

For any language (Σ, L), define its indicator function as the function χL : Σ∗ →

{0, 1} such that χL(x) = 1 iff x ∈ L.

Definition 12 Let Σ and Γ be alphabets.
(a) A query generator is a transformation g : Σ∗ → (Γ∪{#})∗, where # is a symbol
not in Γ. If g(x) = y1#y2# · · ·#yk, we view the yi’s as queries to an oracle.
(b) A query evaluator is a language e ⊆ Σ∗#{0, 1}∗ (i.e., each word in e has the
form w#x where w ∈ Σ∗ and x ∈ {0, 1}∗).
(c) A truth-table is a pair (g, e) where g and e have the forms (a) and (b) respectively.
(d) Say (Σ, L) is truth-table reducible to (Γ, L

′) via (g, e), written

L ≤tt L
′ via (g, e),

if for all x in Σ∗ where g(x) = y1#y2# · · ·#yk, we have

x ∈ L ⇐⇒ x#χL(y1)χL(y2) · · ·χL(yk) ∈ e.

174 CHAPTER 4. REDUCIBILITIES

Definition 13 A (deterministic) truth-table machine is a pair (G, E) where G is
a deterministic transducer computing g and E is a deterministic acceptor for some
language e, for some truth table (g, e). We say (g, e) is polynomial-time if it is
computed by some truth-table machine (G, E) where the generator G and the
evaluator E both compute in polynomial-time. In general, to say that a truth-table
machine operates within some complexity bounds means that both the generator
and evaluator have the same complexity bounds.

We defer the definition of nondeterministic truth-table machines to section 9. Let
‘tt’ abbreviate ‘truth-table’, as in ‘tt-machine’ or ‘tt-reducibility’. We now collect
the various types of reducibilities obtained by restrictions on the query generator g

and evaluator e. Suppose (Σ, L) ≤tt (Γ, L
′) via (g, e).

(i) The truth-table (g, e) is positive if e satisfies the restriction that for all x ∈ Γ ∗

and bi, b
′
i
∈ {0, 1},

x#b1b2 · · · bk ∈ e and
k
∧

i=1

(bi ≤ b
′
i
) implies x#b

′
1b

′
2 · · · b

′
k
∈ e.

The corresponding truth-table reducibility is described as positive and denoted
≤ptt.

(ii) The truth-table is conjunctive if e satisfies the restriction that for all x ∈ Γ ∗

and bi ∈ {0, 1},

x#b1 · · · bk ∈ e ⇐⇒

k
∧

i=1

(bi = 1).

Similarly, disjunctive truth tables are defined by using disjuncts ‘
∨

’ instead
of the conjuncts ‘

∧

’ above. The corresponding truth-table reducibilities are
denoted ≤ctt and ≤dtt, respectively.

(iii) Let k be a positive integer. If g makes k queries on every input x then (g, e)
is called a k-truth-table. We then say L is k-truth-table reducible to L

′ via
(g, e) and the corresponding notation is L ≤k-tt L

′. Similarly, any of the above
restrictions on ≤P

tt
can be modified by the parameter k:

≤k−ptt,≤k−ctt,≤k−dtt .

(iv) A truth-table (g, e) is bounded if it is a k-truth-table for some k. We then say L

is bounded truth-table reducible to L
′ via (g, e), denoted L ≤∗-tt L

′. Similarly,
the other restrictions on ≤P

tt
can be modified: ≤∗−ptt,≤∗−ctt,≤∗−dtt.

4.5. TRUTH-TABLE REDUCIBILITIES 175

Clearly a many-one reducibility is simultaneously a positive, conjunctive and a
disjunctive truth-table as well as a 1-truth-table.

Notations. If (g, e) is computed by a (deterministic) polynomial-time tt-machine
and L is truth-table reducible to L

′ via (g, e) then we write L ≤P

tt
L
′; more generally,

if (g, e) satisfies any of the restrictions in (i-iv) above, we append a superscript P

to the corresponding reducibility notation. Thus ≤P

k-tt denotes polynomial-time
k-truth-table reducibility. Similarly, if we restrict the space usage of the query
generator and query evaluator to logarithmic space, then we append the superscript
L. Thus we have ≤L

tt
,≤L

ptt
, etc.

Lemma 14 The following truth-table reducibilities are transitive:

≤
P

tt
,≤

P

∗-tt,≤
P

ptt
,≤

P

ctt
,≤

P

dtt
,≤

P

1-tt .

Among the special tt-reducibilities we have introduced, the list in this lemma
omits just the k-tt-reducibilities where k > 1. We prove the lemma for the case of
≤P

1-tt, leaving the rest as exercise.
Proof. Let A,B,C be languages. Suppose A ≤P

1-tt B via (g, e) and B ≤P

1-tt C via
(g′, e′). We will show that A ≤P

1-tt C. Now, x ∈ A iff x#χB(g(x)) ∈ e and y ∈ B iff
y#χC(g′(y)) ∈ e

′. Substituting g(x) for y, we see that x ∈ A holds iff either

x#1 ∈ e and g(x)#χC(g′(g(x))) ∈ e
′
.

or
x#0 ∈ e and g(x)#χC(g′(g(x))) 6∈ e

′
.

holds. That is, iff one of the following holds:

(a) x#1 ∈ e and g(x)#1 ∈ e
′ and g

′(g(x)) ∈ C.

(b) x#1 ∈ e and g(x)#0 ∈ e
′ and g

′(g(x)) 6∈ C.

(c) x#0 ∈ e and g(x)#1 ∈ e
′ and g

′(g(x)) 6∈ C.

(d) x#0 ∈ e and g(x)#0 ∈ e
′ and g

′(g(x)) ∈ C.

Now define the truth-table (g ′′
, e

′′) where g
′′(x) = g

′(g(x)) and e
′′ is given by the

following two rules. A word x#1 is in e
′′ iff either

x#1 ∈ e and g(x)#1 ∈ e
′

or
x#0 ∈ e and g(x)#0 ∈ e

′

holds. Again, a word x#0 is in e
′′ iff either

x#1 ∈ e and g(x)#0 ∈ e
′

176 CHAPTER 4. REDUCIBILITIES

or
x#0 ∈ e and g(x)#1 ∈ e

′

holds.
The reader can verify that A ≤1-tt C via (g′′, e′′) and that (g′′, e′′) can be computed
in polynomial time. Q.E.D.

It is also easy to show

Lemma 15 The following lists of reducibilities (modified by any given complex-

ity bound β such as polynomial-time or log-space) are in order of non-decreasing

strength:

(i) ≤β

m
,≤

β

k-tt,≤
β

(k+1)-tt,≤
β

∗-tt,≤
β

tt
,≤

β

T

(ii) ≤β

m
,≤

β

ctt
,≤

β

ptt
,≤

β

tt

In (ii), we could have substituted ≤β

dtt
for ≤β

ctt
.

Alternative definition of tt-reducibilities. Often the truth-table (g, e) embod-
ies ‘Boolean functions’ in the sense that on any input x where g(x) = y1# · · ·#yk

then there is a Boolean function fx on k variables such that x#b1b2 · · · bk ∈ e if
and only if fx(b1, . . . , bk) = 1. This leads to the following alternative definition of
tt-reducibilities. Fix a representation of Boolean functions as binary strings, and
let fw denote the Boolean function fw represented by the binary string w. With
query generators g defined as before, we now define an evaluator e as a transforma-
tion e : Σ∗ → {0, 1}∗; intuitively, e(x) represents the Boolean function f e(x) used to
determine the final answer. We say (Σ, A) is tt-reducible to (Γ, B) via (g, e) if for
all x ∈ Σ∗ the following is satisfied: x ∈ A iff

fe(x)(χB(y1), χB(y2), . . . , χB(yk)) = 1

where g(x) = y1# · · ·#yk for some k ≥ 1. The particular method of representing
Boolean functions could affect the strength of the reducibility. We consider three
increasingly more succinct representations:

(a) A k-variable function can be represented by a Boolean 2k-vector. In some
literature, such a vector is also called a ‘truth-table’ which in turn lends its
name to the entire family of reducibilities in this section.

(b) By Boolean formulas over the basis {∧,∨,¬}.

(c) By Boolean circuits over the same basis.

In the Exercises, we see that with respect to polynomial-time bounds, these three
alternative definitions of tt-reducibilities do not lead to a different notion of tt-
reducibility. We also give another definition of tt-reducibility in the Exercises that
is again equivalent to our standard choice. These results lend credibility to the claim
that our standard choice is robust. Unfortunately, with respect to log-space bounds,
the situation seems to be different.

4.6. STRENGTH OF REDUCIBILITIES 177

4.6 Strength of Reducibilities

Among the reducibilities, there are pairs (≤1,≤2) where it is obvious that ≤1 is as
strong as ≤2. For instance, (≤1,≤2) = (≤P

T
,≤P

m
). A natural question is whether

≤1 is, in fact, stronger than ≤2. In this section, we illustrate some of these results.
The notion of partial sets will be useful in our proofs:

Definition 14 A partial set (relative to a set X) is a partial function f from X to

{0, 1}. The universe of f is X, and its domain, dom(f), consists of elements x ∈ X

such that f is defined at x. If f
′ is also a partial set with universe X, we say f

′

and f agrees if they are identical on dom(f) ∩ dom(f ′). Call f
′ a partial subset of

f (or, f extends f
′) if dom(f ′) ⊆ dom(f) and f

′ and f agrees.

A basic diagonalization outline. The proofs in this section are based on the idea
of ‘diagonalization’. The reader will better understand these proofs if she keeps in
mind the following outline: Suppose the result in question follows from the existence
of a language L that satisfies a countably infinite list of conditions

C0, C1, C2, . . .

These conditions are finite in the sense that each condition only refers to a finite
subset of L and they are ‘existential’ in that if L is a partial set that satisfies any
condition then any extension of L also satisfies that condition. The proof involves
constructing the language in stages where in the ith stage we have built a partial
set Li with finite domain such that each of the conditions C0, C1, . . . , Ci is satisfied
by Li. Typically, dom(Li) ⊆ dom(Li+1).

There are many variations to this basic outline. Perhaps there are more than
one infinite list of conditions to satisfy. Perhaps we cannot guarantee satisfying a
given condition C during any stage; so we may have to try to satisfy the condition C

for infinitely many stages, and prove that our attempts will succeed in some stage.
Instead using the conditions Ci to define the ith stage, we can use an “inverted
diagonalization” by considering all strings in the domain: fix some total ordering of
the set of input words. Usually, we use7 the lexicographic ordering:

x0, x1, x2, x3, . . . (4.5)

That is, we list the strings in order of non-decreasing lengths, and among those of
the same length we use the usual dictionary order. We decide whether x j ought to
belong to the language L in stage j. This is done by attempting to use x j to satisfy
some condition Ci in our infinite list. We may need to return a particular C i in
many stages (but hopefully Ci will be satisfied in some finite state). The advantage

7Despite the terminology, this is NOT the same as dictionary order which does not have strings
listed in order of non-decreasing length.

178 CHAPTER 4. REDUCIBILITIES

of this approach is that our description of the diagonalization process amounts to
specifying an acceptor for the constructed language L.

We proceed with the first result that shows that 1-tt-reducibility is stronger
than Karp reducibility. Note that for any language L, we have L is 1-tt-reducible
to co-L. Therefore our desired result is an immediate consequence of the following
from Ladner, Lynch and Selman [9]:

Theorem 16 There exists a non-trivial language L in DEXPT such that L is not

Karp-reducible to co-L.

Before proving this theorem, it is instructive to give a simple proof of a similar
result that does not require L to be in DEXPT . The simpler proof will follow the
basic diagonalization outline above: we construct L ⊆ {0, 1} ∗ in stages. Let

T = {T0, T1, T2, . . .}

be an efficient universal transducer for the polynomial-time transducers used in
Karp reducibility. The desired result follows if L satisfies the following infinite list
of conditions:

Ci : L is not many-one reducible to co-L via Ti

for i = 0, 1, 2, Note that condition Ci is equivalent to the existence of a word x

satisfying

x ∈ L ⇐⇒ Ti(x) ∈ L.

Such an x is said to “cancel” Ti and x is also called a “witness” for condition C i.
Let x0, x1, . . ., be the lexicographic ordering of all binary strings. At stage i, assume
inductively that we have a partial set L i that has a finite domain; Li is a partial
subset of the language L that we are trying to construct. Furthermore, for each
h < i, the condition Ch is satisfied. We now wish to define Li+1 whose domain
contains the domain of Li. Suppose xj is the next word (in the lexicographical
ordering) not in the domain of Li. Let y = Ti(xj) and we consider two possibilities:
if y is already decided, then put xj into the domain of Li+1 in such a way that xj

cancels Ti; if y is not yet decided, let us put both xi and y into L (again cancelling
Ti). It is not hard to show that condition Ci is satisfied in stage i: one only need to
see that xj exists so that the plan to cancel Tj can be carried out. One should also
verify that our arguments is valid even if xj = y.

This simple proof tells us little about the complexity of L (although L is evidently
recursive). We need a technique due to Machtey and others to “slow down the
diagonalization”. To do this, we use the slow growing function log ∗

n and its inverse
Exp(n) defined in the appendix.

Proof of theorem 16. We will use the “inverted diagonalization outline” in which
the ith stage examines the ith word in a lexicographic listing of all words. We

4.6. STRENGTH OF REDUCIBILITIES 179

define a Turing acceptor M that accepts a language L over the alphabet Σ = {0, 1}
in DEXPT where L is not Karp-reducible to co-L. On input x ∈ {0, 1}∗ where
|x| = n:

(a) If x is the empty word ε, accept.

(b) If x contains a ‘1’ or if n 6= Exp(m) for some m then reject. Note that this
step takes linear time since we can check if n = Exp(log ∗

n) in linear time, as
shown in the appendix.

(c) Hence assume x = 0n (a string of zeroes) such that n = Exp(log∗
n)). Let

log∗ n = m ' 〈i, j〉 for some m, i, j. The appendix shows how m, i, j can
be extracted in polynomial time (actually, we will not need j). Simulate the
universal transducer T on input 〈i, x〉 for 2n steps of T . If Ti does not halt
within 2n steps, reject.

(d) Hence assume that Ti produces the output y = Ti(x) within 2n steps. If
|y| > Exp(m−1) then reject. If |y| ≤ Exp(m−1) then accept iff y ∈ L (which
we determine by a recursive call to M on y).

Thus step (d) uses x to explicitly8 cancel the condition Ci; the first three steps
(a-c) ensure that x is used in step (d) then x has the correct form: x = 0n where
n = Exp(log∗ n). The construction of M is a ‘slow down’ of the diagonalization
process since condition Ci is (explicitly) cancelled at the Exp(i)th stage or later.

Correctness: We will show that L is non-trivial and is not Karp-reducible to
co-L. To see non-triviality, L contains the empty word ε and does not have words
containing 1’s. Aiming for a contradiction, assume that L is Karp-reducible to co-L
via some Ti. We may assume that Ti takes |x|c time, for some c = c(i), on input
〈i, x〉. Choose j large enough so that if m ' 〈i, j〉 and n = Exp(m) then

2n
> n

c
.

Then it is easy to see that on input x = 0n, the acceptor M will proceed to step (d)
after obtaining an output y = Ti(x). Hence, |y| ≤ n

c
< 2n = 2Exp(m) = Exp(m+1).

There are two cases:

|y| ≤ Exp(m− 1)

and

Exp(m− 1) < |y| < Exp(m + 1). (4.6)

In the first case, by the definition of M, x is in L iff y is in L. In the second case, x

is rejected so we must show that y is also rejected. In fact, (4.6) implies that unless
y has the form 0Exp(m), y would be rejected. But if y = 0Exp(m) then x = y, again
showing that y is rejected. Thus the algorithm is correct.

8There may be “accidental” cancellation of some conditions.

180 CHAPTER 4. REDUCIBILITIES

Timing Analysis: We show that M runs in time O(2n) time. Steps (a-c) and
the non-recursive part of step (d) clearly takes O(2n) steps. The recursive call to
M has argument y with length ≤ Exp(m− 1) = log2 n. If t(n) is the time required
by M then we have t(n) ≤ t(log n) + O(2n). The solution to this recurrence gives
t(n) = O(2n). Q.E.D.

It should be clear that this proof works with any superpolynomial time bound
f in place of 2n, provided that both f and its ‘inverse’ are both easy to compute.

The fact that there is a language in DEXPT that distinguishes Karp- from
tt-reducibility prompts the question: does there exist a language in NP that distin-
guishes them? Of course, if we can prove an affirmative answer then it is easy to
see that NP 6= P . But even assuming that NP 6= P , this is an open question.

Suppose ≤1 is as strong as ≤2. To show that the former is in fact stronger,
we have to show the existence of languages A and B such that A ≤1 B but not
A ≤2 B. This is usually quite simple to show, especially if we can carry out the basic
diagonalization outline above. But often we would like to impose side restrictions

on A,B. For instance, we may insist (as in the last theorem) that B does not have
very high complexity.

Example 6 One reason for imposing side restrictions is that they yield more infor-
mation about the relationships between two reducibilities. Ladner, Lynch and Sel-
man define the relation ‘stratifies’ where ≤1 is said to stratify ≤2 if there exists L,L

′

such that L and L
′ are of the same ≤2-degree but L and L

′ are ≤1-incomparable.
Clearly ≤1 stratifies ≤2 implies that ≤2 is stronger than ≤1, but intuitively, it is
more than ‘just’ stronger: this is because there is a pair of languages that are similar
from the viewpoint of ≤2, while being very different from the viewpoint of ≤1.

To illustrate another kind of side restriction, we make the following definition:
let A be a language and let ≤1,≤2 be reducibilities where ≤1 is as strong as ≤2.
Then ≤1 and ≤2 are said to be distinguishable over A if there exists a language B

such that

A ≤1 B but not A ≤2 B.

The next result is from I. Simon [18]:

Theorem 17 For all A 6∈ P, ≤P

(k+1)-tt and ≤P

k-tt are distinguishable over A.

Before embarking on the proof, we need the notion of characteristic families of
truth-tables, and efficient universal truth-tables. By now, this can be done routinely
as follows: Let Ω be any family of truth-tables, and χ = (µ, F − ρ) any complexity
characteristic. Then (Ω, χ) is a characteristic family provided that each truth-table
(g, e) ∈ Ω is computed by some tt-machine (G, E) where G and E both have
complexity characteristic χ. A universal tt-machine is a pair (T,U) where T = {T i}

and U = {Ui} are a universal transducer and a universal acceptor, respectively. For
any alphabet Σ, # 6∈ Σ, we again have the restriction Ω|Σ of Ω to Σ, consisting of

4.6. STRENGTH OF REDUCIBILITIES 181

(g, e) ∈ Ω where g : Σ→ Σ ∪ {#} and e ⊆ Σ ∪ {#, 0, 1}. The characteristic family
(Ω, χ) is efficiently presentable if for each Σ, there exists a universal (T,U) such that
(i) for each i ≥ 0, (Ti, Ui) computes a truth-table in Ω|Σ, and (ii) each truth-table
in Ω|Σ is computed by (Ti, Ui) for infinitely many i ≥ 0 where each Ti and Ui has
complexity characteristic in χ. It is an easy exercise to show that the family Ω P

tt

(resp. ΩP

k−tt
, for each k) of truth-tables computed by tt-machines with complexity

characteristic
(deterministic, n

O(1)-time)

is efficiently presentable.
Proof of theorem 17. Let A be any language not in P; without loss of generality,

assume A is over the alphabet {0, 1}. The proof follows the basic diagonalization
outline above. Let (T,U) be an efficient universal truth-table with deterministic
polynomial-time characteristic. We will construct a language B ⊆ {0, 1} ∗ such that

x ∈ A ⇐⇒ |B ∩ Sk(x)| is odd (4.7)

where
Sk(x) := {x0i1k−i : i = 0, 1, . . . , k}

Clearly A ≤P

(k+1)-tt B; to show the theorem, we will show that A ≤P

k-tt B fails. We

construct B in stages. Let Bs (s ≥ 0) be the partial subset constructed at the end of
the (s− 1)st stage. In stage s, we extend Bs to Bs+1 in such a way that we ‘cancel’
the truth-table machine (Ts, Us), i.e., we include a word x in the domain of Bs+1

such that x ∈ A if and only if

x#χB(y1) · · ·χB(yk) 6∈ Us (4.8)

where Ts(x) = y1# · · ·#yk (clearly we may assume that Ts always makes exactly k

queries). We will maintain the inductive hypothesis that the domain of B s consists
of all words of length ≤ h(s) for some h(s) ≥ 0, and such that Bs satisfies (4.7) in
the sense that for all x of length ≤ h(s) − k, we have x ∈ A iff Bs ∩ |Sk(x)| is odd.
We describe the construction of Bs+1 in four steps:

(a) Choose any x0 of length h(s)+1; note that x0 is not in the domain of Bs. Let
Ts(x0) = y1# · · ·#yk. We first ensure that each yi is in the domain of Bs+1: if
yi is not in the domain of Bs then we put it in the domain of Bs+1, arbitrarily
(say yi 6∈ Bs+1).

(b) We next put x0 in the domain of Bs+1, making x0 ∈ Bs+1 or x0 6∈ Bs+1 so as
to satisfy (4.8). The choices in (a) completely determine this step.

(c) Next include into the domain of Bs+1 all the remaining words in Sk(x0) so as
to ensure (4.7). Note that this is always achievable because at least one word
in Sk(x0) has not yet been put into the domain of Bs+1 by step (a) (note that
x0 6∈ Sk(x0)).

182 CHAPTER 4. REDUCIBILITIES

(d) To clean-up, set h(s + 1) = max{|x0| + k, |y1|, . . . , |yk|}. Let w1, w2, . . . , wr

order all the words not yet in the domain of Bs+1 of length at most h(s+1). We
put wi into the domain of Bs+1 to satisfy (4.7). To see that this is achievable,
we use two simple observations: first, for all words w 6= w

′, the intersection
Sk(w)∩Sk(w

′) is empty. Second, setting Y = {x0, y1, . . . , yk}∪Sk(x0), we see
that for each word w 6= x0 of length ≤ h(s+1), |Sk(w)∩Y | ≤ k. Note that Y

includes all words of length > h(s) that have been put in the domain of B s+1

by steps (a-c).

This completes the proof. Q.E.D.

4.7 The Polynomial Analogue of Post’s Problem

Suppose that P 6= NP . Then we may ask if there exists a language in NP −P that
is not NP -complete under Cook reducibility. This question is analogous to a famous
question posed by Post in 1944: Does there exist a recursively enumerable language
that is not recursive and not RE -complete under arbitrary9 Turing reducibility? An
affirmative answer was independently found in 1956 by Friedberg [5] and Muchnik
[14]. In this section we show Ladner’s result [10] that the polynomial analogue of
Post’s problem also has an affirmative solution (provided, of course, that P 6= NP).
We remark that there are very few natural problems that are conjectured to be
in NP − P and not NP -complete. Essentially the only well-known candidates are
primes10 and graph isomorphism.

Theorem 18 (Ladner) If P 6= NP then there exists a language in NP − P that is

not NP-complete under Cook reducibility.

This theorem is a consequence of the next result.

Theorem 19 Let K a class of languages over the alphabet Σ = {0, 1} and P denote

as usual the class DTIME(nO(1)). Suppose K has a total universal acceptor and is

closed under finite variation. Let (Σ, L) be a recursive language not in K∪P. Then

there exists a language (Σ, L
′) such that

(i) L
′ is not in K,

(ii) L
′ is Karp-reducible to L,

(iii) L is not Cook-reducible to L
′.

9That is, Turing reducibility with no resource bounds on the query machines.
10A prime candidate indeed. Linear Programming used to be another such candidate until

Khacian showed it to be in P . Lesser-known candidates include Minimum Weight Triangulation
and Discrete Logarithm.

4.7. THE POLYNOMIAL ANALOGUE OF POST’S PROBLEM 183

To see that theorem 19 implies Ladner’s theorem, let K = P |Σ and L ∈ (NP |Σ)\
P . Since K has a total universal acceptor, it follows from theorem 19 that there
exists an L

′ such that L
′ is not in P (by (i)), L

′ is in NP (by (ii)) and L
′ is not

NP -complete under Cook reducibility (by (iii)).
Proof of theorem 19. Let

U = {U0, U1, U2, . . .}.

and

Q = {Q
(·)
0 , Q

(·)
1 , Q

(·)
2 , . . .}.

denote (respectively) a universal acceptor for K and a universal query machine for
the family of polynomial-time oracle operators whose input and output alphabet is
Σ. (Note: we do not require U or Q to be efficient.)

The requirement that L
′ is not in K (respectively, L is not Cook-reducible to

L
′) is equivalent to the set of even (resp. odd) numbered conditions in the following

infinite list of conditions C i (i = 0, 1, . . .) where

C2j : L
′
6= Uj

C2j+1 : L 6= Q
(L′)
j

Let

x0, x1, x2, . . . (4.9)

be the usual lexicographic enumeration of words in Σ∗. We shall construct a trans-
ducer T that runs in linear time such that T: Σ∗ → {0}∗. Then define

L
′ := {x : x ∈ L and |T(x)| is even}. (4.10)

This clearly shows that L
′ is Karp-reducible to L.

To prove the theorem it remains to describe T such that the resulting L
′ satisfies

the list of conditions above. We first explain in an intuitive way the operation of T
on input x. We say that a word x is in stage i if |T(x)| = i. T has the property that
|T (xi+1)| is equal to either |T (xi)| or |T (xi)| + 1. Hence the words in the ordering
(4.9) have non-decreasing stage numbers. We maintain the following invariant:

(*) If x is in stage i, then condition Ci is not yet satisfied but each
condition Cj (j < i) is witnessed by some word yj that precedes x in the
lexicographical order (4.9).

The first thing that T does on input x is to try to determine the stage of x. It can
only do this approximately in the sense that it can determine an integer i such that
x is either in stage i or stage i + 1. This uncertainty turns out not to be crucial
because T will try to satisfy condition C i and if it succeeds, then |T(x)| is equal to
i + 1 otherwise i. Given i, consider how T can try to satisfy C i. There are 2 cases.

184 CHAPTER 4. REDUCIBILITIES

(i) Suppose that i = 2j. Then T systematically attempts to find a word w such
that w ∈ L

′ iff w 6∈ Uj . Such a w is a ‘witness’ for the condition C2j . (Note the
self-reference here: we are constructing L

′ and we want to check if w belongs to
L
′.) If T is successful in finding a witness, T outputs the word 0 i+1; otherwise

it outputs the word 0i. The output 0i+1 serves a double purpose: to inform
subsequent computations that condition Ci is satisfied and to ensure that x is
not in the set L

′ (recall the definition (4.10) of L
′). Likewise for an output of

0i.

(ii) Suppose i = 2j + 1. T systematically attempts to find a witness for condition

C2j+1, i.e., a word w such that w ∈ L iff w 6∈ Q
(L′)
j

. (Again note the self-
reference.) If successful in finding the witness w, x is put in stage i +1 by the
output T (x) = 0i+1; else it stays in stage i with the output T (x) = 0 i.

Now we fill in the details. Let |x| = n. First, to determine the approximate
stage of x as follows. T allocates a total of n steps to compute (by simulating itself)
the values T(01),T(02), . . . ,T(0m) in succession, where m is such that the allocated
n steps are used up while in the middle of computing T(0m+1). Then x is in the
approximate stage i where i = |T(0m)|. We next attempt to find a witness for the
ith condition Ci by testing successive words in the ordering (4.9) until a total of n

steps are used up. If a witness is found within n steps then output T (x) = 0 i+1;
otherwise output T (x) = 0i. Consider how we test for the witness property:

(I) Suppose i = 2j. To test whether any word w is a witness, T checks (a) whether
w ∈ Uj (by simulating the universal acceptor U) and (b) whether w ∈ L

′ (by
checking if |T(w)| is even and if w ∈ L – the latter is possible since L is
recursive). Note that w is a witness if the outcomes for (a) and (b) differ.

(II) Suppose i = 2j + 1. To test whether w is a witness, we check (c) whether

w ∈ L as before and (d) whether w is accepted by Q
(·)
j

using oracle L
′. To

do (d), we simulate the universal query machine Q using input 〈j, w〉, and
whenever a query “Is z in L

′?” is made, we can check this as in (b) above.

Correctness: By construction T runs in linear time. It is also easy to see that
our invariant (*) holds. In particular, if T goes through stage i for all i then each
condition would be satisfied and we are done. Therefore we only need to ensure that
T does not remain in some stage i forever. For the sake of contradiction, we assume
that for some i and some n0, we have |T(x)| = i for all |x| ≥ n0, In other words,
suppose T never leaves stage i.

(I) Suppose i = 2j. Since we never leave stage 2j, by the definition of L
′, L

′ is
equal to a finite variant of L. Now L 6∈ K and K is closed under finite variation
imply that L (and hence L

′) must differ from Uj for infinitely many inputs.
Choose the first (with respect to the lexicographical ordering (4.9)) witness

4.8. THE STRUCTURE OF POLYNOMIAL DEGREES 185

w0 to the fact that Uj 6= L
′. Now choose n large enough: precisely, n > n0

and n exceeds the number of steps needed by T to compute T(01), . . . ,T(0m),
where |T(0m)| = 2j, and exceeds the number of steps to test if x is a witness
to condition C2j for all x preceding w0 in the ordering (4.9). Observe that
the smallest such number n is well-defined. Then clearly |T(0n)| = 2j + 1, a
contradiction.

(II) Suppose i = 2j + 1. Then by definition of L
′, L

′ is a finite set. Now observe

that L must differ from Q
(L′)
j

on infinitely many words, for otherwise L ∈ P

which would be contrary to our assumption. Let w0 to be the first (with

respect to the ordering (4.9)) witness word to the fact that L 6= Q
(L′)
j

. Again
choose n > n0 such that it exceeds the time to determine that 0n is in stage
2j + 1 and exceeds the time to test if x is a witness to the condition C 2j+1 for
all x preceding w0. Then it is easy to see that |T(0n)| = i + 1. Q.E.D.

An interesting observation from the proof is that L
′ is the intersection of L with

the polynomial time computable set G = {x : |T(x)| is even}.

Corollary 20 If NP 6= P then for every NP-complete language L (under ≤P

T
) there

exists a language G ∈ P such that G ∩ L is in NP − P but is not NP-complete.

There is another way to view Ladner’s proof: G is nothing but a ‘gappy’ set
determined by some recursive function r(n) such that x ∈ G iff r(2i) ≤ |x| <

r(2i + 1). Here r(n) is the number of steps needed to find witnesses for all the
conditions up to Cn. The size of such gaps is studied in Lipton, Landweber and
Robertson [11] and Chew and Machtey [4]. Schöning [17], Schmidt [16] and Regan
[15] have greatly simplified and generalized these techniques. An interesting result
[6] is the following: Assuming that P 6= NP , there is a language in NP − P that is
not P-hard under one-way log-space many-one reducibility ≤1L

m
.

4.8 The Structure of Polynomial Degrees

The reducibilities ≤ in this section are assumed to be transitive, so that the term
≤-degrees is meaningful. For any two languages (Σ0, L0) and (Σ1, L1), define their
join L0 ⊕ L1 to be the language

{0x : x ∈ L0} ∪ {1x : x ∈ L1}.

over the alphabet Σ0 ∪ Σ1 ∪ {0, 1}. Note that L1 and L2 are each ≤P

m
-reducible to

L0 ⊕L1. Furthermore, for any L, if Li ≤
P

m
L holds for i = 0, 1 then it is easy to see

that L0 ⊕ L1 ≤
P

m
L. In other words, the ≤P

m
-degree of L0 ⊕ L1 is the least upper

bound of the ≤P

m
-degrees of L0 and of L1. The same holds for Cook-reducibility. In

the terminology of lattice theory11 we have just shown:

11A partial order (X,≤) is an upper semi-lattice if for all x, y ∈ X, there is a least upper bound
denoted x∨y (the least upper bound is unique if it exists).

186 CHAPTER 4. REDUCIBILITIES

Theorem 21 The ≤P

m
-degrees form an upper semi-lattice. The same holds for ≤P

T
-

degrees.

Definition 15 Let K be a class of languages, and ≤ a transitive reducibility. We
say that the ≤-degrees of K are dense if the following holds. If L0 < L2 (L0, L2 ∈ K)
then there exists L1 ∈ K such that

L0 < L1 < L2.

We now address questions about the density of the above semi-lattices. The
theorem of Ladner shows that if NP 6= P then the Karp-degrees in NP−P is dense.
Similarly if P 6= NP then the Cook-degrees between P and NP are dense. More
generally, we have:

Theorem 22 If L <
P

T
L
′ and L and L

′ are recursive then there exist a recursive

L
′′ such that L <

P

T
L
′′

<
P

T
L
′.

There have been considerable developments in such questions (e.g., see [2]).

4.9 Nondeterministic reducibilities

In this section, we consider reducibilities defined by nondeterministic machines (ac-
ceptors, transducers, query machines, tt-machines). Of these, nondeterministic tt-
machines have not been defined. But first, we extend the notion of many-one re-
ducibility to multivalued transformations.

Definition 16 Let (Σ, A), (Γ, B) be languages and f be the multivalued transfor-

mation from Σ to Γ computed by some transducer T. We say that A is many-one
(nondeterministically) reducible to B via f (or via T) if for all x ∈ Σ ∗,

x ∈ A ⇐⇒ f(x) ∩B 6= ∅.

A nondeterministic tt-machine (G, E) consists of a nondeterministic transducer
G and a nondeterministic evaluator E. It turns out that, at least for polynomial-time
bounds, we can restrict E to be deterministic (see Exercises). The corresponding
pair (g, e) computed by a nondeterministic (G, E) is called a multivalued truth-table.

We say A is nondeterministically tt-reducible to B via (g, e) (or via (G, E)) if for
all x ∈ Σ∗, there exists y1# · · ·#yk ∈ g(x) such that

x ∈ A ⇐⇒ x#χB(y1) · · ·χB(yk) ∈ e.

4.9. NONDETERMINISTIC REDUCIBILITIES 187

Recall that χB(x) is the indicator function for the set B. For nondeterministic
polynomial-time bounded reducibilities, we use the superscript ‘NP ’ in the usual
way. For instance, ≤NP

T
, ≤NP

tt
and ≤NP

m
are the nondeterministic counterparts of

≤P

T
, ≤P

tt
and ≤P

m
. These new reducibilities have rather different properties from

their deterministic counterparts. The next result is by Ladner, Lynch and Selman.

Theorem 23 The following pairs of reducibilities form pairs of identical binary

relations over the non-trivial languages:

(i) ≤NP
T

and ≤NP
tt

(ii) ≤NP
ptt

and ≤NP
ctt

(iii) ≤NP
dtt

and ≤NP

m
.

Proof. In each case, the first member of a pair is as strong as the second. Hence it
is sufficient to show that the second is as strong as the first.

(i) Suppose A ≤NP

T
B via a nondeterministic polynomial-time oracle machine M

and we want to show A ≤NP
tt

B. Choose any x0 6∈ B and x1 ∈ B (this is
possible since we assume non-trivial languages). We will construct a nonde-

terministic tt-machine (G, E) such that A ≤NP
tt

B via (G, E). On any input
x, the query generator G simulates M on input x. G also maintains on a
special work-tape T a list of values, initially empty. If the ith query (i ≥ 0)
of M to the oracle is the word yi then G guesses the oracle’s answer. If the
guessed answer is yes, then G records in the tape T the pair (y i, x1); otherwise
it records in T the pair (yi, x0). If M accepts, then G outputs the contents of
tape T :

y1#z1#y2#z2# · · ·#yk#zk

where zi ∈ {x0, x1}. If M rejects, G outputs x0#x1. We now have to describe
the acceptor E. On input x#b1c1 · · · bkck, (bi, ci ∈ {0, 1}), E accepts iff bi = ci

for all i = 1, . . . , k. It is easy to see that A ≤tt B via (G, E).

(ii) Let A ≤NP
ptt

B via (G, E). We will construct a nondeterministic tt-machine
(G′, E′). G′, on input x, simulates G on x. If G outputs y1# · · ·#yk, then
G′ guesses a subset I ⊆ {1, 2, . . . , k} and checks if x#b1 · · · bk is accepted by
E, where bi = 1 iff i ∈ I. If it is accepted then G′ outputs yi1#yi2# · · ·#yim

where I = {i1, i2, . . . , im}; otherwise G′ outputs x0 where x0 is some fixed word
not in B. The evaluator E′ is essentially determined since we use conjunctive
reducibility. The reader can easily verify that A ≤NP

ctt
B via (G′, E′).

(iii) This follows the proof for (ii) closely. Q.E.D.

We now show that some, though not all, of the nondeterministic reducibilities
are intransitive:

188 CHAPTER 4. REDUCIBILITIES

Theorem 24 (i) ≤NP

m
and ≤NP

ctt
are transitive.

(ii) ≤NP
tt

, ≤NP
∗-tt and ≤NP

k-tt (k ≥ 1) are intransitive.

Proof. The proof of (i) is straightforward, and is omitted. To show (ii), it is sufficient
to construct non-trivial languages A,B,C over {0, 1} satisfying

(a) A ≤NP
1-tt B ≤NP

1-tt C

(b) A 6≤NP
tt

C.

Note that (a) follows from the following two conditions:

x ∈ A ⇐⇒ (∃y)[|y| = |x| and y 6∈ B] (4.11)

x ∈ B ⇐⇒ (∃y)[|y| = |x| and y ∈ C] (4.12)

Let Q = {Qi} be an efficient universal oracle machine for the characteristic family of
nondeterministic polynomial-time oracle machines (it is easy to see that Q exists).
By definition each Qi runs in polynomial time; we may further assume that each Q i

uses less than 2n steps if n ≥ i. Since ≤NP

T
and ≤NP

tt
are identical relations, (b)

corresponds to an infinite list of conditions where the ith condition states:

A is not Turing-reducible to C via Q i.

We proceed in stages where we satisfy the sth condition in stage s, s ≥ 0. Let
that the partial sets As−1, Bs−1, Cs−1 have been defined at the end of the s − 1st
stage. Also, inductively assume that each of the sets As−1, Bs−1, Cs−1 has a common
domain. Moreover, for each n, all words of length n are in the common domain or
all or not.

To initialize, each of the sets A0, B0, C0 has domain consisting of just the empty
string ε where ε ∈ A0, ε 6∈ B0 ∪ C0. In stage s pick any word x of length n where
n is the smallest integer such that no word of length n is in the current common
domain. We will make x a witness to condition s by considering two cases:

Case (1): x is accepted by Qs using oracle Cs (where queries on words not in
the domain of Cs are given NO answers). Let Y be the set of words queried in some

arbitrary accepting computation path of Q
(Cs)
s on x. Then we extend the domains

of As, Bs and Cs by omitting all words of length |x| from As+1, including all words
of length |x| into Bs+1 and including exactly one string y 6∈ Y of length |x| into
Cs+1. The existence of y follows from the fact that |Y | < 2 |x| since we assume that
Qs runs in time < 2n for n ≥ s. Observe that condition s as well as (4.11) and
(4.12) are satisfied.

Case (2): x is not accepted by Q
(Cs)
s . Extend the respective domains by including

all words of length |x| into As+1 but omitting them all from Bs+1 and from Cs+1.
Again, condition s as well as properties (4.11) and (4.12) are satisfied.

4.9. NONDETERMINISTIC REDUCIBILITIES 189

We now clean-up for stage s. For each m such that some word of length m

is queried in some computation path of Q
(Cs)
s on input x, if such words are not

already in the common domain of As+1, Bs+1, Cs+1, we put every word w of length
m domains of As+1, Bs+1, Cs+1 so as to satisfy properties (4.11) and (4.12): more
precisely, we exclude w from Cs+1 and from Bs+1 but include w in As+1. Note that

omitting w from Cs+1 is consistent with the replies that Q
(Cs)
s received on input x.

This completes our description of stage s. Q.E.D.

Before concluding this section, we describe a weaker notion of nondeterministic
reducibility investigated by Long [12]:12

Definition 17 Let (Σ, A), (Γ, B) be languages and f a multivalued function from

Σ∗ to Γ∗. We say A is unequivocal many-one reducible to B via f if for all x ∈ Σ∗,

we have

x ∈ A ⇒ f(x) ⊆ B,

x 6∈ A ⇒ f(x) ∩B = ∅.

We write A ≤um B via f in this case.

Recall (chapter 2, section 9) that a nondeterministic acceptor is unequivocal if
for all inputs, there is at least one terminating computation path, and terminating
computation paths are all accepting or all rejecting. We say A is unequivocally

Turing-reducible to B via a query machine M if A is Turing-reducible to B via M
and M(B) is unequivocal. We then write A ≤uT B via M.

Remark: All reducibilities seen until now in this book could equally have been
made in terms of the ‘abstract’ concept of transformations, oracle operators or truth-
tables as well as in terms of their ‘concrete’ counterparts of transducers, oracle
machines or tt-machines. In contrast, this last reducibility apparently cannot be
defined without explicit reference to the concrete concept of machines. There will
be other examples.

In the usual way, we append superscripts P ,NP , etc to the various reducibilities
to indicate complexity bounds. Unequivocal many-one reducibility has proven to be
useful in classifying the complexity of number-theoretic problems. The polynomial-
time versions of these are called gamma-reducibilities (γ-reducibilities) by Adleman
and Manders who introduced them. Gamma reducibilities are valuable for studying
closure under complements because of the following result: there are NP-complete
languages under γ-reducibilities and furthermore if L is NP -complete under γ-
reducibilities then NP = co-NP iff L ∈ co-NP . In general, unequivocal reducibilities
seem to have nice properties, as seen in the following result by Long.

Lemma 25 Unequivocal many-one reducibilities and unequivocal Turing-reducibilities

with polynomial-time bounds are transitive reducibilities.

12Long qualifies these reducibilities as ‘strong’ because his notion of strength of reducibilities is
opposite to ours.

190 CHAPTER 4. REDUCIBILITIES

4.10 Conclusion

In this chapter we introduced the important reducibilities and their basic properties.
Many other forms of reducibility have been studied but here we are contented to
give a few examples.

(1) Lynch has investigated the use of multiple oracles (by endowing machines with
more than one oracle tape).

(2) Reductions based on logical constructs. For any complexity function f , Jones
defines the f-bounded rudimentary reducibility based on certain simple logical
predicates and quantifications bounded by f . For instance, the log n-bounded
rudimentary reducibility is weaker than ≤L

m
.

(3) An interesting concept due to J. Simon is similar to many-one reductions ex-
cept for an extra ‘parsimony’ constraint. Roughly speaking, parsimony insists
that the reducibility preserves the number of solutions. In illustration of this
idea, consider the reduction of Hamiltonian circuit problem to SAT. If we have
a transformation t that takes any graph G to a corresponding CNF formula F

such that the number of Hamiltonian circuits in G is equal to the number of
satisfying assignments to F , then t is parsimonious. To formalize this notion,
we must reformulate13 a ‘problem’ to be a binary relation over Σ∗ for some
alphabet Σ: this would allow us to count the number of solutions to a prob-
lem, and thus define parsimonious reductions among such problems. Once
this is done, it can be shown that all known transformations of NP-complete
problems can be modified to be parsimonious.

13Naturally this takes us outside the ‘standard’ complexity theory in the sense of departing from
some basic decisions made in chapter one.

4.10. CONCLUSION 191

Exercises

[4.1] Consider the following definition14 of NP-completeness: a language L is
NP -complete if (a) L is in NP and (b) if L is in P then NP = P . Clearly
SAT is NP-complete under this definition. This definition appears attractive
because it does not appeal to any notion of reducibility. What is unusual
about it? How does the polynomial analogue of Post’s problem fare under
this definition?

[4.2] (Aho-Hopcroft-Ullman) Consider the following informal notion of K-hardness:
say L is effectively K-hard if there is an effective (i.e. recursive) procedure
F such that for each L

′ ∈ K, F (L′) is a transformation such that L
′ is

many-one reducible to L via F (L′). Make this into a precise definition. Ver-
ify that SAT is effectively NP-hard under your definition. Most notions of
NP -hardness are based on a concept of reducibility. Is there a corresponding
reducibility here?

[4.3] (i) By modifying the proof in chapter 3, show that SAT is NP-complete
under many-one log-space reducibility.
(ii) In fact, show that all the NP-complete problems in chapter 3 are still
NP -complete under the one-way log-space ≤1L

m
reducibility of Hartmanis.

[4.4] Show that LBA = NSPACE(n) is precisely the class of context sensitive
languages.

[4.5] Prove that DLOG is not closed under ≤P

m
-reducibility if DLOG 6= P .

[4.6] For any K and any family of transformations Ω, show that L is K-complete
iff co-L is (co-K)-complete under ≤Ω

m
-reducibility. Conclude that if L is

P -complete under Karp reducibility then co-L is also P -complete.

[4.7] (Meyer) Show that NP = co-NP iff there exists an NP -complete language
L in co-NP .

[4.8] (Jones, Lien, Laaser) Show that t is a deterministic log-space transformations
iff the following language is in DLOG :

{x#i#b : x, i ∈ {0, 1}∗ and b is the ith symbol of t(x)}

for some transformation |t(x)| = |x|O(1).

[4.9] Show that the familiar functions x + y, x − y, max(x, y) and x · y are in
DLOG (the family of deterministic log-space transformations). It is not
known if bx/yc is in DLOG; but obtain a small space complexity s such
that division can be computed by a transducer using space s.

14we may call this the ‘student definition’ because it often appears in oral or written exams when
students are asked for a definition. Of course, teachers do it too. See discussion in [20].

192 CHAPTER 4. REDUCIBILITIES

[4.10] What is the flaw in the following proof that NP is closed under Cook re-
ducibility: let L ∈ NP and L

′ is accepted by some deterministic polynomial
time oracle machine M(·) with oracle L. To show that L

′ is in NP we define
a machine M′ which on input x simulates M(L) until M enters the QUERY
state. Then M′ temporarily suspends the simulation of M and begins simu-
lating a nondeterministic polynomial time acceptor N of L using the query
word. If N accepts then M′ continues the simulation of M from the YES
state, otherwise it continues from the NO state. Clearly M ′ computes in
nondeterministic polynomial time.

[4.11] Let |Σ| ≥ 2. Show that P = NP iff P |Σ = NP |Σ

[4.12] Say the language (Σ, L) is a coded image of (Γ, L
′) if there is a homomor-

phism h : Γ→ Σ∗ such that h(a) has the same length for all a in Γ and the
natural extension of h, h

∗ : Γ∗ → Σ∗, maps L
′ isomorphically into L. A class

K is coded in K
′ if every language in K has a coded image in K

′. K and K
′

are codably equivalent if they are each coded in the other. Show that P and
P |Σ are codably equivalent iff |Σ| ≥ 2. Show the same for the other standard
classes. Conclude that with respect to the P = NP , DLOG = NLOG and
P = NLOG questions, our theory might as well be restricted to languages
over {0, 1}.

[4.13] (infinitely often reducibility) Let t be a transformation t : Σ ∗ → Γ∗. A
language (Σ, L) is infinitely often (i.o.) many-one reducible to (Γ, L

′) if
for infinitely many x ∈ Σ∗, we have x ∈ L iff t(x) ∈ L

′. We extend this
definition to incorporate complexity in the obvious way: e.g. ‘i.o. Karp
reducibility’ refers to i.o. many-one reducibility in polynomial time, denoted
≤P

i.o.m
. Investigate the properties of such efficient reducibilities.

[4.14] In this exercise we assume the two-way oracle model.
(i) Show that the relationship ≤L

T
is not reflexive (and hence it is not a

reducibility). Hint: Consider any in DLBA−DL.
(ii) Show that the reducibilities ≤DLBA

m
and ≤DLBA

T
are incomparable (here

the superscript DLBA denotes linear space bounds.) Hint: To show that
≤DLBA

T
is not stronger than ≤DLBA

m
pick any language L 6∈ DLBA and show

that L is not ≤DLBA
T

-reducible to where L
′ = {ww : w ∈ L}.

[4.15] * For any language L, define the language L
′ = {bin(|x|) : x ∈ L} ⊆

{0, 1}∗ ⊆ {0, 1}∗. Give an efficient reduction of L
′ to L. If L is accepted in

time-space-reversal (t, s, r), what are the obvious complexity bounds on L
′?

Find non-trivial improvements on these bounds.

[4.16] Show that if f is space-constructible then DSPACE(f)|Σ (for any alphabet
Σ) is efficiently presentable.

4.10. CONCLUSION 193

[4.17] * (i) Show that the two-argument universal-polynomial complexity function
p(n, k) := n

k is constructible, for integer values of the inputs. Hint: First
show that p

′(n, k) = Θ(nk) is constructible. Actually, this is sufficient for all
purposes.
(ii) Fill in the details for the construction of an efficient universal acceptor
for the characteristic class P .
(iii) More generally, show that if a family F of complexity functions has
a time-constructible universal-function F

∗(i, n), then NTIME(F) is effi-
ciently presentable. That is, for each fixed i, F

∗(i, n) ∈ F and conversely
each f(n) ∈ F is equal of F

∗(i, n) for some n.

[4.18] Define a super universal machine to be a Turing acceptor U with three
input tapes. If the inputs are 〈i, j, x〉 then if i and j are fixed, we regard the

machine as an ordinary Turing acceptor on input x, and denote it by U
(i)
j

.
If i is fixed we regard the family

U
(i) = {U

(i)
0 , U

(i)
1 , . . .}

as a universal machine. We say that U efficiently presents a characteristic
class K if (a) for each i, U

(i) is an efficient presentation of K, and (b) for each
efficient universal acceptor V of K, there exists an i such that U

(i) has the

same enumeration of K as V : for each j sufficiently large, L(U
(i)
j

) = L(Vj).
Does the characteristic class NP have a super universal acceptor?

[4.19] Prove that for any reasonable resource bound β, say β = n
O(1)-time, ≤β

m

and ≤β

1-ptt
are identical.

[4.20] (Ladner, Lynch and Selman) Prove that (i) ≤P

1-tt stratifies ≤P

m
, and (ii)

≤P

(k+1)-tt stratifies ≤P

k-tt. (see section 6 for definition of stratifies)

[4.21] Show that ≤P

k-tt for k > 1 is an intransitive reducibility.

[4.22] (Ladner, Lynch and Selman) Define the reducibility ≤0 thus: L ≤0 L
′ if

there is a query machine and a polynomial-time transformation t : {0, 1} →
{#{0, 1}∗}∗ such that M

(L′) accept L and for input x, M only asks questions
from the list t(x) (ie. #x1#x2# · · ·#xk where xi ∈ {0, 1} is viewed as the
list (x1, x2, . . . , xk)). Show that ≤0 is the same as polynomial-time truth-
table reducibility.

[4.23] Show that if A ≤P

T
B then A is tt-reducible to B in deterministic time 2n

k

for some k ≥ 1.

[4.24] (Ladner and Lynch) Let L,L
′ be languages.

(i) Show that L ∪ L
′ ≤L

tt
L⊕ L

′. In fact, the ≤FST

2−tt
-reducibility is sufficient.

(ii) Show the existence of languages L,L
′ such that L ∪ L

′ 6≤L

m
L⊕ L

′.

194 CHAPTER 4. REDUCIBILITIES

[4.25] (i) Prove theorem 8 (which contains the relativized Savitch’s theorem) under
the two-way oracle model. Why does the proof break down with the one-way
oracle model?
(ii) Prove theorem 8 again, but under the tame one-way oracle model.

[4.26] Complete the proof of lemma 14.

[4.27] (Ladner, Lynch and Selman) Show that L ≤NP

m
L
′ iff there exists a polyno-

mial p and a polynomial-time transformation t such that x ∈ L iff

(∃y)[|y| ≤ p(|x|)∧t(x, y) ∈ L
′]

[4.28] Prove that if PSPACE 6= P then there exists L,L
′ in PSPACE such that L

is Cook-reducible, but not Karp-reducible to L
′. (Of course, if we can prove

this result without the hypothesis that PSPACE 6= P then we would have
proven that PSPACE 6= P .)

[4.29] (Selman) A language (Σ, L) is P -selective if there is a polynomial time
transformation f : Σ∗×Σ∗ → Σ∗ such that f(x, y) ∈ {x, y}, and furthermore,
if either x or y is in L then f(x, y) ∈ L.
(i) Show that for all non-trivial languages L, L is in P iff co-L ≤ P

m
L and L

is P -selective.
(ii) If L is P -selective and L

′ ≤P

m
L then L

′ is P -selective.
(iii) If SAT is P -selective then NP = P .

[4.30] Show that the following function is a pairing function:

〈x, y〉 = a
2
− 2(a− b) + δ(x < y)

where a = max(x, y), b = min(x, y) and δ(x < y) = 1 if x < y holds and 0
otherwise. Show that this, and its associated projection functions π 1, π2 are
polynomial-time computable.

[4.31] Imitate Ladner’s proof technique to obtain a language in NEXPT−DEXPT

(assuming this is non-empty) that is not complete.

[4.32] (I. Simon) Show that for all A 6∈ P , ≤P

T
and ≤P

tt
are distinguishable over A.

[4.33] (I. Simon) Let ≤1 be stronger than ≤2. We say that ≤1 and ≤2 are down-

ward distinguishable over a language L if there exists a language L
′ such

that L
′ ≤1 L but not L

′ ≤2 L. (Note that the definition of distinguishable
in the text may be qualified as ‘upward’.) Let ≤PS

T
denote Turing reducibil-

ity where the complexity bound is deterministic polynomial space. Show
there exists a language L 6∈ P such that ≤PS

T
and ≤P

m
are not downward

distinguishable over L.

4.10. CONCLUSION 195

[4.34] (Ladner and Lynch) Show that ≤P

T
is stronger than ≤L

T
.

[4.35] (Ladner and Lynch, open) Is ≤P

m
stronger than ≤L

m
? Is ≤P

tt
stronger than

≤L

tt
?

[4.36] Consider the alternative definition of tt-reducibility described at the end of
section 5. Compare the relative strengths of the usual tt-reducibility with
this definition, respect to each of the three choices of representing Boolean
functions: (a) ‘truth-tables’ in the original sense of the term, (b) Boolean
formulas, and (c) Boolean circuits.
(i) Show that with respect to polynomial-time bounds, there is no difference.
(ii) Show a difference (assuming DLOG 6= P) with respect to log-space
bounds. What is the significance of the fact that the circuit value problem
(CVP) is P -complete under log-space reducibility? (Note: the CVP problem,
described in chapter 5, is the problem of deciding if a distinguished output
of a Boolean circuit under a given input is 0 or 1.)

[4.37] Show that with respect to polynomial time, we could restrict nondetermin-
istic tt-machines (G,E) such that E is deterministic.

[4.38] Prove the last theorem of section 8 which generalizes the Ladner’s answer
to the polynomial analogue of Post’s problem.

[4.39] (Lind, Meyer) Show that the log-space transformations DLOG is closed
under explicit transformation (viz., substitution by constants, renaming and
identification of variables) and two-sided recursion of concatenation. The
latter is defined as follows: A transformation f : (Σ∗)n + 1 → ∆∗ on n + 1
variables is defined by two-sided recursion of concatenation from g : (Σ∗)n →
∆∗ and h1, h2 : (Σ∗)n+2 → ∆∗ if

f(w̄, ε) = g(w̄)

f(w̄, xa) = h1(w̄, x, a) · f(w̄, x) · h2(w̄, x, a)

for all w̄ ∈ (Σ∗)n, w ∈ Σ∗ and a ∈ Σ. Note that in this context, we can
regard a multi-variable transformation such as f as an ordinary one vari-
able transformation if we encode a sequence (w1, wn) of words as one word
w1# · · ·#wn where # is a new symbol.

[4.40] * Following the outline in the concluding section, formalize the notion of
parsimony by defining problems as binary relations over Σ∗. How much of
standard complexity theory as used in this book carry over?

[4.41] (J. Simon) Show that SAT can be many-one reduced to Hamiltonian circuits
using a parsimonious polynomial-time transformation t, i.e., for any CNF
F ∈ SAT, the number of satisfying assignments to F is equal to the number
of Hamiltonian circuits in t(F).

196 CHAPTER 4. REDUCIBILITIES

[4.42] * Investigate the basic structure of the diagonalization proofs by formalizing
the concept of ‘finite, existential conditions’. Refer to the basic diagonaliza-
tion outline of section 6.

Appendix A

Useful number-theoretic

functions

Pairing functions. A pairing function is any bijection between N × N and N =
{0, 1, 2, . . .}. We define a particular pairing function 〈·, ·〉 : N × N → N in which the
correspondence between (i, j) ∈ N × N and n ∈ N is given by the relation

n = i +

(

i + j + 1

2

)

where
(

x

2

)

= x(x− 1)/2. Unless stated otherwise, by ‘the pairing function’ we refer
to this definition. Using 〈·, ·〉 to denote a pairing function is a deliberate confusion of
notation since in general we use the same notation for ordered pairs. This confusion
is usually without harm. Whenever a distinction is necessary, we will write 〈i, j〉 ' n

to say that the value of the pairing function on the values i, j is n. The best way to
see that this is a bijection is through the picture of figure A.1.

The bijection induces a total ordering � of N×N defined as follows: the ordered
pairs (i′, j′), (i, j) are related as (i′, j′) � (i, j) iff n

′ ≤ n where 〈i, j〉 ' n and
〈i′, j′〉 ' n

′. If, in fact n < n
′ holds, then we write 〈i′, j′〉 ≺ 〈i, j〉. The (first and

second) projection functions π1 and π2 are defined by

n ' 〈π1(n), π2(n)〉

for all n. A simple property of the pairing function is that it is increasing in each
of its arguments.

Lemma 26 The function 〈·, ·〉, π1 and π2 are computable in polynomial time.

Proof. The fact that the pairing function is polynomial-time computable follows
from the fact that multiplication is polynomial-time computable. To see that π 1 is
polynomial time, note that on input n, in time polynomial in the size of the input,

197

198 APPENDIX A. USEFUL NUMBER-THEORETIC FUNCTIONS

Z
Z

Z
Z

ZZ}

Z
Z

Z
Z

ZZ}

Z
Z

Z
Z

ZZ}

Z
Z

Z
Z

ZZ}

Z
Z

Z
Z

ZZ}

Z
Z

Z
Z

ZZ}

〈0, 0〉 ' 0

〈1, 0〉 ' 2

〈2, 0〉 ' 5

〈3, 0〉 ' 9

〈0, 1〉 ' 1

〈1, 1〉 ' 4

〈2, 1〉 ' 8

· · ·

〈0, 2〉 ' 3

〈1, 2〉 ' 7

· · ·

〈0, 3〉 ' 6

· · ·

Figure A.1: The pairing function 〈·, ·〉

we can determine the k such that k
2 ≤ 2n ≤ (k + 1)2. (Use a binary search for k in

the range between 1 and n.) We want the m such that m(m− 1) ≤ 2n ≤ m(m+1).
Clearly k = m or m − 1, and we can easily determine which is the case. Finally,
π1(n) = n−

(

m+1
2

)

. It is similarly easy to compute π2(n). Q.E.D.

Suppose k ≥ 2 is fixed. We can use the pairing function to encode k-tuples as
follows: a k-tuple (x1, . . . , xk), where xi ∈ {0, 1}

∗, is encoded by

〈x1, 〈x2, · · · , 〈xk−2, 〈xk−1, xk〉〉 · · ·〉〉.

The projection functions π1, . . . , πk are easily defined. This mapping from N
k to

N is a bijection. If we are willing (this is a matter of taste) to introduce extra
symbols for encoding k-tuples, then it is easy to get an alternative encoding: encode
(x1, . . . , xk) as x1#x2# · · ·#xk where # is a new symbol. This poorman’s encoding
has the obvious simple linear-time decoding. However, it is not a bijection. But in
all our applications, bijections were nice but unessential.

Finally, we could use the pairing function to encode finite sequences 〈x 1, . . . , xk〉

(of arbitrary length k) by explicitly encoding the length of the sequence:

〈k, 〈x1, 〈x2, · · · , 〈xk−2, 〈xk−1, xk〉〉 · · ·〉〉〉.

Note that this encoding is no longer a bijection between N
∗ and N.

199

A fast growing function and its inverse.

Define the super-exponential function Exp : N ×N → N by Exp(0) = 0 and Exp(n +

1) = 2Exp(n). So Exp(n) consists of a stack of n two’s.1 In the remainder of this
appendix, Exp will refer to the one argument function.

The log-star function log∗ n is defined to be the largest integer m such that
Exp(m) ≤ n. This function is one of the possible the ‘inverses’ of Exp(n).

Lemma 27

(i) Exp can be computed in time linear in its output size |Exp(n)|

(ii) log∗
n can be computed in time linear in its input size |n|.

Proof. Note that |n| here refers to the length of the binary representation bin(n) of
n, not the absolute value of n. Note that for n > 0, |Exp(n)| is 1+Exp(n− 1) since
bin(Exp(n)) is ‘1’ followed by Exp(n− 1) 0’s. To show (i), suppose bin(Exp(n− 1))
is available, and we want to compute bin(Exp(n)). This amounts to writing out
exactly Exp(n− 1) zeroes. To do this, we treat bin(Exp(n− 1)) as a binary counter
and we want to decrement it to zero. If m > 0 is the value of the binary counter
and g(m) denote the maximal string of zeroes that form a suffix bin(m) (i.e. the
suffix of bin(m) has the form ‘· · · 10g(m)’), then a single decrement of the counter
takes O(g(m)) steps. Hence the time to decrement the counter from Exp(n− 1) to
zero is order of

Exp(n−1)
∑

m=1

g(m) =

Exp(n−2)
∑

k=1

k · 2Exp(n−2)−k = O(2Exp(n−2)) = O(Exp(n− 1)).

Thus computing Exp(n) from Exp(n− 1) is linear in |Exp(n)|. Summing this work
for m = 1, 2, . . . , n we get

∑

n

m=1 |Exp(m)| which is O(|Exp(n)|), as required. To
show (ii), we compute the increasing values

Exp(0),Exp(1),Exp(2), .

until for some m ≥ 0, Exp(m + 1) has length greater than |n|. Then log∗
n = m,

and we can convert to binary if desired. The linearity of this procedure is similarly
shown as in (i). Q.E.D.

1Exp(n) is to be distinguished from the usual exponential function exp(n) := en, where e is the
base of the natural logarithm.

200 APPENDIX A. USEFUL NUMBER-THEORETIC FUNCTIONS

Bibliography

[1] A. V. Aho and J. D. Ullman. A characterization of two-way deterministic
classes of languages. Journal of Computers and Systems Science, 4(6):523–538,
1970.

[2] Klaus Ambos-Spies. Sublattices of the polynomial time degrees. Information

and Computation, 65:63–84, 1985.

[3] T. Baker, J. Gill, and R. Solovay. Relativizations of the P =? NP question.
SIAM J. Computing, 4:431–442, 1975.

[4] P. Chew and M. Machtey. A note on structure and looking back applied to
the relative complexity of computable functions. Journal of Computers and

Systems Science, 22:53–59, 1981.

[5] R. M. Friedberg. Two recursively enumerable sets of incomparable degrees of
unsolvability. Proceed. Nat. Acad. of Sciences, 43:236–238, 1957.

[6] Juris N. Hartmanis, Neil Immerman, and Steven Mahaney. One-way log-tape
reductions. 19th Symposium FOCS, pages 65–71, 1978.

[7] Neil D. Jones. Space-bounded reducibility among combinatorial problems.
Journal of Computers and Systems Science, 11:68–85, 1975.

[8] R. E. Ladner and N. A. Lynch. Relativization of questions about log space
computability. Math. Systems Theory, 10:19–32, 1976.

[9] R. E. Ladner, N. A. Lynch, and A. L. Selman. A comparison of polynomial
time reducibilities. Theor. Comp. Sci., 1:103–123, 1975.

[10] Richard E. Ladner. On the structure of polynomial time reducibility. JACM,
22:1:155–171, 1975.

[11] L. H. Landweber, R. J. Lipton, and E. L. Robertson. On the structure of sets
in NP and other complexity classes. Theoretical Computer Science, 15:181–200,
1981.

201

202 BIBLIOGRAPHY

[12] Timothy J. Long. Strong nondeterministic polynomial-time reducibilities. The-

oretical Computer Science, 21:1–25, 1982.

[13] A. R. Meyer and E. M. McCreight. Computationally complex and pseudo-
random zero-one valued functions. In Z. Kohavi and A. Paz, editors, Theory of

machines and computations, pages 19–42. Academic Press, 1971.

[14] A. A. Muchnik. On the unsolvability of the problem of reducibility in the theory
of algorithms (in russian). Doklady Akademii Nauk SSSR, 108:194–197, 1956.

[15] Kenneth W. Regan. The topology of provability in complexity theory. Journal

of Computers and Systems Science, 38:384–432, 1988.

[16] Diana Schmidt. The recursion-theoretic structure of complexity classes. Theo-

retical Computer Science, 38:143–156, 1985.

[17] Uwe Schöning. A uniform approach to obtain diagonal sets in complexity
classes. Theoretical Computer Science, 18:95–103, 1982.

[18] Istvan Simon. On some subrecursive reducibilities. Technical Report Tech. Rep.
STAN-CS-77-608, Computer Sci. Dept., Stanford Univ., April, 1977. (PhD
Thesis).

[19] Osamu Watanabe. On one-one polynomial time equivalence relations. Theo-

retical Computer Science, 38:157–165, 1985.

[20] C. K. Yap. Logical curiosities: on definitions of NP-completeness. manuscript,
1985.

Contents

4 Reducibilities 155

4.1 Inclusion Questions . 155
4.2 Many-One Reducibility . 157
4.3 Turing Reducibility . 161
4.4 Universal Machines and Efficient Presentation 165
4.5 Truth-table Reducibilities . 173
4.6 Strength of Reducibilities . 177
4.7 The Polynomial Analogue of Post’s Problem 179
4.8 The Structure of Polynomial Degrees 183
4.9 Nondeterministic reducibilities . 184
4.10 Conclusion . 187

A Useful number-theoretic functions 195

203

Chapter 5

Complete Languages

March 1, 1999

5.1 Existence of complete languages

The class NP has a long list of complete problems derived from almost every area
of the computational literature. The theoretical unity that this fact provides for
such diverse problems is one of the striking accomplishments of the field. Naturally,
one is led to ask if other complexity classes such as NLOG and PSPACE have
complete languages. The framework of the Basic Inclusion Lemma also motivates
our search for complete languages. The answer is yes for these and many other
classes; moreover, there is a systematic way to show this (e.g., [13]). The method
depends on the existence of efficient universal machines; universal machines in turn
depend on the existence of suitable tape-reduction theorems. In this chapter, for
simplicity, the reducibility is assumed to be ≤L

m
unless otherwise specified.

Convention: Let i denote a natural number. In contexts where a string is ex-
pected, we use the same symbol ‘i’ to denote the binary string representing the
natural number i. The notation ‘|i|’ always denotes the length of the binary rep-
resentation of i, never the absolute value of i as a number. Also, if # is a symbol,
then #i denotes a string of i copies of #.

Theorem 1 Each complexity class in the canonical list, with the exception of PLOG,

has complete languages under log-space many-one reducibility, ≤L

m
.

Proof for the class P: Fix Σ = {0, 1}. We have shown in chapter 4 (example 5)
that the characteristic class P |Σ has an efficient universal acceptor U

P = {UP

i
: i =

0, 1, . . .} where each U
P

i
accepts in time n

|i|. Define over the alphabet {0, 1,#} the
language

L
P = {i#m

x : i, x ∈ Σ∗
,m = |i| · |x||i|, x ∈ L(UP

i
)}.

205

206 CHAPTER 5. COMPLETE LANGUAGES

We claim that L
P is P-complete under ≤L

m
. First we show that L

P is in P. This
is witnessed by the acceptor M that, on input w, first checks that w has the form
i#m

x for some i, x,m. Next it checks that m = |i| · |x||i|, and if so, simulates U
P

i
on

x. The simulation takes time O(m) = O(|w|). To show that L
P is P-hard, consider

any language (Γ, L) ∈ P . Let h be the homomorphism that encodes each symbol of
Γ as a unique binary string in Σ∗ of length dlog |Γ|e. So h(L) is a language over Σ;
furthermore, it is easy to see that

h(L) ∈ P ⇐⇒ L ∈ P .

So let h(L) be accepted by U
P

i
for some i. Consider the transducer T that on

input x outputs i#m
h(x) where m = |i| · |h(x)||i|. It is not hard to make T use

log(|x||i|) = Oi(log |x|) space to produce this output. Now x is in L iff T(x) is in
L

P . Thus L ≤L

m
L

P . This shows that L
P is P-hard.

Sketch of the other cases: The proof for the class NLOG uses the same technique
as above: we use the existence of an efficient universal acceptor U

NLOG for NLOG|Σ
such that for each i, U

NLOG
i

accepts in space |i| log n. The complete language is

L
NLOG = {i#m

x : i, x ∈ Σ∗
,m = |i| · |x||i|, x ∈ L(UNLOG

i
)}.

The proof for the class DEXPT uses the existence of an efficient universal acceptor
U

DXT such that for each i, U
DXT

i
accepts in time |i|n time. The complete language

is
L

DXT = {i#m
x : i, x ∈ Σ∗

,m = |i| · |x|, x ∈ L(UDXT

i
)}.

The proofs for the other classes are similar. Q.E.D.

We make two remarks. First, the method unfortunately does not extend to
PLOG . No complete problems for this class (under the usual reducibilities) are
known. Second, the result is trivial for DLOG because unrestricted log-space many-
one reducibility is too powerful: it is easy to see that DLOG is ≤L

m
-reducible to

any non-trivial language. Following Hartmanis, we consider the one-way log-space
many-one reducibilities, ≤1L

m
(see section 2, chapter 4); the reader may verify that

the construction for L
NLOG in the above proof carries over to give us a DLOG-

complete language L
DLOG under ≤1L

m
-reducibility.

The next question we ask is whether classes such as

XTIME(nk),XSPACE(logk
n),XSPACE(nk)

(X = D,N) for each k ≥ 1 have complete languages. The answer is yes, us-
ing a simple variation of the above proof. In particular, the characteristic class
XSPACE(logk

n) has an efficient universal acceptor U
′ and hence it is not surpris-

ing to find complete languages for it. More precisely, we may assume that the
universal acceptor U

′
i

accepts in space at most |i| logk
n for each i. Then a complete

language for XSPACE(logk
n) is given by

L
′ = {i#m

x : x ∈ L(U ′
i
),m = |x||i|}.

5.1. EXISTENCE OF COMPLETE LANGUAGES 207

We make the observation that the language L
P in the proof of theorem 1 is

actually in DTIME(O(n)), so it is in fact DTIME(O(n))-complete. To see this as
a more general phenomenon, we next state a definition and lemma.

Definition. Let (Σ, L) be a language, # a symbol not in Σ, and f a number-
theoretic function. Then the f -padded version (with padding symbol #) of L is the
language L

′ = {x#f(|x|) : x ∈ L} over Σ ∪ {#}.

Lemma 2 Let k ≥ 1 be any fixed integer. Under the ≤L

m
-reducibility, we have:

(i) If a language L is DSPACE(nk)-complete then L is PSPACE-complete.

(ii) If L is PSPACE-complete then the f -padded version of L is DSPACE(nk)-
complete, where f(n) = n

h for some h ≥ 1.

Proof.

(i) It is sufficient to show that every language L
′ ∈ PSPACE can be reduced to L.

Assume L
′ is accepted by some Ui in space f(n) = n

|i|, where U is an efficient
universal acceptor for the characteristic class PSPACE . To reduce L

′ to L, we
construct the transducer that on input x outputs t(x) = i#x#f(|x|). Clearly
the language t(L′) = {t(x) : x ∈ L

′} is in DSPACE(n) ⊆ DSPACE(nk). Since
L is DSPACE(nk)-complete, we have t(L′) is many-one reducible to L via
some log-space transformation r. Hence L

′ is many-one reducible to L via the
functional composition r ◦ t. Since the log-space transformations are closed
under functional composition (chapter 4), we conclude that r ◦ t is log-space
computable.

(ii) Since L is PSPACE -complete, let L be accepted by some M in space n
h for

some h ≥ 1. Let L
′ be the n

k-padded version of L for some k ≥ 1. Clearly
L
′ ∈ DSPACE(n) ⊆ DSPACE(nk). To show that L

′ is DSPACE(nk)-hard, let
L′′ ∈ DSPACE(nk) be many-one reducible to L via some log-space transfor-
mation t. The reader may verify that L

′′ is many-one reducible to L
′ via the

transformation r where r(x) = t(x)#|t(x)|h . Clearly r is log-space computable.
Q.E.D.

This tells us that the classes LBA, DSPACE(nk) and PSPACE have essentially
the same complete languages under log-space many-one reducibility.

The analog of the above lemma for DTIME(nk) can be proved in exactly the
same way. Unfortunately, DTIME(nk) is not closed under log-space many-one re-
ducibility so that we cannot apply the Basic Inclusion Lemma (chapter 4). The
next result (from [4]) remedies this situation by considering the family 1FST of
transformations computed by 1-way finite state transducers (chapter 4, section 2):

Theorem 3 Let k ≥ 1, and X = D or N . Let K be the class XTIME(nk) or

XSPACE(nk).

208 CHAPTER 5. COMPLETE LANGUAGES

(i) K is closed under ≤1FST

m
-reducibility.

(ii) There exists K-complete languages under ≤1FST

m
reducibilities.

Proof. (i) This is a simple exercise in machine construction. (ii) We just show the
result for K = XTIME(nk). Consider the language L

k consisting of all words of the
form

w = x1#y#x2# · · ·#y#xn (5.1)

where xi, y ∈ {0, 1}
∗, each xi has the fixed length k and y is the encoding of a Turing

acceptor My that is clocked to run for n
k steps (with the appropriate mode X) and

My accepts x1x2 · · · xn. We first show that L
k is hard for XTIME(nk). Let (Σ, L)

be accepted by some Turing acceptor My in time n
k. Let h : Σ → {0, 1}∗ be any

encoding of the symbols of Σ using binary strings with a fixed length, and define
the transformation t, depending on h and My, such that for any x = a1a2 · · · an,
t(x) = h(a1)#y#h(a2)#y# · · ·#y#h(an) where y is an encoding of My that is
clocked to run for at most n

k steps. Clearly t ∈ 1FST and L is many-one reducible
to L

k via t. It remains to show that L
k is in XTIME(nk). On input w, we can

verify in linear time that w has the form given by (5.1). Then we simulate M y.
Because there is a copy of the machine encoding y next to each ‘real input symbol’
h(ai) = xi, it takes only O(|y| + |x1|) steps to simulate one step of My. This gives
O((|y| + |x1|) · n

k) = O(|w|k) steps overall. By the linear speedup theorem, we can
make this exactly |w|k steps. Q.E.D.

Similarly, we can show that reversal classes defined by polynomial or exponential
complexity functions have complete languages [9]:

Theorem 4 The classes DREVERSAL(nO(1)) and DREVERSAL(O(1)n) have com-

plete languages under log-space many-one reducibility.

Proof. We show this for the case of DREVERSAL(nO(1)). Using the existence of a
efficient universal machine {U1, U2, . . .} for this characteristic class, we see that the
language

{i#m
x : m = |x||i|, x ∈ L(Ui)}

is complete. Q.E.D.

Natural Complete Languages. The complete languages generated in the above
manner are artificial and it is of interest to obtain ‘natural’ complete problems. By
natural problems we mean those arising in contexts that have independent interest,
not just concocted for the present purpose. (Of course, naturalness is a matter of
degree.) The advantage of natural complete problems is that they are an invaluable
guide as to the inherent complexity of related natural problems. 1 We examine such
languages in the remainder of this chapter. For each complexity class K studied

1Cf. comments in footnote 18, in chapter 1.

5.2. COMPLETE PROBLEMS FOR LOGARITHMIC SPACE 209

below, we first give a direct proof that a language L0 is complete for K under ≤L

m
-

reducibility. Subsequently, we may show any other languages L to be K-complete
by showing L0 ≤

L

m
L, using the fact that ≤L

m
-reducibility is transitive.

Notation. We will conveniently use [i..j] to denote the set {i, i+1, . . . , j} where
i ≤ j are integers.

5.2 Complete Problems for Logarithmic Space

5.2.1 Graph Accessibility

The first problem shown to be complete for NLOG is the following. It was originally
introduced as ‘threadable mazes’ by Savitch [28] but the present form is due to Jones
[19].

Graph Accessibility Problem (GAP)

Given: A pair 〈n,G〉 where G is an n × n adjacency matrix of a directed
graph on the node set [1..n].

Property: There is a path from node 1 to node n.

To show that GAP is in NLOG, we describe a nondeterministic acceptor M that
guesses a path through the graph as follows: on input x, M first verifies that x has
the correct format representing the pair 〈n,G〉. Then it writes down ‘1’ on tape 1
and on tape 2 makes a nondeterministic guess of some j, 1 ≤ j ≤ n. In general,
suppose tapes 1 and 2 contain the integers i and j (respectively). Then it verifies
that 〈i, j〉 is an edge of G. If not, it rejects at once. It next checks if j = n. If so, it
accepts; otherwise it copies j to tape 1 (overwriting the value i) and makes another
guess k on tape 2. Now we have the pair 〈j, k〉 represented on tapes 1 and 2, and
we may repeat the above verification and guessing process. Clearly the input is in
GAP iff some sequence of guesses will lead to acceptance. The space required by M
is log n where the input size is O(n2).

To show that GAP is NLOG-hard, let L be accepted by some nondeterministic
machine N in space log n. We reduce L to GAP using a transducer T that on input
x computes the transformation t(x) as follows: let |x| = n and we may assume that
each configuration of N that uses at most log n space on input x. is represented by
integers in the range [2..nc − 1] for some integer c > 0. (Some integers in this range
may not encode any configuration.) Then t(x) is the encoding of 〈nc

, G〉 where the
entries Gi,j of the matrix G (representing a graph) is defined as follows: G i,j = 1 iff
one of the following holds:

(1) i and j encode configurations Ci and Cj (respectively) of M and Ci`Cj.

(2) i = 1 and j represents the initial configuration.

(3) i represents an accepting configuration and j = n
c.

210 CHAPTER 5. COMPLETE LANGUAGES

It is not hard to see that T can output the successive rows of G using only space
log n. Furthermore, x is accepted by N iff t(x) is in GAP. This completes the proof.

5.2.2 Unsatisfiability of 2CNF formulas

For the next NLOG-complete problem, recall from chapter 3 that the kCNF formulas
(k ∈ N) are those with exactly k literals per clause.

Unsatisfiability of 2CNF Formulas (2UNSAT)

Given: A 2CNF formula F .

Property: F is unsatisfiable.

With respect to a 2CNF formula F , let us write u→ v if {ū, v} ∈ F . Thus “→”
here is just “logical implication”. Clearly, u→ v iff v̄ → ū. The reflexive, transitive
closure of → is denoted

∗
→. Thus u

∗
→ v iff there is a sequence u1, u2, . . . , uk (k ≥ 1)

of literals such that u1 = u, uk = v and ui → ui+1 for i = 1, . . . , k − 1. The
literals ui in the sequence need not be distinct. We note that if I is a satisfying

assignment for F and u
∗
→ v then I(u) = 1 implies I(v) = 1. It follows that if

u
∗
→ ū and I satisfies F then I(u) = 0. For any set of literals X, let the closure of X

be cl(X) = {v : (∃u ∈ X)u
∗
→ v}. Hence if I satisfies F and I(u) = 1 for all u ∈ X

then I(v) = 1 for all v ∈ cl(X). We begin with the following characterization:

Theorem 5 A 2CNF formula F is unsatisfiable iff there exists a literal u such that

u
∗
→ ū and ū

∗
→ u.

Proof. If there is such a literal u. the above remarks makes it clear that F is
unsatisfiable. Conversely, suppose there are no such literal. We will show that F is
satisfiable. A set of literals is consistent if it does not contain both x and x̄ for any
variable x. We claim that for each variable x, either the set cl({x}) is consistent or
the set cl({x̄}) is consistent: otherwise let y and z be variables such that

{y, ȳ} ⊆ cl({x}) and {z, z̄} ⊆ cl({x̄})

Thus x
∗
→ y and x

∗
→ ȳ. But x

∗
→ ȳ implies y

∗
→ x̄ so that transitivity implies x

∗
→ x̄.

A similar argument using z, z̄ shows that x̄
∗
→ x, contradicting our assumption that

there are no such x.
We now define a sequence U0 ⊆ U1 ⊆ · · · ⊆ Um (for some m ≥ 1) of sets of

literals: Let U0 = ∅ (the empty set). Supposed Ui (i ≥ 0) is defined. If for every
variable x, either x or x̄ is in U i then we stop (i.e., set m to be i). Otherwise choose
such a variable x and by the above observation, either cl({x}) or cl({x̄}) is consistent.
If cl({x}) is consistent, set Ui+1 := Ui ∪ cl({x}). Else, set Ui+1 := Ui ∪ cl({x̄}).

It is immediate that each Ui is closed, i.e., cl(Ui) = Ui. Suppose Um is consistent.
Then the assignment that makes each literal in Um true is a satisfying assignment

5.2. COMPLETE PROBLEMS FOR LOGARITHMIC SPACE 211

for F . To see this, suppose {u, v} is a clause in F and u is not in Um. This means
ū is in Um. But ū

∗
→ v, so v is in Um. This shows that every clause is satisfied, as

desired.

It remains to show the consistency of Um. We show inductively that each Ui,
i = 0, . . . ,m, is consistent. U0 is clearly consistent. Next assume that Ui (i ≥ 0)
is consistent but Ui+1 = Ui ∪ cl({u}) is inconsistent. Say, {v, v̄} ⊆ Ui+1. We may
assume that v̄ ∈ Ui and v ∈ cl({u}). But v ∈ cl({u}) implies u

∗
→ v, or equivalently,

v̄
∗
→ ū. Then v̄ ∈ Ui implies ū ∈ Ui, contradicting our choice of u when defining

Ui+1. Q.E.D.

From this lemma, we see that 2UNSAT is in NLOG : on input F , guess a literal
u such that u

∗
→ u witnesses the unsatisfiability of F . We then guess the sequence

u → u1 → u2 → · · · → uk → u. We need not store the entire sequence, just the
first literal u and a current literal u i. If we assume that each literal is encoded by a
string of length O(log n) when F has n distinct variables, the space used is clearly
log n. We could impose this restriction on the encoding. However, it is not hard
to see that even if no such restrictions were made, logarithmic space is sufficient.
The idea is that any variable in F can be represented by a counter of size log n that
points to some occurrence of that variable in F . The details are left as an exercise.

We now prove that 2UNSAT is NLOG-hard by reducing GAP to it. Let 〈n,G〉

be the input to GAP. We can construct the following CNF formula whose variables
are denoted by the integers 1, . . . , n:

1∧n̄∧
∧

〈i,j〉

(̄i∨j)

where 〈i, j〉 range over edges in G. Note that this is not quite a 2CNF formula
because the first two clauses have only one literal each.2 To turn a one variable clause
{u} to two variables, it is easy to introduce a new variable z so that ū → z → u.
If we interpret the variable i to mean “node i is reachable from node 1”, then this
formula says that node 1 but not node n is reachable, and if 〈i, j〉 is an edge and
node i is reachable then so is node j. Clearly, if there is a path from 1 to n then
the formula is unsatisfiable. Conversely, if there are no paths from 1 to n then
(exercise) it is easy to see that the formula is satisfiable with this assignment: (a)
assign to false all those nodes that can reach node n, (b) assign to true all the
remaining nodes. Finally, the fact that this formula can be constructed from 〈n,G〉

in logarithmic space completes the proof.

Based on our intuition from the satisfiability problem SAT, it is perhaps curious
that it is 2UNSAT rather than 2SAT that is NLOG-complete.3

2Since we regard clauses as sets of literals, it is no good saying that the clause with one literal
can be made into a 2-literal clause by repeating the single literal.

3Nevertheless, this switch is typical when we change from a time class to space class.

212 CHAPTER 5. COMPLETE LANGUAGES

5.2.3 Associative Generator Problem

The next problem concerns a simple algebraic system with one associative binary
operation denoted ⊕. Without loss of generality, the elements of the system are
[1..n] and let the multiplication table of ⊕ be given by an n× n matrix T = (T i,j).
Thus Ti,j = k means i ⊕ j = k. For any set S ⊆ [1..n], the ⊕-closure of S is the
smallest set containing S and closed under ⊕. We should keep in mind that the
elements in [1..n] represents abstract elements, not integers.

Associative Generator Problem (AGEN)

Given: 〈n, T, S,w〉 where T is a multiplication table for a binary operation
⊕ over [1..n], S ⊆ [1..n] and w ∈ [1..n].

Property: The operation ⊕ is associative and w is in the ⊕-closure of S.

We sketch the proof. To show that AGEN is in NLOG , we note that it is
easy to check in logarithmic space that an input has the form 〈n, T, S,w〉 and that
T is associative. Now w is in the ⊕-closure of S iff it can be expressed as w =
x1⊕x2⊕ · · · ⊕ xk. It is not hard to see that the shortest such expression has length
of k at most n. Hence it is easy to nondeterministically accept AGEN by guessing
successive values of xi, for i = 1, . . . , n, and only keeping track of the partial sum
x1 ⊕ x2 ⊕ · · · ⊕ xi.

Next, we show that GAP is reducible to AGEN. Let 〈n,G〉 be the input to GAP.
We describe the AGEN instance 〈m,T, S,w〉 as follows: Choose m = 1 + n + n

2.
Instead of describing the table T in terms of [1..m], it is more intuitive to interpret
the elements of [1..m] as the set

X = [1..n] ∪ ([1..n] × [1..n]) ∪ {∞}

where∞ is a new symbol. Hence |X| = m. We can make a correspondence between
X and [1..m] as follows: Each i ∈ [1..n] corresponds to itself in [1..m]; the pair
〈i, j〉 ∈ [1..n] × [1..n] corresponds to i + jn in [1..m] and finally ∞ corresponds to
m. The table T is now described by the following rules:

For all i, j, k, u, v ∈ [1 . . . n],

i⊕ 〈j, k〉 =

{

k if i = j and 〈j, k〉 is an edge of G

∞ else.

〈i, j〉 ⊕ 〈u, v〉 =

{

〈i, v〉 if j = u

∞ else.

In all other cases, the value of x⊕ y is ∞. It is easy to see that ⊕ is associative and
there is a path (1, x1, . . . , xk, n) from 1 to n in G iff 1 ⊕ 〈1, x1〉 ⊕ · · · ⊕ 〈xk, n〉 = n

holds. The desired AGEN instance 〈m,T, S,w〉 is now evident: m and T has been

5.2. COMPLETE PROBLEMS FOR LOGARITHMIC SPACE 213

described; S is the set consisting of 1 and all pairs 〈i, j〉 representing edges of G; w

is chosen to be n. Finally, one verifies that this AGEN instance can be computed
in logarithmic space from 〈n,G〉.

5.2.4 Deterministic Logarithmic Space and below

To get a meaningful complete language for DLOG , we weaken our reducibility as
in section 1. We restrict the input head on the transducers to be one-way. A
natural restriction of GAP that is DLOG-complete is to make the outdegree of each
node at most 1. However, we must also be careful about the actual encoding of the
problem. In particular, we can no longer assume the adjacency matrix representation
of graphs:

Deterministic Graph Accessibility Problem (1GAP)

Given: 〈n,G〉 as in GAP except that each vertex of G has outdegree at
most 1 and G is encoded by a sequence of its edges.

Property: There is a path from node 1 to n.

It is easy to see that this problem is in DLOG . We leave it as an exercise to
reduce an arbitrary language in DLOG to 1GAP: essentially we cycle through all
configurations C and for each C, we output the ‘edge’ pair (C,C

′) where C
′ is the

successor of C, C`C ′. Indeed, this proof shows that the following variant of 1GAP
remains complete: where we insist that the inputs 〈n,G〉 satisfy the property that
the list of edges of G be topologically sorted (i.e., all edges entering a node must be
listed before edges exiting from that node).

Let us briefly consider the power of one-way log-space many-one reducibility [16].
It turns out that many natural problems which are complete for canonical classes
(under≤L

m
) remain complete under≤1L

m
. This is fortuitous because it is easily shown

that there are languages that are complete for P (for instance) under ≤L

m
but which

are not P-complete under ≤1L

m
. See Exercises.

While there is less interest sublogarithmic space complexity, it should be noted
that complete problems can be defined for any nondeterministic space bound be-
tween log log n and log n space. Monien and Sudborough define the so-called ‘band-
width limited’ versions of the GAP problem [23]. To understand this, we say the
bandwidth of a graph G is the smallest m ≥ 0 such that each edge (i, j) satisfies
|i− j| ≤ m. We must also be careful about how to encode such graphs. Let us en-
code graphs on the vertices {1, 2, . . . , n} by a sequence of the adjacency lists of each
vertex. The adjacency list for vertex i has the form (i,m(i, 1),m(i, 2), . . . ,m(i, d i))
where di is the out-degree and the edges exiting from i go to i + m(i, j) for each
j. Thus m(i, j) is an incremental positive or negative value, relative to i. Natu-
rally the bandwidth of G is an upper bound on their absolute value. Now for any
complexity function f(n) ≤ log n define the language GAP (f) to encode the family
of graphs G such that if the vertices are {1, . . . , n} then the bandwith of G is at

214 CHAPTER 5. COMPLETE LANGUAGES

most f(n), and such that there is a path from node 1 to node n. Then it can be
shown that GAP (f) is complete for NSPACE(f) under ≤L

m
-reducibility. We may

further weaken the reducibility so that the transducers use only f(n) space, provided
we encode the languages even more compactly: omit the first number i in the list
(i,m(i, 1), . . . ,m(i, di)), and so i is implicit from the order of occurrence of its list.

5.3 Complete Problems for P

5.3.1 Unit Resolution

We begin by showing a problem based on the resolution proof system to be P-
complete. This is actually part of a theme started in the previous section where we
show that 2UNSAT is NLOG-complete problem. That is, we will show a family of
related problems arising from theorem proving, each of which is complete for some
class in our canonical. The famous SAT problem (chapter 3) is part of this family.

The basic concept of resolution proofs is simple: Two clauses C and C
′ are

resolvable if there is a literal u such that u ∈ C and ū ∈ C
′. Their resolvent is the

clause C
′′ = (C ∪ C

′) − {u, ū}. This rule for obtaining the resolvent is called the
resolution rule (also known as annihilation rule or cut rule), with the literals u and
ū being annihilated. A unit clause is a clause with one literal. If either C or C

′ is
a unit clause, we say their resolvent C

′′ is a unit resolvent of C and C
′. Note that

if both C and C
′ are unit clauses then their resolvent is the empty clause which

we denote by (not to be confused with the blank symbol, but the context should
make it clear). By definition, the empty clause is unsatisfiable. Let F be a CNF
formula in clause form. A deduction (resp. unit deduction) of a clause Cm from F

is a sequence of clauses C1, . . . , Cm where each Ci is either in F or is the resolvent
(resp. unit resolvent) of two previous clauses in the sequence. The fundamental
result on resolution is the following:

Resolution Theorem. F is unsatisfiable iff there is a deduction of from F .

The proof is an exercise; we do not use the theorem in the following. The
following P-complete problem was introduced by Jones and Laaser [18]:

Unit Resolution for 3CNF formulas (3UNIT)

Given: A 3CNF formula F .

Property: can be deduced from F using unit deduction.

We first show that 3UNIT is in P. Consider the following algorithm that takes
as input a CNF formula F . If ∈ F then we accept at once. So assume otherwise.
The algorithm maintains three sets of clauses G,G

′ and H. Initially, G
′ is empty,

G consists of all the unit clauses in F and H is F − G. In general, the sets G,G
′

5.3. COMPLETE PROBLEMS FOR P 215

will consist of unit clauses only; hence we may sometimes conveniently regard them
as a set of literals. Also G ∩G

′ = ∅. The algorithm executes the following loop:

While G6=∅ do

1. Choose any u ∈ G. Let G := G− {u}; G
′ := G

′ ∪ {u}.

2. If ū ∈ G
′ then resolve {u} and {ū} to obtain and accept at once.

3. For each clause C in H: if {u} and C are resolvable, and their
resolvent C

′ = C − {ū} is not in G ∪ G
′ ∪H then add C

′ to G or
to H according to whether C

′ is a unit clause or not.

If the algorithm does not accept within the while-loop, then it rejects. It is important
to realize that in line 3, the clause C is not removed from H (the Exercises explain
why this is necessary for the correctness of resolution).

Correctness: We must show that the algorithm accepts iff F ∈ 3UNIT. Note
that new clauses are generated only in line 3 using the unit resolution rule; also, all
clauses in G

′ ∪ G ∪H come from the original set F or are unit deducible from F .
Hence if the algorithm accepts in line 2 then F is in 3UNIT. To prove the converse,
suppose

C0, C1, . . . , Cm (where Cm =) (5.2)

is a unit deduction of . We will show that the algorithm accepts. It is crucial to
note that step 3 is specified in such a way that each literal u is put into G at most
once. Thus the number of iterations in the while-loop is at most the number of
literals appearing in the formula F . Let G i (i = 0, 1, . . .) denote the set of clauses in
G at the end of the ith iteration of the loop. G

′
i
and Hi are similarly defined, and let

Ei := Gi∪G
′
i
∪Hi. Clearly, Ei ⊆ Ei+1. CLAIM: each Cj in the unit deduction (5.2)

belongs to some Ei. In particular Cm−1 appears in the Ei of the last iteration, and
the empty clause can be derived. So the algorithm accepts.

Complexity: As noted above, the number iterations of the while-loop is linear
in the size of F . It therefore suffices to show that each iteration takes polynomial
time. Note that if a clause of F has k literals, then the clause can potentially spawn
2k subclauses. But since F is a 3CNF formula, the total number of new clauses is
only linear in the number of original clauses. This in turn bounds the time to do
each iteration. Thus the time of the algorithm for 3UNIT is polynomial.

We now show that 3UNIT is P-hard. The proof is similar to that for Cook’s
theorem. Let M accepts in deterministic time n

k for some k. Again we may assume
that M is a simple Turing acceptor. We may further assume that M never moves
left of its original head position (in cell 1) and that if it accepts at all then it returns
to cell 1 and writes a special symbol a0 there just before accepting. For any input
x, we describe a 3CNF formula f(x) such that x is accepted by M iff f(x) ∈ 3UNIT.
Let

C0, C1, . . . , Cnk (5.3)

216 CHAPTER 5. COMPLETE LANGUAGES

be the computation path of M on input x. As usual, if M halted before n
k steps

we assume the last configuration is repeated in this path, and if M uses more than
n

k steps, we will prematurely truncate the sequence. It is convenient to encode a
configuration as a word of length m := 1 + 2nk in Σ∗ · [Q × Σ] · Σ∗ where Σ are
the tape symbols (including) of M and Q are the states and [Q× Σ] a new set of
symbols of the form [q, a] where q ∈ Q, a ∈ Σ. Thus a word of the form w1[q, a]w2

(where wi ∈ Σ∗) represents the configuration whose tape contents (flanked by blanks
as needed) are w1aw2 with the machine scanning symbol a in state q. We next
introduce the Boolean variables P

a

i,t
that stands for the following proposition:

“symbol a is in the ith cell of configuration C t”.

A similar meaning is accorded the Boolean variable P
[q,a]
i,t

where [q, a] ∈ [Q×Σ]. Let
x = a1a2 · · · an where each aj ∈ Σ. The formula f(x) is a conjunction of the form
F0∧F1∧ · · · ∧Fm+1. The last formula Fm+1 is special and is simply given by:

Fm+1 : ¬P
[qa,a0]
1,m

The formula Ft (t = 0, . . . ,m) is a 3CNF formula asserting that conditions that the
above variables must satisfy if they encode the configuration C t in (5.3). Thus the
first configuration C0 is

F0 : P
[q0,a1]
1,0 ∧P

a2
2,0∧ · · · ∧P

an

n,0∧





m
∧

i=n+1

P
i,0





We indicate the form of the remaining formulas. Let

∂ : (Σ ∪ [Q× Σ])3 → Σ ∪ [Q× Σ]

be the function that encodes the transition table of M. Roughly, ∂(a, b, c) = b
′ means

that the symbol b in a cell whose left and right neighbors are a and c respectively
will turn to b′ in the next step (with understanding that the ‘symbol’ in a cell could
mean a pair of the form [q, a′]). For example, suppose the M has the instruction
that says “on scanning symbol b in state q, write the symbol b

′, move the head to
the right and enter the state q

′”. We would then have the following:

∂([q, b], a, c) = [q′, a], ∂(a, [q, b], c) = b
′
, ∂(a, c, [q, b]) = c.

Also, clearly ∂(a, b, c) = b for all a, b, c in Σ. Now it is easy to understand the
following definition of Ft (t = 1, . . . ,m):

Ft :
∧

i





∧

a,b,c

(¬P
a

i−1,t−1∨¬P
b

i,t−1∨¬P
c

i+1,t−1∨P
∂(a,b,c)
i,t

)



 .

We now claim:

5.3. COMPLETE PROBLEMS FOR P 217

(i) The unit clause P
a

i,t
is unit deducible from f(x) = F1∧ · · · ∧Fm iff a is the

symbol or [state, symbol]-pair at cell i of C t.

(ii) Furthermore, no other unit clause can be deduced.

The claim is clearly true for initial configuration, t = 0. The result can be
established by a straightforward proof using induction on t; we leave this to the
reader.

We now show that x is accepted by M iff is unit deducible from f(x). Claim

(i) shows that x is accepted iff P
[qa,a0]
1,m

is deducible. But this clause can be unit
resolved with Fm+1 to obtain . Next claim (ii) easily implies that there are no
other ways to deduce . This shows the correctness of the described formula. It is
easy to construct f(x) in logarithmic space.

Note that each of the clauses in the proof uses at most 4 literals. Using techniques
similar to that in proving 3SAT NP -complete, we can replace these by clauses with
exactly 3 literals per clause. Q.E.D.

5.3.2 Path Systems

We now consider a problem that is the first one to be proved complete for P. It was
invented by Cook [7] who formulated it as an abstraction of the proof method of
both Savitch’s theorem (chapter 2) as well as a well-known theorem that context-free
languages are in DSPACE(log2

n) (see Exercises for this connection.)

Definition. A path system is a quadruple 〈n,R, S, T 〉 where n > 0 is an integer,
R ⊆ [1..n]× [1..n]× [1..n] is a relation over [1..n], and S, T are subsets of [1..n]. Each
integer u ∈ [1..n] represents a ‘node’ and node u is said to be accessible if u ∈ T or
if there exist accessible nodes v, w such that 〈u, v, w〉 is in R. The path system is
solvable if some node in S is accessible.

Path System Accessibility (PSA)

Given: A path system 〈n,R, S, T 〉.

Property: The system is solvable.

We first claim that PSA is in P: consider the Turing acceptor that begins by
computing the sets T0, T1, . . . of nodes in stages. In the initial stage, it computes
T0 = T . In stage i ≥ 1, it computes Ti consisting of those new nodes that are
accessible from Ti−1. It stops when no more new nodes are accessible. Clearly there
are at most n stages and each stage takes time O(n3). So the whole algorithm is
O(n4). Note that the size of the input can be much smaller than n (in fact as small
as O(log n)) if not all the integers in [1..n] occur in R,S, T . Hence the algorithm
could be exponential in the input size. However, with a more careful implementation
(cf. the demonstration that 2UNSAT is in NLOG), we can easily ensure that the

218 CHAPTER 5. COMPLETE LANGUAGES

time is O(m4) where m ≤ n is the number of nodes that actually occur in the path
system description. Hence our algorithm is polynomial time.

We now show that PSA is P-hard by reducing 3UNIT to it. Given a 3CNF
formula F , let X be the set of all clauses that are subsets of clauses of F . We
describe the corresponding path system 〈n,R, S, T 〉. Let n = |X| and let each
integer i ∈ [1..n] represent a clause of X. R consists of those triples 〈i, j, k〉 of
clauses in X such that i is the unit resolvent of j and k. Let the set T be equal
to F ; let S consist of just the empty clause . It is easy to see that 〈n,R, S, T 〉

is solvable if and only if F is in 3UNIT. This completes our proof that PSA is
P-complete.

5.3.3 Non-associative Generator Problem

The next problem is closely related to the NLOG-complete problem AGEN. Basi-
cally, the AGEN turns into a P-complete problem when we remove the associative
property. We now use ⊗ to denote the non-associative binary operation.

Generator Problem (GEN)

Given: Given 〈n, T, S,w〉 as in AGEN with T representing the multiplica-
tion table of a binary operation ⊗ over [1..n].

Property: w is in the ⊗-closure of S.

The proof that GEN is in P is straightforward. To show that it is P-hard we
can reduce 3UNIT to it, using a proof very similar to that for the PSA problem.

5.3.4 Other Problems

The following problem is due to Ladner [20]. Boolean circuits (which will be sys-
tematically treated in chapter 10) are directed acyclic graphs such that each node
has in-degree of zero or two. The nodes of indegree zero are called input nodes and
these are labeled by the integers 1, 2, . . . , n if there are n ≥ 0 input nodes. The other
nodes, called gates, are each labeled by some two-variable Boolean function. If these
Boolean functions are logical-and’s (∧) and logical-or’s (∨) only, then the circuit is
monotone. An assignment I to C is a function I : [1..n]→ {0, 1}. In a natural way,
for each node v of G, we can inductively define a Boolean value valC(v, I).

Monotone Circuit Value Problem (MCVP)

Given: A monotone Boolean circuit C with a distinguished node u, and an
assignment I to the input variables of C.

Property: valC(u, I) = 1.

Ladner originally proved the P-completeness of the (general) circuit value prob-
lem (CVP) in which the circuit is not restricted to be monotone; the refinement to

5.4. COMPLETE PROBLEMS FOR PSPACE 219

monotone circuits is due to Goldschlager [12]. Goldschlager also shows that CVP
(not MCVP) remains P-complete when we restrict the underlying graph of the cir-
cuits to be planar. Closely related to MCVP is this GAP-like problem:

AND-OR Graph Accessibility Problem (AND-OR-GAP)

Given: A directed acyclic graph G on vertices [1..n], where each vertex is
labeled by either ‘AND’ or ‘OR’.

Property: Node n is accessible from node 1. Here a node i is accessible from
another set S of nodes if either i ∈ S (basis case) or else i is an AND-
node (resp. OR-node) and all (resp. some) of the predecessors of i

are accessible from S (recursive case).

Another P-complete problem is:

Rational Linear Programming problem (RLP)

Given: An m × n matrix A and an m-vector b where the entries of A,b

are rational numbers.

Property: There is a rational n-vector x such that Ax ≥ b.

The fact that RLP is in P is a result of Khachian as noted in chapter 3; that the
problem is P-hard is due to Dobkin, Reiss and Lipton[8]. The RLP problem has a
famous history because of its connection to the simplex method and because it was
originally belonged to the few problems known to be in NP ∩ co-NP that is neither
known to be in P nor NP -complete.

Goldschlager, Shaw and Staples [11] have shown that a formulation of the well-
known problem Maximum Flow in graphs is P-complete.

Adachi, Iwata and Kasai [1] have defined natural problems that are complete for
DTIME(nk) for each k ≥ 1.

5.4 Complete Problems for PSPACE

5.4.1 Word Problems

A rich source of natural problems with high complexity arises in the study of ex-

tended regular expressions. Meyer and Stockmeyer [21, 31, 32] and Hunt [17] were
among the first to exploit such results. Given an alphabet Σ, the set of extended
regular expressions over Σ is a recursively defined set of strings over the alphabet Σ
together with the following 9 additional symbols

λ,+, ·,∩,
2
,
∗
,¬,), (

which we assume are not in Σ. Each symbol in Σ ∪ {λ} will be called an atom. An
extended regular expression (over Σ) is either an atom or recursively has one of the
following forms:

(α + β), (α · β), (α ∩ β), (α)2, (α)∗,¬(α)

220 CHAPTER 5. COMPLETE LANGUAGES

where α and β are extended regular expressions. Each expression α over Σ denotes
a language (Σ, L(α)) defined as follows: if α is the atom a ∈ Σ ∪ {λ} then L(α) is
the language consisting of the single word4

a; otherwise

Union: L(α + β) = L(α) ∪ L(β)

Concatenation: L(α · β) = L(α) · L(β)

Intersection: L(α ∩ β) = L(α) ∩ L(β)

Squaring: L(α2) = L(α) · L(α)

Kleene-star: L(α∗) = L(α)∗ =
⋃

i≥0

L(α)i

Complement: L(¬α) = Σ∗ − L(α)

Note that if α is regarded as an expression over a different alphabet Γ (provided
all the atoms appearing in the expression α are in Γ) it would denote a different
language; in practice, the context will make clear which alphabet is meant or else
the specific alphabet is irrelevant to the discussion.

Notations. We often omit the symbol for concatenation (writing ‘αβ’ for ‘α·β’).
Noting that all our binary operators are associative, and assuming some precedence
of operators (unary operators precede binary ones and concatenation precedes union
and intersection) we can omit some of the parentheses that might otherwise be
needed. If S = {a1, . . . , am} is a set of atoms, we often use the meta-symbol S as a
shorthand for the expression a1 + a2 + · · ·+ am. If α is any expression and k ≥ 1 (k
may be an integer expression), then we write α

k as a short hand for concatenating
k copies of α (note the possible confusion of this notation with applications of the
squaring operator if k written as a power of 2; the context will clarify which is
meant).

The size |α| of an extended regular expression α is defined recursively as follows:
if α is an atom then |α| = 1; otherwise

|α + β| = |α · β| = |α ∩ β| = 1 + |α|+ |β|;

and
|α

2
| = |α∗

| = |¬α| = 1 + |α|.

Example 1 The following expression (of size 22) denotes the set of those words
over Σ = {a, b, c} of length between 4 and 8 beginning with a but not terminating
with b:

a(a + b + c)2((a + b + c + λ)2)2(a + c)

4We deliberately abuse notation here, by confusing the symbol ‘λ’ in extended regular expressions
with the usual notation for the empty word; of course it comes to no harm since λ just stands for
itself in this sense. Also, we really ought to use ‘∪ ’ for union for consistency with ‘∩’ for intersection;
but it seems that the asymmetric choice has better visual aesthetics.

5.4. COMPLETE PROBLEMS FOR PSPACE 221

Let Ω be a subset of the extended regular operators {+, ·,∩,
2
,
∗
,¬}. Then a

Ω-expression is a extended regular expression that uses only the operators in Ω.
Then the following word problems are defined:

Inequality: INEQ(Σ,Ω) = {(α, β) :
α and β are Ω-expressions over Σ and L(α) 6= L(β}

Fullness: FULL(Σ,Ω) = {α : α is an Ω-expression and L(α) = Σ∗}

Emptiness: EMPTY(Σ,Ω) = {α : α is an Ω-expression and L(α) = ∅}

Membership: MEMBER(Σ,Ω) = {(x, α) : α is an Ω-expression and x ∈ L(α)}

In the presence of negation, ¬ ∈ Ω, it is evident that the fullness and empti-
ness problems are equivalent. Furthermore, the complement of the emptiness and
fullness problems are special cases of the inequality problem whenever there is
an Ω-expression denoting ∅ or Σ∗ (resp.). We will mainly be showing the com-
plexity of inequality and fullness problems in this and the next section. If Σ is
{0, 1} we just denote these problems by MEMBER(Ω), INEQ(Ω), etc. If Ω =
{ω1, . . . , ωk} then we also write INEQ(ω1, . . . , ωk), FULL(ω1, . . . , ωk), etc., instead
of INEQ({ω1, . . . , ωk}), FULL({ω1, . . . , ωk}), etc. . We begin by showing that the
complexity of these problems does not really depend on Σ provided |Σ| ≥ 2:

Lemma 6 Let Ω be any set of operators and |Σ| ≥ 2.

(i) If Ω contains the concatenation operator then INEQ(Σ,Ω) ≡1FST

m
INEQ(Ω).

(ii) If Ω contains {+, ·, ∗} then FULL(Σ,Ω) ≡1FST

m
FULL(Ω).

Proof. (i) Recall the ≤1FST

m
-reducibility from chapter 4 (section 1). It is imme-

diate that INEQ(Ω) ≤1FST

m
INEQ(Σ,Ω). Conversely, to show INEQ(Σ,Ω) ≤1FST

m

INEQ(Ω), we use the usual coding h : Σ→ {0, 1}∗ of a general alphabet by binary
strings over {0, 1} of fixed length k (for some k ≥ 2). Then each Ω-expression α

over Σ is systematically transformed to an Ω-expression H(α) over {0, 1} simply by
replacing each occurrence in α of the atom a ∈ Σ by (the {·}-expression denoting)
h(a). It is also easy to see that (α, β) ∈ INEQ(Σ,Ω) iff (H(α),H(β)) ∈ INEQ(Ω).

(ii) Again, one direction is trivial. To show FULL(Σ, g) ≤ 1FST

m
FULL(Ω), let h

be the coding in (i) and let C = {h(a) : a ∈ Σ} ∪ {λ} ⊆ {0, 1}∗. Let α be an Ω-
expression over Σ, and let H(α) be its transformation as in (i). Clearly L(H(α)) ⊆
C

∗, with equality iff L(α) = Σ∗. If we can write an Ω-expression β over {0, 1} such
that L(β) = Σ∗ − C

∗ then we see that

L(α) = Σ∗
⇐⇒ L(H(α) + β) = {0, 1}∗.

222 CHAPTER 5. COMPLETE LANGUAGES

It is easy to construct such an expression:

β : ((0 + 1)k)∗ · ((0 + 1 + λ)k
− C) · ((0 + 1)k)∗

where k is the length of the codes h(a), a ∈ Σ, and the subexpression ‘((0+1+λ)k−

C)’ is really a shorthand for an explicit enumeration of the words in the indicated
set. These expressions involve only {+, ·, ∗}. Q.E.D.

Although it is convenient when proving upper bounds to assume a binary al-
phabet, it is easier to use the general alphabet Σ when proving lower bounds (i.e.
hardness results). Below we shall switch between these two versions of the problem
without warning.

5.4.2 Fullness Problem for Regular Expressions

Our first result is from Stockmeyer [32]:

Theorem 7 FULL(+, ·, ∗) is complete for the class LBA = NSPACE(n).

Note that the {+, ·, ∗}-expressions are just the standard regular expressions of
finite automata theory. In the following proof, we shall often exploit the fact that
NSPACE(n) is closed under complementation. By lemma 2, we conclude:

The fullness problem for regular languages is complete for PSPACE.

Recall that a finite automaton is a 0-tape Turing acceptor with a 1-way input
tape that runs in real-time (n + 1 steps); the size of the automaton is the number
of tuples in its transition table. Clearly the size is at most |Q| 2(|Σ| + 1) where
Q is the set of states and Σ the input alphabet (the ‘+1’ comes from the need to
consider rules for the blank symbol). To show that the fullness problem for regular
expressions is in NSPACE(n), we first show:

Lemma 8 For any regular expression α over Σ, we can construct in polynomial

time and linear space a nondeterministic finite automaton that accepts the language

(Σ, L(α)); furthermore the automaton has ≤ max{4, |α|} states.

Proof. We construct the transition table δ
α corresponding to α. Denote the start

and accepting states for δ
α by q

α

0 and q
α

a
. The transition table of a nondeterministic

finite automaton can be represented as a set of triples of the form 〈current-state,

symbol, next-state〉. Furthermore, we assume that for any tuple 〈q, b, q ′〉 in δ
α,

q
′ = q

α

a
=⇒ b = .

In other words, all transitions into the accept state occur after the first blank symbol
is read. A state q is called penultimate if there is a transition from q to the accept

state q
α

a
. The table δ

α is defined by induction on the size of α:

5.4. COMPLETE PROBLEMS FOR PSPACE 223

(1) Suppose α is an atom b: if b = ε then the table δ
α consists of the single triple:

〈q
α

0 , , q
α

a
〉.

If b ∈ Σ then the table consists of two triples:

〈q
α

0 , b, q〉, 〈q, , q
α

a
〉

for some state q.

(2) If α is β +γ then first form the union δ
β ∪ δ

γ . We then replace (in the triples)
the start states of the original automata for β and γ with the start state for
α, and do the same for the accept states.

(3) If α is β · γ then we again form the union δ
β ∪ δ

γ , and do the following: if q

is a penultimate state of δ
β and δ

γ contains the triple 〈qγ

0 , b, q
′〉 then add the

triple 〈q, b, q ′〉 to δ
α. This ensures that after the automaton has seen a word

in L(β), it can continue to try to recognize a word in L(γ). Also replace the
start state of δ

β by the start state q
α

0 and the accept state of δ
γ by the accept

state q
α

a
. Triples containing the accept state of δ

β and the start state of δ
γ are

deleted.

(4) If α is β
∗ then we first take the table for β and replace its start and accept states

with that for α. If q is a penultimate state of δ
β and 〈qβ

0 , b, q
′〉 ∈ δ

β then add the
triple 〈q, b, q ′〉 to δ

α (this ensures that that the automaton accepts arbitrarily
many copies of words in L(β)). Finally, add the new triple 〈q α

0 , , q
α

a
〉 (this

allows the empty string to be accepted). Thus δ
α has the same number of

states as δ
β

The reader can easily show that the constructed transition table δ
α accepts L(α).

The number of states is at most |α| when |α| ≥ 4. A case analysis shows that when
|α| ≤ 3, δ

α has at most 4 states. The automaton δ
α can be constructed in linear

space and polynomial time from α. Q.E.D.

We now show that FULL(+, ·, ∗) is in co-NSPACE(n). It is enough to show how
to accept the complement of the language FULL(+, ·, ∗) in nondeterministic linear
space. On input a regular expression α, we want to accept iff L(α) 6= {0, 1}∗. First
we construct δ

α and then try to guess a word x 6∈ L(α): nondeterministically guess
successive symbols of x and simulate all computation paths of the automaton on the
guessed symbol. More precise, we guess successive symbols of x and keep track of
the set S of all the states that can be reached by the automaton δ

α after reading
the symbols guessed to this point. It is easy to see how to update S with each
new guess, and since S has at most 2|α| states, linear space suffices. When we are
finished with guessing x, we make the next input symbol be the blank symbol ,
and update S for the last time. We accept if and only if S does not contain the
accept state. To show the correctness of this construction, we see that (i) if there

224 CHAPTER 5. COMPLETE LANGUAGES

exists such an x then there exists an accepting path, and (ii) if there does not exist
such an x then no path is accepting. This proves FULL(+, ·, ∗) ∈ co-NSPACE(n).

To show that the fullness problem is co-NSPACE(n)-hard, let M be a nonde-
terministic simple Turing acceptor accepting in space n. We may assume that M
never moves left of the cell 1 and that M enters the accepting state immediately
after writing a special symbol a0 in cell 1. For each input x of M we will construct
a regular expression E(x) over some alphabet ∆ (see below) such that x 6∈ L(M) iff
L(E(x)) = ∆∗. Let t(n) = OM(1)n be an upper bound on the running time of M on
inputs of length n = |x|. Let

C0 ` C1 ` · · · ` Cm (m = t(n))

be a computation path on input x where as usual we assume that the last con-
figuration is repeated as often as necessary if M halts in less that m steps. Let
I = {1, . . . , |δ(M)|} where δ(M) is the transition table of M. We assume that each
Ci is encoded as a word wi of length n + 2 in

Σ∗
· [Q× Σ× I] · Σ∗

where Σ and Q are the set of symbols and states (respectively) of M and [Q×Σ× I]
is the set of symbols of the form [q, a, i], q ∈ Q, a ∈ Σ, i ∈ I. Note that Ci uses
use n+2 rather than n symbols because we incorporate the adjacent blank symbols
on either side of the input into the initial configuration (and thereafter assume the
machine do not to exceed these squares). Intuitively, the symbol [q, a, i] says that
the current tape head is scanning symbol a in state q and the next instruction to
be executed is the ith instruction from δ(M). Therefore computation path can be
encoded as a word

π(x) = #w0#w1# · · ·#wm#

where # is some new symbol not in Σ ∪ [Q× Σ× I].

Notation. In the following, let Γ = Σ∪ [Q×Σ× I] and let ∆ = Γ∪{#}. Thus
π(x) is a word over ∆.

The regular expression E(x) will represent a language over ∆. In fact E(x) will
have the form E1 + E2 + · · · + E6 where the Ei’s are next described.

(a) E1 denotes the set of words over ∆ that “does not begin with an #, does not
end with a #, or has at most one #”. Precisely,

E1 = Γ∗ + Γ∗
·# · Γ∗ + Γ ·∆∗ + ∆∗

· Γ.

Since + takes precedence over ·, this expression is unambiguous. As mentioned,
we write Γ, ∆, etc., as in the shorthand where a set of symbols X stands for
the regular expression x1 + · · ·+xk if the distinct symbols in X are x1, . . . , xk.
Thus, each occurrence of Γ∗ in E1 represents a subexpression of size 2|Γ|.

5.4. COMPLETE PROBLEMS FOR PSPACE 225

The remaining regular expressions in E(x) will consider strings that are not in
L(E1). Such strings necessarily have the form

y = #x1#x2# · · ·#xk# (5.4)

for some k ≥ 1 and xi ∈ Γ∗. In our informal description of the expressions below,
we will be refering to (5.4).

(b) “Some xi in (5.4) does not have a unique symbol in [Q× Σ× I]”

E2 = ∆∗
·# ·Σ∗

·# ·∆∗ +∆∗
·# ·Γ∗

· [Q×Σ× I] ·Γ∗
· [Q×Σ× I] ·Γ∗

·# ·∆∗
.

(c) “Some xi has length different from n + 2”

E3 = ∆∗
·# · Γn+3

· Γ∗
·# ·∆∗ + ∆∗

·# · (Γ ∪ {λ})n+1
·# ·∆∗

.

(d) “x1 does not represent the initial configuration on input x = a1 · · · an”
Note that the initial configuration is represented by one of the forms

[q0, a1, i]a2 · · · an

where i ∈ I. Let [q, a, I] denotes the set {[q, a, i] : i ∈ I}. For any subset S of
∆, we use the shorthand ‘S̄’ for the regular expression denoting the set ∆−S.
If S = {a}, we simply write ā for ∆− {a}. We then have:

E4 = # · (+ ([q0, a1, I] + [q0, a1, I](ā2 + a2(ā3 + · · ·+ an(+ Γ∗) · · ·)))) ·∆∗
.

(e) “There are no accepting configurations in y”
That is, none of the symbols of [qa, a0, I] appears in y. Here qa is the accepting
state and a0 the special symbol that is written when the machine halts. Here
we assume that the transition table for M contains trivial transitions from the
accept state in which ‘nothing changes’ (the state, scanned symbol and head
position are unchanged).

E5 = (∆− [qa, a0, I])∗.

(f) “Some transition, from xi to xi+1, is not legal”
Recall the function ∂ : Γ × Γ × Γ → Γ defined in the proof that 3UNIT is
P-hard. There, the interpretation of ∂(a, b, c) = b

′ is that a cell containing
b with neighbors a and c will change its contents to b

′ in the next step. For
the present proof, we can easily modify the function ∂ to account for the case
where a or c might be the new symbol # and where a, b, c could be an element
of [Q × Σ × I]. Furthermore, since M is nondeterministic, ∂(a, b, c) is now a
subset (possibly empty) of ∆.

226 CHAPTER 5. COMPLETE LANGUAGES

For instance, if b has the form [q, b′, i], the ith instruction is indeed executable
in state q scanning b

′, and b
′ is changed to b

′′ and the tape head moves right.
Then we put b

′′ in ∂(a, b, c). Moreover, if the ith instruction changes state q

to q
′, then ∂(b, c, d) (for any d) contains [q ′, c, j] for each j ∈ I. Note that

we are slightly wasteful here in allowing all possible j’s to appear in the next
head position, but it does not matter.

If the ith instruction is not executable, we simply set ∂(a, b, c) = ∅. Thus E 6

has the form

E6 = F1 + F2 + · · ·

where each Fi corresponds to a triple of symbols in ∆3. If Fi corresponds to
the triple (a, b, c) ∈ ∆3 then

Fi = ∆∗
· a · b · c ·∆n+1

· ∂(a, b, c) ·∆∗
.

We have now completely described E(x). A moment’s reflection will convince the
reader that L(E(x)) = ∆∗ iff x is rejected by M; thus E(x) is in FULL(∆, {+, ·, ∗})
iff x 6∈ L(M). (Exercise: why do we need the explicit introduction of the variable i

in [q, a, i]?) The size of E(x) is given by

|E1|+ · · ·+ |E6|+ 5 = O(1) + O(1) + O(n) + O(n) + O(1) + O(n)

which is O(n). It is easy to verify that E(x) can be computed from x in logarithmic
space. Thus we have shown that every language in co-NSPACE(n) is reducible to
FULL(∆, {+, ·, ∗}) and hence (by lemma 6(ii)) reducible to FULL(+, ·, ∗).

5.4.3 Complexity of Games

Another rich source of problems with high complexity is the area of combinatorial
games. One type of game can be defined as follows.

Definition. A two-person game is a quintuple

〈I0, I1, p0,R0,R1〉

where I0, I1 are disjoint sets of positions (for player 0 and player 1, respectively),
p0 ∈ I0 is a distinguished start position, R0 ⊆ I0 × I1 and R1 ⊆ I1 × I0.

A pair 〈p, p
′〉 inR0 is called a move for player 0; we say that there is a move from

p to p
′. The analogous definition holds for player 1. We call p an end position for

player b (b = 0, 1) if p ∈ Ib and if there are no moves from p. A match is a sequence
µ = (p0, p1, p2, . . .) of positions beginning with the start position such that 〈p i, pi+1〉

is a move for all i ≥ 0 and either the sequence is finite with the last position an end
position, or else the sequence is infinite. For b = 0, 1, we say that player b loses a

match µ if the sequence µ is finite and the last position in µ is an end position for

5.4. COMPLETE PROBLEMS FOR PSPACE 227

player b; in that case player 1− b wins the match. In other words, the player whose
turn it is to play loses if he has no move. The match is a draw if it is infinite. A
position p is a forced win for Player b if (basis case) p is an end position for player
1− b, or else (inductive case):

(a) either p ∈ Ib and there is a move from p to a forced win for player b

(b) or p ∈ I1−b and for every p
′ ∈ Ib, if there is a move from p to p

′ then p
′ is a

forced win for player b.

An example of such a game is by given Even and Tarjan [10]: Let G be a given
undirected graph on the vertex set [1..n] for some n ≥ 2. One player (‘short’) tries
to construct a path from node 1 to node n and the other player (‘cut’) attempts to
frustrate this goal by constructing an (1, n)-antipath (i.e. a set of nodes such that
every path from node 1 to n must pass through the set). The game proceeds by the
players alternately picking nodes from the set [1..n]: the first player to achieve his
goal wins.

More formally: A position is a pair 〈S0, S1〉 where S0 and S1 are disjoint sets of
vertices and S0 ∪ S1 ⊆ {2, 3, . . . , n − 1}. If |S0 ∪ S1| is even then it is a position of
player 0, else of player 1. The start position is 〈∅, ∅〉. An end position is 〈S 0, S1〉

such that either

(a) it is a position for player 1 and there is a path in G from node 1 to node n

passing only through the vertices in S0, or

(b) it is a position for player 0 and S1 is an (1, n)-antipath.

Note that (a) and (b) represents, respectively, a winning position for player 0 (short)
and player 1 (cut). Also if S0∪S1 = {2, 3, . . . , n−1} then p must be an end position.
Hence there are no draws in this game. Suppose p = 〈S0, S1〉 is a position for player
b but p is not an end position. Then there is a move from p to 〈S ′

0, S
′
1〉 iff for some

v ∈ {2, 3, . . . , n− 1}− (S0 ∪S1), such that S
′
1−b

= S1−b and S
′
b
= Sb ∪ {v}. Thus no

node is picked twice.

Generalized Hex (HEX)

Given: An undirected graph G over [1..n], n ≥ 2.

Property: Does player 0 have a forced win from the start position?

Remark: This game is also called Shannon switching game on vertices. For the
analogous game where moves correspond to choosing edges the optimum strategy is
considerably easier and can be determined in polynomial time.

Theorem 9 HEX is PSPACE-complete.

The problem is in PSPACE : The start position p0 is a forced win for player 0 if
and only if there exists some tree T with ≤ n−1 levels with the following properties:

228 CHAPTER 5. COMPLETE LANGUAGES

(a) The root is p0 and counts as level 0. Nodes at even levels are positions of
player 0 and nodes at odd levels are positions of player 1.

(b) If there is an edge from a node p to a child node q then there is a move from
p to q. If p is a position of player 0 then p has exactly one child. If p is a
position of player 1 then the set of children of p represents all possible moves
from position p.

The condition that positions for player 0 has exactly one child implies that such
positions cannot be leaves of the tree; thus all leaves are at odd levels. Some such
tree T can be searched nondeterministically using a depth-first algorithm. The
search is fairly standard – basically, we need to keep a stack for the path from the
root to the node currently visited. This stack has depth n, so if each node of the
path requires linear storage, we have an algorithm using quadratic space. (It is not
hard to see that linear space is sufficient.)

We postpone the proof that HEX is PSPACE -hard until chapter 9 since it is
easy to reduce HEX to the problem QBF (quantified Boolean formulas) that will be
introduced there.

Schaefer [29] shows several other games that are complete for PSPACE . Or-
lin [24] and Papadimitriou [25] show other methods of deriving natural PSPACE -
complete problems.

5.5 Complete problems with exponential complexity

5.5.1 The power of squaring

The next two subsections prove two results of Meyer and Stockmeyer:

Theorem 10 FULL(+, ·, ∗, 2) is EXPS-complete.

Theorem 11 INEQ(+, ·, 2) is NEXPT-complete.

Observe that the first result involves adding the squaring operator to the regular
operators; in the second result we replace the Kleene-star operator by the squaring
operator. The hardness proofs in both cases come from making simple modifications
to the proof for FULL(+, ·, ∗) in the last section.5

In the proof for FULL(+, ·, ∗), the expression E(x) contains subexpressions of
the form S

k where S is one of Γ, (Γ ∪ {α}),∆, and where k ∈ {n − 1, n, n + 1}.
Sets of the form S

k are called rulers (of length k) because they measure the distance
between two corresponding (or neighboring) symbols in consecutive configurations.
The crux of the present proofs lies in the ability to replace such expressions by

5An interesting remark is that the role of Kleene-star in transforming a problem complete for a
time-class to a corresponding space-class is linked to the ability of forming ‘transitive closure’. (Cf.
[5])

5.5. COMPLETE PROBLEMS WITH EXPONENTIAL COMPLEXITY 229

squaring expressions of exponentially smaller size. The following lemma makes this
precise:

Lemma 12 Let Σ be an alphabet and k a positive integer.

(i) Then there is an {+, ·, 2}-expression α such that L(α) = Σk and |α| =
OΣ(log k). Let [Σk]sq denote such an expression α.

(ii) There is a log-space transformation from the binary representation of inte-

ger k to [Σk]sq.

Proof. (i) The proof uses a well-known trick: using induction on k, we have [Σ 1]sq =
Σ, [Σ2k]sq = ([Σk]sq)

2 and [Σ2k+1]sq = Σ · [Σ2k]sq. (ii) We leave this as an exercise.
Q.E.D.

5.5.2 An exponential space complete problem

We prove theorem 10. To show that FULL(+, ·, ∗, 2) is in EXPS , we observe that any
expression α with squaring can be expanded to an equivalent expression β without
squaring (just replace each expression S

2 by S · S). Clearly |β| ≤ 2|α|. But β is a
regular expression and by the results of the previous section it can be accepted in
space O(|β|).

To show that the problem is EXPS -hard, suppose that M is a 2n space-bounded
deterministic acceptor (other exponential bounds for EXPS machines can be treated
in much the same way as shown here for 2n). Indeed, to make the following nota-
tions less cluttered, we may assume that M accepts in space 2n−1 − 1 (use space
compression). For each input x of length n, let

π(x) = #w0#w1# · · ·#wm# (where m = 22O(n)
)

represent a computation path of M where each configuration wi has length 2n.
We show how to construct in logarithmic space an expression Ê(x) such that
Ê(x) ∈ FULL(+, ·, ∗, 2) iff x 6∈ L(M). (This is sufficient since EXPS is closed
under complementation.)

We need rulers of length k where k = 2n − δ, δ ∈ {−1, 0,+1}. We exploit
the previous lemma to express these rulers using squaring expressions of size O(n).
Recall the regular expression E(x) in the proof for regular expressions in the previous
section; the ruler subexpressions in E(x) are of the form S

n+δ where δ ∈ {−1, 0,+1}.
The expression Ê(x) is obtained from E(x) by replacing each ruler subexpression

S
n+δ in E(x) by the squaring expression [S 2n+δ]sq defined in the previous lemma.

The reader can easily confirm that Ê(x) has linear size.

230 CHAPTER 5. COMPLETE LANGUAGES

5.5.3 An exponential time complete problem

We prove theorem 11. It is easy to see that the {+, ·, 2}-expressions can only denote
finite languages. We leave it as an exercise to show that the inequality problem for
{+, ·, 2}-expressions is in NEXPT .

To show that the problem is NEXPT -hard, suppose that M is a 2n − 2 time-
bounded nondeterministic acceptor (again, other time bounds for NEXPT machines
can be treated in the same way). For each input x of length n, let

π(x) = #w0#w1# · · ·#wm# (where m = 2n)

represent a computation path of length 2n where each configuration wi has length
2n. Note: we want the wi’s to represent the contents in tape cells whose absolute
index (i.e., address) is −2n + 1 to 2n − 1, so each symbol of wi has as many tracks
as the number of tapes of M, and each track encodes two tape symbols, etc. We
will describe two {+, ·, 2}-expressions E

1(x) and E
2(x) corresponding to the input

word x such that L(E1(x))6=L(E2(x)) iff x is accepted by M. The expression E
1(x)

is very similar to Ê(x) in the above proof for EXPS . In fact, E
1(x) is obtained in

two steps:

(1) Since the Kleene-star operator is no longer allowed, we replace each subexpres-
sion of the form S

∗ (where S = ∆,Γ, etc) with (S ∪ {λ})22n+1
. The reason for

the exponent ‘2n + 1’ is because the string π(x) has length (2n + 1)2 < 22n+1

for n ≥ 2. We write S
2k

here just as a shorthand for k applications of the
squaring operation. Thus the size of S

2k

is O(k). Since the original expression
Ê(x) has a fixed number of Kleene-star operators, the replacements maintain
the linear size of the original expression.

(2) Let Ê
1(x) be the expression after the replacements of (a). The reader may

verify that Ê
1(x) satisfies:

(i) Each word w in L(Ê1(x)) has length ≤ 5 · 22n+1 + 4. (This maximum
length is achieved by the modified subexpression E2 in E(x).)

(ii) A word w ∈ ∆∗ of length ≤ 22n+1 is in L(Ê1(x)) if and only if it does
not represent an accepting computation of M on input x.

We obtain E
1(x) as Ê

1(x) + F where L(F) denotes all words w of length
22n+1

< |w| ≤ 5 · 22n+1 + 4. Clearly F can be written as

[∆22n+1+1]sq · [(∆ + λ)2
2n+3+3]sq.

Our description of E
1(x) is complete. Let E

2(x) express the set of words of
length at most 5 · 22n+1 + 4. Therefore L(E1(x))6=L(E2(x)) iff x is accepted by M.
Clearly E

1(x) and E
2(x) have linear size by our remarks. This concludes the proof

that INEQ(+, ·, 2) is NEXPT -complete.

5.6. ELEMENTARY PROBLEMS 231

5.5.4 Other Problems

The following chart summarizes the complexity of some word problems. Most of
these results are from Meyer and Stockmeyer. In the chart, we say a class K is a
‘lower bound’ for a problem L to mean that L is K-hard. It is intuitively clear why
such a result is regarded as a ‘lower bound’; in the next chapter we show that such a
result can be translated into explicit lower bounds on the complexity of any Turing
machine accepting L.

Problem Lower Bound Upper Bound

INEQ(+, ·,¬) DSPACE(exp(log n)) DSPACE(exp(n))

FULL(+, ·, 2
,
∗) EXPS EXPS

INEQ(+, ·, 2) NEXPT NEXPT

FULL(+, ·, ∗) NSPACE(n) NSPACE(n)

INEQ(+, ·) NP NP

INEQ({0}, {+, ·, 2
,¬}) PSPACE PSPACE

INEQ({0}, {+, ·, ∗}) NP NP

INEQ({0}, {+, ·,¬}) P P

Notes:

(i) In row 1 we refer to the super-exponential function exp(n) defined in the
appendix of chapter 4. The next section considers a closely related result.

(ii) We have so far assumed an alphabet Σ of size at least two; the last three rows
of this table refers to unary alphabets.

(iii) With the exception of row 1, all the upper and lower bounds agree. In other
words, each language L above is K-complete for its class K.

(iv) The lower bounds for the languages FULL(+, ·, 2
,
∗), INEQ(+, ·, 2) and

FULL(+, ·, ∗) have just been given in sections 4 and 5. It is easily observed
that the many-one reductions in these proofs all use transformations t that
are linearly bounded i.e. |t(x)| = O(|x|) for all x. This fact will be used in
chapter 6.

Other problems based on games that are complete for exponential time or space
can be found in [6].

5.6 Elementary Problems

5.6.1 The power of negation

Recall the super-exponential function exp(n,m) given in the appendix of chapter 4.

232 CHAPTER 5. COMPLETE LANGUAGES

Definition 1 A language is called elementary (or, elementary recursive) if it can

be accepted in deterministic space exp(k, n) for some some integer k ≥ 0. Let

ELEMENTARY denote the class of elementary languages.

The class of ‘elementary functions’ was defined by Kalmar [26]; the character-
ization of the corresponding class of languages in terms of its space complexity
(as in the preceding definition) is due to Ritchie [27]. Our goal in this section is
to show that if we admit the negation operator, then the complexity of the word
problems we study is enormously increased. More precisely, we are concerned with
Ω-expressions where Ω = {+, ·, ∗,¬}; call these the regular expressions with nega-

tion. We show that the fullness problem for such expressions are as hard as any
elementary problem. The first natural problem shown to be ELEMENTARY-hard
is the decision problem for the so-called weak monadic second order theory of one

successor (WS1S), due to Meyer [22].6 Meyer showed that the emptiness problem
for the so-called gamma expressions (γ-expressions) can be efficiently reduced to
WS1S. We shall define gamma expressions7 as those that use the operators

·,+,
∗
,¬, γ

where only the last operator, γ, needs explanation. γ is a unary operator such that
for any γ-expression α, the γ-expression γ(α) denotes the set

L(γ(α)) = {w : (∃x)[x ∈ L(α) and |w| = |x|]}.

Recall from the last section that the set Σk is called a ruler of length k; if we can
give very succinct γ-expressions to denote very long rulers then the appropriate word
problem for the γ-expressions is proportionally hard to decide. We now describe the
ideas of Meyer for describing very long rulers by exploiting negation and γ. We
introduce a special Turing machine just for the purposes of our proofs.

Definition 2 A counting machine is a deterministic simple Turing machine Mc

with tape alphabet {0, 1,&}, such that on input &x&, x a binary word of length

n ≥ 1, the tape head will remain within the left and right boundary markers ‘&’ and

will loop while performing the following repeatedly: treating the contents between

the markers as a binary number between 0 and 2n − 1, the machine successively

increments the binary number modulo 2n.

One realization of such a machine has three states q0, q1 and q2, with the following
deterministic transition table:

6This is the problem of deciding the validity of second order formulas where the second order
variables vary over finite sets and the only non-logical symbol is the successor relation.

7Meyer’s construction does not require negation or Kleene-star. We use these to simplify our
illustration.

5.6. ELEMENTARY PROBLEMS 233

δ 0 1 &

q0 − − (q1,&,+1)

q1 (q1, 0,+1) (q1, 1,+1) (q2,&,−1)

q2 (q1, 1,+1) (q2, 0,−1) (q0,&, 0)

The table rows and columns are labeled by states q and symbols b, respectively.
An entry (q′, b′, d) in the q-row and b-column says if the machine is in state q scanning
symbol b, it next enters state q

′, changes symbol b to b
′ and moves its head in the

direction indicated by d. The first row of this table for state q 0 (the start state) is
only defined for the input symbol ‘&’. We assume that the input string has the form
&x& where x ∈ {0, 1}∗ and the machine is started in state q0 scanning the leftmost
symbol ‘&’. The behavior of this machine is easily described:

(i) The machine in state q1 will move its head to the right until it encounters the
right marker ‘&’; during this movement, it does not modify the contents of
the tape. When it sees ‘&’, it enters state q2 and reverses direction.

(ii) The machine only enters state q2 while at the right marker in the way indicated
in (i); in state q2, the machine will move its head leftward until it finds the
first 0 or, if there are no 0’s, until the left marker ‘&’. During the leftward
motion, it changes the 0’s into 1’s. If it finally encounters the symbol 1, it
changes it to a 0, reverses direction and enters state q1. If it encounters the
symbol & instead, it does not change the symbol but enters state q0 while
remaining stationary. Entering state q0 indicates the start of a new cycle.

Notation and convention. From now on, when we say ‘the counting ma-
chine’ we refer to the particular machine just described. Let Σ c be the alphabet for
encoding computations of the counting machine, consisting of the thirteen symbols:

#,&, 0, 1, [qj , 0], [qj , 1], [qj ,&]

where j = 0, 1, 2. (The symbol # will not be used until later.) If the non-blank
portion of the tape of a simple Turing machine is a string of the form w 1bw2 (where
w1, w2 ∈ {&, 0, 1}∗ and b is the currently scanned symbol) and the machine is in
state q, we encode this configuration as C = w1[q, b]w2. Also, whenever we write
C`C ′ we assume the lengths of the encodings of the C and C

′ are equal: |C| = |C ′|.
We will assume that the machine is normally started with tape contents &0 n& for
some n ≥ 1. As usual, we assume that the head of the machine is initially scanning
the leftmost symbol of the input; the string encoding this initial configuration is
denoted by

init(n) = [q0,&]0n&.

Using the ideas of the last two sections, we can easily construct a regular expres-
sion αn that denotes all strings w that fail to satisfy at least one of the following:

234 CHAPTER 5. COMPLETE LANGUAGES

(a) w has the form

w = C0C1 · · ·Cm (for some m ≥ 0)

where the first and last symbol of each Ci is & or [qi,&].

(b) C0 is the configuration init(n).

(c) Ci is the successor of configuration Ci−1 (i = 1, . . . ,m), and C0 is the successor
of Cm.

(d) All the Ci’s are distinct.

Note that each Ci marks its own boundaries with the symbol &. The size of αn,
properly expressed, would be O(n). Observe that a word w satisfying (a)-(d) has
length at least n2n since the number of configurations m is at least 2n (O(2n) is also
an upper bound on m – see Exercises). Since Mc is deterministic, the complement
of L(αn) denotes a single word. The availability of the γ operator then gives us the
expression γ(¬αn) which denotes a ruler of length ≥ n2n.

In order to recursively apply this idea to get longer rulers, we can further show:

(γ) There is a constant c > 0 such that, given an γ-expression ρn denoting a ruler
of length n, we can efficiently construct a γ-expression ρm (for some m ≥ 2n)
denoting a ruler of length m such that |ρm| ≤ c|ρn|.

Hence, after k applications of this result, we can get a γ-expression of size O(c k
n)

denoting a ruler of length at least exp(k, n). Using such an expression, we can
then describe Turing machine computations where each configuration in the path
uses space exp(k, n). If the γ operator is not allowed, then it is less clear that the
recursive construction can be carried out. The remainder of this section shows how
this can be done, as shown by Stockmeyer [32].

For our result below, the concept of negation-depth is important. If we view an
expression as a tree whose internal nodes are operands and leaves are atoms, then
the negation-depth is the maximum number of negations encountered along any
path of this tree. More precisely, the negation-depth (or ¬-depth) of an extended
regular expression is recursively defined as follows: the ¬-depth of an atom is zero;
the ¬-depth of

(α + β), (α · β), (α ∩ β)

is the maximum of the ¬-depths of α and β; the ¬-depth of

α
2
, α

∗

is equal to the ¬-depth of α; finally the ¬-depth of ¬α is one plus the ¬-depth of α.

5.6. ELEMENTARY PROBLEMS 235

5.6.2 Homomorphism, rotation, smearing and padding

In the remainder of this section, ‘expression’ shall mean ‘regular expression with
negation’ over a suitable alphabet Σ that varies with the context. The present
subsection discusses technical tools to facilitate our rendition of Stockmeyer’s con-
struction. The reader should recall the notion of letter-homomorphisms (appendix
in chapter 2) since it is the basis of many constructions.

Let Σ1,Σ2 be alphabets. In the following it is convenient to distinguish two ways
to form composite alphabets: horizontal composition

[Σ1 × Σ2] = {[a, b] : a ∈ Σ1, b ∈ Σ2}

and vertical composition
[

Σ1

Σ2

]

= {

[

a

b

]

: a ∈ Σ1, b ∈ Σ2}.

A string in

[

Σ1

Σ2

]∗

can be regarded as the contents of a two-tracked tape. Define

the functions h1 and h2 that respectively extract the first and second component
of a horizontally composite symbol: h i([b1, b2]) = bi, i = 1, 2. These functions then
extend in the usual manner to the letter-homomorphisms (still denoted by h i):

hi : [Σ1 × Σ2]
∗
→ Σ∗

i
.

We shall also use the inverse map

h
−1
i

: Σ∗
i
→ 2[Σ1×Σ2]∗

where for any set X, we use 2X to denote the set of subsets of X, and h
−1
i

(w) is
defined to be the set of x ∈ [Σ1 × Σ2]

∗ such that hi(x) = w.
For any homomorphism h : Σ∗ → Γ∗, and any language L ⊆ Σ∗, we call h(L)

the h-image of L. If L
′ ⊆ Γ∗, and h(L′) = L then we call L

′ an h-preimage (or
h-pre-image) of L. Note that in general, an h-preimage of L is only a subset of
h
−1(L); we may call h

−1(L) the full preimage of L.
Similarly, hU and hL extract the upper and lower components of a vertically

composite symbol: hU (

[

a

b

]

) = a, hL(

[

a

b

]

) = b. Again we have the corresponding

letter homomorphisms and their inverses. Since horizontal and vertical compositions
have only pedagogical differences, we only need to state properties for just one of
them. The following simple lemma will be one of our basic tools:

Lemma 13 Suppose h : Γ∗ → Σ∗ is a letter-homomorphism. There is a log-space

computable transformation t such that for any expression α over the alphabet Σ,

we can construct another expression t(α) over Γ such that L(t(α)) = h
−1(L(α)).

Furthermore, the size of t(α) is at most c|α| for some c that only depends on the

size of Γ.

236 CHAPTER 5. COMPLETE LANGUAGES

Proof. Replace each atom b ∈ Σ occurring in α with the subexpression b1+b2+· · ·+bt

where h
−1(b) = {b1, . . . , bt}. Q.E.D.

We describe three operations on strings:

Definition 3 Let x = b1b2b3 · · · bm for some m ≥ 1, and each bj ∈ Σ for some

alphabet Σ.

(1) Then rotate(x) denotes the set of strings over Σ of the form x1x2 (xi ∈ Σ∗)

such that x2x1 = x.

(2) If m ≥ 3, then smear(x) denotes the string

[xm, x1, x2][x1, x2, x3][x2, x3, x4] · · · [xm−2, xm−1, xm][xm−1, xm, x1].

Note that smear(x) is over the alphabet [Σ × Σ × Σ] and |smear(x)| = |x|.
Also, h2(smear(x)) = x where h2 is the homomorphism on [Σ × Σ × Σ] that

picks out the second component.

(3) Assume # 6∈ Σ, and k ≥ 0 is an integer. Then padk(x) denotes the set of

strings

b1x1b2x2 · · · xm−1bmxm,

where each xi is a string of #’s of length at least k. Note that the xi’s can

all have the different lengths. The function unpad, which simply deletes all

occurrences of ‘#’ in its argument, acts as a partial inverse to padk: if w

contains no ‘#’ then unpad(padk(w)) = w.

The three operations extend in the natural way to sets of words: for instance,
smear(L) = {smear(x) : x ∈ L and |x| ≥ 3}. The rotate and smear operations
are seen to commute with each other, but they do not commute with the padding
operation. Let

Σ3c = [Σc × Σc × Σc]

Γc = Σ3c ∪ {#}.

Thus Σ3c (resp., Γc) is the alphabet for representing smeared computations (resp.,
padded smeared computations).

5.6.3 Free computation and cyclic ruler

A key idea in Stockmeyer’s construction is to modify the notion of rulers that we
have used until now.

5.6. ELEMENTARY PROBLEMS 237

Definition 4 Recall the alphabet Σc for encoding computations for the counting

machine Mc. A free computation (of order n) (n ≥ 1) is a string over Σc of the

form

C̄ = C0C1 · · ·Cm (m ≥ 0)

such that

(1) Each Cj is (an encoding of) a configuration of the counting machine Mc,

j = 0, . . . ,m.

(2) C0 = [q0,&]0n& = init(n).

(3) Ci−1`Ci for i = 1, . . . ,m, and Cm`C0.

Note that the boundary between consecutive configurations is naturally marked
by ‘&&’ (or variants containing state information). Observe that a free computation
can be arbitrarily long since the configurations can repeat indefinitely. A cycle (of
order n) is defined to be a free computation C̄ = C0 · · ·Cm such that all the Ci’s are
distinct and C0 = init(n). It follows that for each n, the cycle of order n is unique.
Define the number-theoretic function g such that a cycle of order n is a string of
length g(n). Clearly g(n) ≥ n2n and by earlier remarks, in fact g(n) = Θ(n2n).
Also the length of a free computation of order n is a multiple of g(n). We use the
following important notations:

free(n) =
⋃

{rotate(smear(x)) : x is a free computation of order n}

non-free
k
(n) = {x : x 6∈ padk(free(n))}

rulerk(n) = padk(rotate(smear(x))) where x is the cycle of order n.

We call a set of the form ruler k(n) a cyclic ruler. Clearly we intend to use cyclic
rulers instead of the usual rulers. Note that free(n) ⊆ (Σ3c)

∗ and non-free
k
(n) ∪

rulerk(n) ⊆ (Γc)
∗.

We now make a simple but important observation about our construction of the
counting machine. Let u0 ∈ Σ3c denote the special symbol

u0 := [&, [q0,&], 0].

Lemma 14 Let w = C0C1 · · ·Cm denote a free computation of order n ≥ 1, and

C
′
0C

′
1 · · ·C

′
m

= smear(w) where C
′
i
corresponds to Ci in the natural way, h2(C

′
i
) =

Ci. For each i, we have: C
′
i
contains the symbol u0 if and only if Ci = init(n).

Thus it is sufficient to use local information (the presence of the symbol u 0) to
detect the initial configuration. The next lemma shows that we can obtain expres-
sions for cyclic rulers from expressions for non-free

k
(n) at the cost of increasing the

negation-depth by 1.

238 CHAPTER 5. COMPLETE LANGUAGES

Lemma 15 Let Σ be any alphabet and h a letter homomorphism from Σ to Γc.

(i) There is a log-space transformation that, given any expression α where

h(L(α)) = non-free
k
(n), constructs an expression β where h(L(β)) = ruler k(n).

(ii) The length of β satisfies |β| = |α| + O(1), and the negation-depth of β is

one greater than that of α.

Proof. A word w in padk(free(n)) fails to be in ruler k(n) precisely when w contains
more than one occurrence u0. Hence it is easy to satisfy (i) by letting β be

β = ¬(α + Σ∗
· h

−1(u0) · Σ
∗
· h

−1(u0) · Σ
∗)

Clearly (ii) holds. Q.E.D.

Thus, given an expression denoting an h-preimage of non-free
k
(n), this lemma

shows us how to obtain another expression denoting an h-preimage of ruler k(n). To
get succinct expressions for h-preimage of non-free

k
(n), the next lemma shows how

to do this inductively.

Lemma 16 (Key Construction) Let Σ be any alphabet and h a letter homomor-

phism from Σ to Γc. Let ∆ =

[

Γc

Σ

]

with the usual homomorphisms hL, hR : ∆→ Σ

selecting the upper and lower tracks. Let H be the letter homomorphism from ∆ to

Γc given by H(x) = h(hL(x)) for all x.

(i) There is a log-space transformation t such that given any expression α where

h(L(α)) = non-freek(n), constructs the expression t(α) over the alphabet ∆
where H(L(t(α))) = non-free

k+1(g(n)). Recall the function g(n) ≥ n2n.

(ii) |t(α)| = O(|α| · |Σ|) and the negation-depth of t(α) is one greater than that

of α.

Proof. We construct the expression t(α) to denote all those words w ∈ ∆∗ that
are not of the following form:

b1 # #i1 b2 # #i2 b3 · · ·
h−1(#) h−1(a1) h−1(#i1) h−1(#) h−1(a2) h−1(#i2) h−1(#) · · ·

· · · # #im−1 bm # #im

· · · h−1(am−1) h−1(#im−1) h−1(#) h−1(am) h−1(#im)

for some m ≥ 4 where:

(a) aj , bj ∈ Σ3c, and ij ≥ k for all j = 1, . . . ,m.

5.6. ELEMENTARY PROBLEMS 239

(b) the bottom track contains a word u such that

h(u) = #x

= #a1#
i1+1

a2#
i2+1
· · ·#im−1+1

am#im

where x 6∈ non-free
k
(n) (i.e. x ∈ padk(free(n))).

(c) the top track contains a word

v = b1#
i1+1

b2#
i2+1
· · ·#im−1+1

bm#im+1

where v 6∈ non-free
k+1(g(n)) (i.e., v ∈ padk+1(free(n))).

Note that each bi in the upper track is immediately followed by a i in the lower
track: we say bi and ai are ‘paired’. By definition, only non-# symbols can be

paired.8 The expression t(α) is over the alphabet ∆ =

[

Γc

Σ

]

. We shall write t(α)

as the union E1+E2+· · ·+E8. We now begin the lengthy details of this construction.
A word w is in t(α) if it satisfies at least one of the following conditions.

(1) “The upper track of w is incoherent”
Say a string over Γc is coherent if it is of the form pad0(smear(x)) for some
x ∈ Σ∗

c
. Say a pair (b, b′) of symbols in Σ3c is incoherent if they could not

possibly be consecutive symbols in the smearing of some word over Σ c. More
precisely, with hi : Σ3c → Σc (i = 1, 2, 3) the homomorphism that extracts
the ith component of its argument, we say (b, b′) is incoherent precisely when
h2(b) 6= h1(b

′) or h3(b) 6= h2(b
′). Then the following expression denotes those

words whose upper track is incoherent because of a consecutive pair of non-#
symbols:

E
′
1 = ∆∗

· h
−1
U





∑

(b,b′)

b ·#∗
· b

′



 ·∆∗

where the summation (denoting set union) is over all incoherent pairs (b, b ′).
Note that here and subsequently, for any expression σ over some Σ, and ho-
momorphism f : Σ→ Σ′, we write h

−1(σ) as a short-hand for the expression
that denotes the set h

−1(L(σ)), as shown in lemma 13. The upper track can
also be incoherent if the first and last non-# symbols do not agree:

E
′′
1 =

∑

(b,b′)

(

h
−1
U

(#∗
· b

′) ·∆∗
· h

−1
U

(b ·#∗)
)

Our first subexpression is given by E1 = E
′
1 + E

′′
1 .

8It may appear preferable to pair ai with bi by placing ai directly above bi instead of the
‘staggered’ fashion used here; this is possible though it causes some inconvenience elsewhere.

240 CHAPTER 5. COMPLETE LANGUAGES

(2) “the h-image of the lower track of w is not of the form #x where x ∈

padk(free(n))”

E2 = h
−1
L

(Σc) ·∆
∗ + h

−1
L

(#) · h−1
L

(α)

The first summand of E2 captures those words w whose h-image of the lower
track does not begin with a #-symbol.

(3) “Some pairing of non-# symbols in the upper and lower tracks is violated”
That is, there is a consecutive pair of symbols · · · bb ′ · · · occurring in w such
that either hU (b) = # and h(hL(b′)) 6= # or hU (b) 6= # and h(hL(b′)) = #.

E3 = ∆∗
·

(

h
−1
U

(#) · h−1
L

(h−1(Σ3c))) + h
−1
U

(Σ3c) · h
−1
L

(h−1(#))
)

·∆∗
.

Note that we had to apply h
−1 to symbols that are in the lower track by virtue

of the homomorphism h.

(4) “Some right marker of configurations in the upper track is not aligned”
This condition corresponds to our intention that the upper track (before
padding and rotation) represents a smeared computation path C

′
0C

′
1 · · ·C

′
h

where each smeared configuration C
′
i
∈ (Σ3c)

∗ is aligned in the sense that the
rightmost symbol in each C

′
i

is paired with some symbol in h
−1(u0) in the

lower track. Conversely, each h
−1(u0) in the lower track must pair with a

rightmost symbol of some C
′
i
. Thus each C

′
i
, if they are all aligned, has length

g(n). To express this, we define the set of ‘right marker symbols’ of the upper
track:

RM = {[b,&,&], [b, [q,&],&], [b,&, [q,&]] : b ∈ Σc, q ∈ {q0, q1, q2}}.

The expression becomes

E4 = ∆∗
·

(

h
−1
U

(RM) · h−1
L

(h−1(u0))) + h
−1
U

(RM) · h−1
L

(h−1(u0))
)

·∆∗
.

Here, RM = Σ3c−RM and u0 = Σ3c − {u0}. Let us introduce the analogous
set of ‘left marker symbols’:

LM = {[&,&, b], [&, [q,&], b], [[q,&],&, b] : b ∈ Σc, q ∈ {q0, q1, q2}}.

Let

NM = Γc − (LM ∪RM)

be the set of ‘non-marker symbols’.

(5) “There is some stray &-symbol in the upper track”
This expresses our intent that between the &-symbols, the upper track contains

5.6. ELEMENTARY PROBLEMS 241

only 0’s and 1’s, possibly with state information. Define the set Z ⊆ Σ 3c

consisting of symbols of the form:

[b,&, b
′], [b, [q,&], b′]

where b, b
′ ∈ Σc and q ∈ {q0, q1, q2}. The desired condition is given by

E5 = ∆∗
· h

−1
U

(LM ·NM
∗
· Z ·NM

∗
·RM) ·∆∗

.

Note that Z ⊆ NM , so E5 simply asserts that at least one &-symbol occurs
between the left and right markers.

Before continuing, let us observe that for any word w not in L(E1 + · · · + E5), the
upper track of w must be of the form

padk+1(rotate(smear(C0C1 · · ·Cm))) (5.5)

where each Ci (after removing the state information) encodes a binary string delim-
ited by two &-symbols, with |Ci| = g(n). We also write

C
′
0C

′
1 · · ·C

′
m

(5.6)

for smear(C0 · · ·Cm) where C
′
i

corresponds naturally to Ci. For the remaining
subexpressions, we will refer to these ‘configurations’ C i and C

′
i
.

(6) “Some Ci does not have a unique state symbol”
We leave this to the reader.

(7) “Some Ci+1 is not directly derived from Ci”
A pair (b, b′) in Σ3c is compatible if there are smeared configurations C,C

′

such that C ` C
′, b occurs in C, and b

′ occurs in the corresponding position
in C. For example, if b = [b1, [q, b2], b3] and b

′ = [[q′, b′1], b
′
2, b

′
3] then (b, b′) is

compatible iff b1 = b
′
1, b3 = b

′
3, and 〈q, b2, q

′
, b

′
2,−1〉 is in the transition table

of the counting machine. We come to the place where the recursive nature of
our construction is seen. We make the following observation:

Suppose w ∈ ∆∗ − L(E1 + · · · + E6) is a word whose upper track hU (w)
has the form (5.5). If · · · bxb′ · · · occurs in hU (w) where hU (b′) is a non-
symbol. Then hL(x) is in rulerk(n) implies that (hU (b), hU (b′)) is a
compatible pair of symbols.

Thus the cyclic ruler ‘measures’ the distance between corresponding symbols.
By the previous lemma, we can construct from α the expression β where
h(L(β)) = ruler k(n). It is important to realize that this observation depends
on the way we pair non-# symbols in the tracks in a ‘staggered’ fashion. We
define

E
′
7 = ∆∗

·





∑

(b,b′)

h
−1
U

(b) · h−1
L

(β) · h−1
U

(b′)



 ·∆∗
.

242 CHAPTER 5. COMPLETE LANGUAGES

where the summation ranges over all pairs (b, b ′) that are not compatible.
Because of the effect of rotation, a pair of corresponding symbols that must
be compared for compatibility may appear at the opposite ends of the string
w. To handle this wrap-around, we also observe:

Suppose w ∈ ∆∗ − L(E1 + · · · + E6) is a word whose upper track has the
form (5.5). If in addition,

hU (w) ∈ NM∗ · RM · LM · NM∗ · b′ · w′ · b · NM∗

where hU (b) and hU (b′) are non-# symbols. Then hU (w′) ∈ padk(free(n))
(rather than rulerk(n)!) implies that (hU (b), hU (b′)) forms a compatible
pair.

To understand this observation, let b, b
′ be two corresponding symbols from

a pair of successive configurations C,C
′ in the upper track of w. We need to

check b and b
′ for compatibility. Assume that the free computation is rotated

so that C splits into two parts forming a prefix and a suffix of w, respectively.
If b is in the suffix part, then b

′ is left of b and the word w can be expressed
as p · b′ · · ·w′ · b · s where p,w

′
, s are words in ∆∗. Furthermore, w

′ must
be a rotated and padded free computation, and there must be exactly one
[rightmarker, leftmarker] pair in the upper track of p.

Depending on how the pair C,C
′ is split by the wrap-around, we may get two

other possibilities:

hU (w) ∈ NM
∗
· b

′
· w

′
· b ·NM

∗
· RM · LM ·NM

∗

and
hU (w) ∈ LM ·NM

∗
· b

′
· w

′
· b ·NM

∗
·RM.

These lead to the expression

E
′′
7 =

∑

(b,b′)

(

F1(b, b
′) + F2(b, b

′) + F3(b, b
′)

)

where

F1(b, b
′) = h

−1
U

(NM
∗
· RM · LM ·NM

∗
· b

′) · h−1
L

(¬α) · h−1
U

(b ·NM
∗)

F2(b, b
′) = ·h−1

U
(NM

∗
· b

′) · h−1
L

(¬α)h−1
U

(b ·NM
∗
· RM · LM ·NM

∗)

F3(b, b
′) = h

−1
U

(LM ·NM
∗
· b

′) · h−1
L

(¬α) · h−1
U

(b ·NM
∗
· RM)

We finally let E7 = E
′
7 + E

′′
7 .

(8) “None of the Ci’s are equal to init(g(n))”
It is sufficient to assert that either the upper track of w does not contain the

5.6. ELEMENTARY PROBLEMS 243

symbol u0 or else the symbol ‘1’ appears in the configuration containing the
u0. This will ensure that no configuration C i has the form [&, [q0,&],&]0m&;
of course, this includes the case m = g(n) which is all that we are interested
in. Let Y ⊆ Σ3c be the set of symbols that contain ‘1’ or ‘[q, 1]’ as its second
component. Let E8 = E

′
8 + E

′′
8 where

E
′
8 = ∆∗

· h
−1
U

(LM · (u0
∗) + NM

∗
· Y ·NM

∗) · RM) ·∆∗

and E
′′
8 is a similar expression to take care of wrap-around.

This concludes our construction of α. To verify (ii), note that each E i, with the
exception of E7, has size O(|∆|) = O(|Σ|). Also E7 has size O(|α| · |∆|). Similarly,
the ¬-depth of each E7 is one more than that of α while the other Ei has depth 0.
Hence (ii) follows. This concludes our proof of lemma 16. Q.E.D.

Let us call our ruler construction a g(n)-construction, since we obtained a ruler of
order g(n) from one of order n. See Exercises for attempts to get a g

′(n)-construction
for faster growing functions g

′(n). An elegant alternative to cyclic rulers is given by
Hunt [2]; however Hunt’s construction requires the use of the intersection operator
‘∩’.

5.6.4 The main result

Using the function g(n) in the last section we now define the function G(k, n) for
k, n ≥ 0 as follows: G(0, n) = g(n) and G(k, n) = g(G(k − 1, n)) for k ≥ 1.
Clearly G(k, n) is the analog of the function exp(k, n) and G(k, n) ≥ exp(k, n)
for all k, n. We can apply the last lemma k times to describe the complement of
free-computations (and hence, cyclic rulers) of order G(k, n):

Lemma 17 There is a constant c > 0 such that for all integers k ≥ 0, n ≥ 1, there

is an expression αk,n over a suitable alphabet ∆k and a homomorphism h : ∆k → Γc

such that

(i) h(L(αk,n)) = non-freek(G(k, n)).

(ii) αk,n can be computed in space O(log |αk,n|)

(iii) |αk,n| = n · O(1)k
2
. The ¬-depth of αk,n is k and |∆k| = |Γc|

k.

Proof. If k = 0 then we can easily construct α0,n, by modifying the proof that the
fullness problem for regular languages is complete for LBA. If k > 0 then the last

lemma shows how to construct αk,n from αk−1,n. The alphabet ∆k is

[

Γc

∆k−1

]

,

so |∆k| = |∆k−1| · |Γc| = |Γc|
k. The properties (ii) and (iii) easily follow from the

construction. Q.E.D.

We next apply the cyclic rulers of length G(k, n) to describe accepting compu-
tations of Turing acceptors that accept in space G(k, n):

244 CHAPTER 5. COMPLETE LANGUAGES

Lemma 18 Fix any nondeterministic acceptor M that accepts in space G(k, n).
There is a suitable alphabet ΓM such that for all input words x of length n, we can

construct an expression αM(x) over ΓM such that

(i) x is accepted by M iff αM(x) 6= FULL(ΓM, {+, ·, ∗,¬}).

(ii) |αM(x)| = n·OM(1)k
2
and αM(x) can be constructed in space OM(log |αM(x)|).

(iii) The ¬-depth of αM(x) is k.

Proof. Let ∆k be the alphabet of the expression αk,n in the last lemma, and Σ be
the alphabet to represent the smeared computations of M. Also, let ∆k,# = ∆k∪{#}
and Σ# = Σ ∪ {#}. The expression αM(x) shall denote strings over the alphabet

ΓM :=

[

Σ#

∆k,#

]

.

A string w is in αM(x) iff it does not have the form:

b1 # #k b2 # #k b3 # #k · · · bm−1 # #k bm # #k

a1 #k # a2 #k # a3 #k · · · # am−1 #k # am #k

where

(a) the lower track has the form #y where y is in pad
k
(non-freek(G(k − 1, n))),

(b) the upper track encodes a padded, smeared (but not rotated) computation of
M on input x,

(c) the left marker for each configuration on the upper track is paired with the u 0

marker on the lower track,

(d) the last configuration on the upper track is accepting.

Note that (c) ensures that the configurations in the upper track have length
exactly G(k, n) since the lower track is a free computation of order G(k − 1, n).
The technique for writing down αM(x) should by now be routine. We leave this as
an exercise. Hence if x is accepted by M iff there is an accepting computation iff
L(αM(x)) 6= (ΓM)∗. Q.E.D.

In section 4, we show that for any regular expression α, we can construct a
nondeterministic finite automaton δ

α with ≤ |α| states, |α| ≥ 2. A well-known con-
struction of Rabin and Scott can be applied to give a deterministic finite automaton
∆α with ≤ 2|α| states and which accepts the same language as δ

α: the states of the
deterministic automaton are sets of states of δ

α, and transitions of ∆α are defined

5.6. ELEMENTARY PROBLEMS 245

in a straightforward manner: if X is a set of ∆α (so X is a set of states of δ
α) then

on input symbol b, the next state of ∆α is

X
′ = {q′ : (∃q ∈ X) q

′ is the next state of q on input b}.

We use this construction to show:

Lemma 19 Let α be a regular expression with negation, |α| ≥ 3.

(i) If the negation-depth of α is k then there is a nondeterministic finite au-

tomaton δ
α with exp(k, |α|) states that accepts L(α).

(ii) Furthermore, the transition table of the automaton can be constructed in

exp(k, |α|) space.

Proof. (Basis) If the negation-depth k is 0 then the result follows from our construc-
tion in lemma 8.

(Inductively) Suppose k ≥ 1. First assume α = β + γ. Assuming |β| ≥ 3 and
|γ| ≥ 3, then δ

β and δ
γ can be recursively constructed with at most exp(k, |β|) and

exp(k, |γ|) states respectively. Then the construction in section 4 applied to δ
β and

δ
γ gives δ

α with ≤ exp(k, |β|)+exp(k, |γ|) ≤ exp(k, |α|) states. If |β| ≤ 2 or |γ| ≤ 2,
the same bound holds as well.

If α = β · γ or α = (α)∗, the arguments are similar.
Finally, suppose α = ¬β. If |β| ≥ 3, then by induction, we may assume that

δ
β has been formed with exp(k − 1, |β|) states. We first carry out the Rabin-Scott

construction to get a deterministic machine with exp(k, |β|) states. To get δ
α, we can

easily modify this deterministic acceptor by interchanging the roles of acceptance
and rejection. This modification does not change the number of states, and we are
done. If |β| ≤ 2, then a direct argument clinches the proof.

Part (ii) is routine once the constructions of part (i) is understood. Q.E.D.

We now state with our main result: For each k ≥ 0 and alphabet Σ, let
FULLk(Σ, {+, ·, ∗,¬}) denote the set of regular expressions with negation α where
the negation-depth of α is ≤ k and L(α) = Σ∗. As usual, we let FULLk(+, ·, ∗,¬)
denote the case where Σ is {0, 1}. As usual, the problem FULLk(Σ, {+, ·, ∗,¬})
easily be reduces to the case FULLk(+, ·, ∗,¬).

Theorem 20 For each k ≥ 0, the language FULLk(+, ·, ∗,¬) is complete for the

class NSPACE(exp(k, n)).

Proof. In the following proof, we exploit the closure of space classes under com-
plementation. Lemma 18 shows that FULLk(+, ·, ∗,¬) is co-NSPACE(G(k, n))-
hard, and hence co-NSPACE(exp(k, n))-hard. To show that FULLk(+, ·, ∗,¬) is
in co-NSPACE(exp(k, n)), we use the previous lemma: given a regular expression
with negation α, it is easy to check whether it has negation depth at most k. We
then construct the nondeterministic finite automata δ

α that accepts L(α) in space

246 CHAPTER 5. COMPLETE LANGUAGES

exp(k, |α|). Using δ
α it is easy to nondeterministically decide (see the proof for

regular expressions) if there is a word not in L(α), i.e., if α 6∈ FULL k(+, ·, ∗,¬).
Q.E.D.

Corollary 21 The problem FULL(+, ·, ∗,¬) is hard for the class ELEMENTARY.

Remarks: Of course, in the presence of negation, we could have posed these
results in terms of the problem EMPTY(+, ·, ∗,¬). Stockmeyer also shows that the
use of Kleene-star in these results is not strictly necessary (see Exercises).

5.7 Final Remarks

1. An interesting feature of many of the complete problems for the various canonical
classes is that they can be grouped together into natural families. For example, the
following problems based on node accessibility in graphs,

1GAP, GAP, AND-OR-GAP, HEX

are complete for DLOG,NLOG ,P ,PSPACE , respectively. Similarly, the problems

2UNSAT, UNIT, SAT, QBF

form a family of complete problems for NLOG , P, NP , PSPACE (resp.) based on
logical formulas. Alternatively, the first two problems in the above sequence can be
replaced by two problems in Boolean logic:

FVP, CVP, SAT, QBF

where FVP is the formula value problem. In section 3, CVP is explained; FVP is
a similar problem except that we replace Boolean circuits in the input by Boolean
formulas. See the exercises which shows FVP to be NLOG-complete. Schaeffer and
Lieberherr have generalized the satisfiability problem in several other directions.
Galil has shown that various decision problems related to restrictions on Turing
machines also form a family of problems complete for various classes in the canonical
list. Such examples can be multiplied. Such families are useful as a guide to inherent
complexity of problems in the ‘real’ world. This is because natural problems have
families resemblances and, given a problem L that resembles members of a family
of complete languages, we can often conjecture and confirm the complexity of L

relative to the canonical ruler (see chapter 1, section 8).

2. In the family of problems involving graphs, we use directed graphs. A natural
question to ask is what is the complexity of undirected graph reachability (denoted
UGAP)? It is intermediate in complexity between 1GAP and GAP but is not known
to be complete for NLOG. We shall return to this problem in a later chapter on
probabilistic computation.

5.7. FINAL REMARKS 247

3. It is important to emphasize that although we have shown complete languages
for many important classes, there is strong evidence that many other natural classes
do not have complete languages (e.g., see [14, 30, 15]).

4. There have been interesting developments stemming from investigations about
the isomorphism of complete languages. If F is a family of transformations, we say
that two languages L and L

′ are isomorphic (modulo F) if there are transformations
t, t

′ ∈ F such that t(L) ⊆ L
′
, t

′(L′) ⊆ L and t
′ ◦ t and t ◦ t

′ are identities. An
important case is the Berman-Hartmanis conjecture concerning the isomorphism
of all NP -complete languages. This conjecture is confirmed for all known NP -
complete languages; on the other hand, there is evidence against the truth of the
conjecture. For example, a positive result about isomorphism of complete languages
is [3] which shows that all complete languages for DEXPT are equivalent via 1-
1 length increasing polynomial time transformations (see also [34, 33]). We shall
return to this topic in volume 2.

248 CHAPTER 5. COMPLETE LANGUAGES

Exercises

[5.1] (i) Show complete languages for DTIME(22O(n)
) and DSPACE(2n2n

) under
suitable reducibilities.
(ii) Let f be a complexity function. Under what conditions can we say that
XSPACE(f),XTIME(f),XREVERSAL(f) have complete languages under
≤L

m
?

(This exercise suggests that the special place of ≤L

m
is principally derived

from the special emphasis we have on the canonical list.)

[5.2] Why does the proof used for the other classes in the canonical list fail to
produce a complete class for the class PLOG?

[5.3] Consider the structure of the proof for P and some of the other cases in
theorem 1. The outline of these proofs could be described as follows: let
(K, (µ, ρ, F)) be any characteristic class in the canonical list where µ is
a mode, ρ a resource and F a family of complexity functions. Suppose
MACHINES(µ, ρ, F) has an efficient universal simulator U , where each U i

accepts in resource ρ bound Oi(fi) where fi ∈ F . Consider the language

L
K = {i#x#0m : m = fi(|x|)∧x ∈ Ui}.

State the other properties required in order for L
K to be K-complete under

≤L

m
(e.g., F must be ‘efficiently presentable’ in some sense).

[5.4] Recall the definition of the language 1GAP consisting of all directed graphs
(encoded by an edge list) with outdegree 1 and where there is a path from
the first node to the last node. Let 1GAP′ be the variant where the graphs
are encoded by adjacency matrix. Show that it is impossible to reduce the
1GAP′ to 1GAP using ≤1L

m
-reducibility.

[5.5] Show that UGAP (undirected graph accessibility problem, defined in the
concluding remarks of the chapter) is DLOG-hard under ≤1L

m
-reducibility.

[5.6] (Laaser) Show that the following connectivity problems on graphs are com-
plete for NLOG: define CON and SCON to be the set of inputs of the form
〈n,G〉 (as in GAP) satisfying (respectively):

∀m(m ∈ [1..n]⇒ ∃path from node 1tom)

∀m, p(m, p ∈ [1..n]⇒ ∃path from nodemtop)

[5.7] * Give a counter example to a ‘standard’ fallacy about resolution: Let C 1

and C2 be clauses in a CNF formula F and C is their resolvent. Then F is
unsatisfiable iff (F −{C1, C2})∪ {C} is unsatisfiable. For which direction is
this true? Provide a counter example to the false direction.

5.7. FINAL REMARKS 249

[5.8] Prove the resolution theorem.

[5.9] Complete the proof that 3UNIT is in P by proving the correctness of the
algorithm in the text.

[5.10] Complete the proof that 3UNIT is P-complete by replacing those clauses
that do not have 3 literals by clauses that have exactly 3.

[5.11] Let M be any nondeterministic acceptor that is s(n) space bounded. For
each input x of length n, construct a path system S(x) such that S(x) is
solvable iff x is accepted by M. Hint: Imitate the proof of Savitch’s theorem.

[5.12] (Ladner) Show that the Circuit Value Problem (CVP) is P-complete under
log-space many-one reducibility. To show that the problem is P-hard, give
a direct proof (i.e., instead of reducing a known P-hard problem to CVP).

[5.13] Show the the Formula Value Problem (FVP) is NLOG-complete under log-
space many-one reducibility.

[5.14] Show that AND-OR-GAP problem is P-complete.

[5.15] (Dobkin, Lipton, Reiss) Show that Rational Linear Programming (RLP) is
P-hard under log-space many-one reducibility.

[5.16] Show direct log-space reductions between AND-OR-GAP and MCVP (there
are reductions in two directions to do).

[5.17] (Reif) Show that the following decision problem related to the depth-first
search algorithm is P-complete under log-space many-one reducibility. Given:
〈G, u, v〉 where G is a digraph over the vertices [1..n], u and v are vertices.
Property: Node u visited before v in a depth-first search of G that starts
from node 1. It is important for this problem to assume that the search
always choose the smallest numbered vertex to search next.

[5.18] Show that MEMBER(+, ·, 2
,
∗
,¬) is in P.

[5.19] (Meyer, Stockmeyer) There is a family of problems that resembles the word
problems of section 4: an integer expression involve the operators +, ·,∩,∪,
built up recursively in the obvious way from the constants 0 and 1. For
example, ((1+1+1) ·(1∪(1+1))+(0∪1). Each expression now denotes a set
of non-negative positive integers, with 0 and 1 denoting the integers zero and
one, + denoting addition (not union, as in extended regular expressions!), ·
denoting product, ∩ and ∪ denoting intersection and union of sets. Let N-
MEMBER(+,∪) be the membership problem for integer expression. More
precisely, this is the problem of recognizing all pairs of the form (x, α) where
x is a binary number and α is an integer {+,∪}-expression such that x is in
L(α). Show that this problem is NP -complete.

250 CHAPTER 5. COMPLETE LANGUAGES

[5.20] (Meyer, Stockmeyer) Prove that INEQ({0}, {+, ·, ∗}) is NP-complete.

[5.21] (Meyer, Stockmeyer) Prove that INEQ(+, ·) is NP -complete.

[5.22] Give a direct procedure for deciding if L(α) = Σ∗ in time O(1)|α|, avoiding
the reduction to a nondeterministic finite automaton as in the text.

[5.23] (Hunt, Hopcroft) Let NONEMPTY(Ω) denote those Ω-expressions α where
L(α) 6= ∅. Note that if Ω ⊆ {+, ·, ∗, 2} then L(α) 6= ∅ always holds. Show
that NONEMPTY(+, ·, ∗,∩) is PSPACE -complete.

[5.24] Consider the equivalence problem EQUIV(Σ,Ω) that consists of all pairs
(α, β) of Ω-expressions such that L(α) = L(β). What is the relation between
this and the inequivalence problem INEQ(Σ,Ω)?

[5.25] Construct the γ-expressions ρm as claimed in (γ) of section 6.

[5.26] (Stockmeyer) Show that the problem of FULL(+, ·,¬) is ELEMENTARY-
hard. In other words, you have to eliminate the use of Kleene-star from the
constructions of section 6.

[5.27] Show that the counting machine makes O(2n) moves. Hint: let cn be the
number of counting machine moves to count from 1 to 2n− 1. For example,
we have

1→ 10→ 11→ 100→ 101→ 110→ 111

where the 6 transformations require 4+2+6+2+4+2=20 moves, so c3 = 20.
(Here we assume that the head scans the first symbol to the right of the
low-order bit of the number, and returns to it after each transformation.)
Also c1 = 0, c2 = 12. Give a recurrence for cn.

[5.28] * The upper and lower bounds for the complexity of FULL(+, ·, ∗,¬) is not
tight. Improve the reduction of the elementary problems to this problem.
One way to do this is to obtain a ‘ĝ(n)-construction’ corresponding to the
Key lemma where ĝ(n) grows faster than the g(n) = n2n. For instance,
it is easy to modify our counting machine to obtain a (n22n)-construction
(how?). Such an improvement is inconsequential since we could have used
k-ary counting and obtained a k

n-construction. What is the optimal choice
of k?

[5.29] * Develop a theory of complete transformations. Let us say that a trans-
formation t0 : Σ∗

0 → Γ∗
0 is hard for a family T of transformations under

log-space reducibilities if for all t ∈ T , t : Σ∗
1 → Γ∗

1, there are log-space
transformations s0 : Σ∗

1 → Σ∗
0 and s1 : Γ∗

0 → Γ∗
1 such that for all x ∈ Σ∗

1,
s1(t0(s0(x))) = t(x). Let T be the class of transformations computable by
deterministic polynomial time transducer. Show complete transformations
for T .

5.7. FINAL REMARKS 251

[5.30] * Little is known about natural complete problems for reversal or simulta-
neous complexity classes.

252 CHAPTER 5. COMPLETE LANGUAGES

Bibliography

[1] A. Adachi, S. Iwata, and T. Kasai. Some combinatorial game problems require
ω(nk) time. Journal of the ACM, 31(2):361–377, 1984.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of

computer algorithms. Addison-Wesley, 1974.

[3] Leonard Berman. Polynomial reducibilities and complete sets. PhD thesis,
Cornell University, 1977. PhD Thesis, Computer Science Department.

[4] Ronald V. Book. Translational lemmas, polynomial time, and (log n) j-space.
Theoretical Computer Science, 1:215–226, 1976.

[5] Ronald V. Book. On languages accepted by space-bounded oracle machines.
Acta Informatica, 12:177–185, 1979.

[6] A. K. Chandra and L. J. Stockmeyer. Alternation. 17th Proc. IEEE Symp.

Found. Comput. Sci., pages 98–108, 1976.

[7] Steven A. Cook. An observation of time-storage trade off. 5rd Proc. ACM

Symp. Theory of Comp. Sci., pages 29–33, 1973.

[8] D. P. Dobkin, R. J. Lipton, and S. Reiss. Linear programming is LOG-SPACE
hard for P . Information Processing Letters, 8:96–97, 1979.

[9] Jian er Chen and Chee-Keng Yap. Reversal complexity. SIAM J. Computing,
to appear, 1991.

[10] S. Even and R. E. Tarjan. A combinatorial problem which is complete in
polynomial space. Journal of the ACM, 23:710–719, 1976.

[11] L. M. Goldschlager, R. A. Shaw, and J. Staples. The maximum flow problem
is log space complete for P. Theoretical Computer Science, 21:105–111, 1982.

[12] Leslie M. Goldschlager. The monotone and planar circuit value problems are
log space complete for P. SIGACT news, 9(2):25–29, 1977.

253

254 BIBLIOGRAPHY

[13] J. Hartmanis. Feasible Computations and Provable Complexity Properties.
S.I.A.M., Philadelphia, Pennsylvania, 1978.

[14] Juris Hartmanis and Lane A. Hemachandra. Complexity classes without ma-
chines: on complete languages for UP . Theoretical Computer Science, 58:129–
142, 1988.

[15] Juris N. Hartmanis and Neil Immerman. On complete problems for NP∩co-NP .
12th ICALP (LNCS No. 194), pages 250–259, 1985.

[16] Juris N. Hartmanis, Neil Immerman, and Steven Mahaney. One-way log-tape
reductions. 19th Symposium FOCS, pages 65–71, 1978.

[17] Harry B. Hunt, III. On the time and tape complexity of languages, I. 5th Proc.

ACM Symp. Theory of Comp. Sci., pages 10–19, 1973.

[18] N. D. Jones and W. T. Laaser. Complete problems for deterministic polynomial
time. Theoretical Comp. Sci., 3:105–117, 1977.

[19] Neil D. Jones. Space-bounded reducibility among combinatorial problems.
Journal of Computers and Systems Science, 11:68–85, 1975.

[20] Richard E. Ladner. The circuit value problem is log space complete for P.
SIGACT News, 7(1):18–20, 1975.

[21] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expres-
sions with squaring requires exponential space. 13th Proc. IEEE Symp. Found.

Comput. Sci., pages 125–129, 1972.

[22] Albert R. Meyer. Weak monadic second order theory of successor is not
elementary-recursive. In Dold and Eckmann (eds.), editors, Logic Collo-

quium: Symposium on Logic Held at Boston University, 1972-73, pages 132–
154. Springer-Verlag, 1975.

[23] Burkhard Monien and Ivan Hal Sudborough. On eliminating nondeterminism
from Turing machines which use less than logarithm worktape space. In Lecture

Notes in Computer Science, volume 71, pages 431–445, Berlin, 1979. Springer-
Verlag. Proc. Symposium on Automata, Languages and Programming.

[24] James B. Orlin. The complexity of dynamic languages and dynamic optimiza-
tion problems. 13th Proc. ACM Symp. Theory of Comp. Sci., pages 218–227,
1981.

[25] Christos H. Papadimitriou. Games against nature. Journal of Computers and

Systems Science, 31:288–301, 1985.

[26] R. Péter. Recursive Functions. Academic Press, New York, 1967.

BIBLIOGRAPHY 255

[27] Robert W. Ritchie. Classes of predictably computable functions. Trans. AMS,
106:139–173, 1963.

[28] W. J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computers and Systems Science, 4:177–192, 1970.

[29] Thomas J. Schaefer. On the complexity of two-person perfect-information
games. Journal of Computers and Systems Science, 16:185–225, 1978.

[30] Michael Sipser. On relativization and existence of complete sets. 9th ICALP

(LNCS No. 140), pages 523–531, 1982.

[31] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time.
5th Proc. ACM Symp. Theory of Comp. Sci., pages 1–9, 1973.

[32] Larry J. Stockmeyer. The complexity of decision problems in automata theory
and logic. Technical Report Project MAC Tech. Rep. TR-133, M.I.T., 1974.
PhD Thesis.

[33] Osamu Watanabe. On one-one polynomial time equivalence relations. Theo-

retical Computer Science, 38:157–165, 1985.

[34] Paul Young. Juris Hartmanis: fundamental contributions to isomorphism prob-
lems. Structure in Complexity Theory, 3:138–154, 1988.

256 BIBLIOGRAPHY

Contents

5 Complete Languages 205

5.1 Existence of complete languages . 205
5.2 Complete Problems for Logarithmic Space 209

5.2.1 Graph Accessibility . 209
5.2.2 Unsatisfiability of 2CNF formulas 210
5.2.3 Associative Generator Problem 212
5.2.4 Deterministic Logarithmic Space and below 213

5.3 Complete Problems for P . 214
5.3.1 Unit Resolution . 214
5.3.2 Path Systems . 217
5.3.3 Non-associative Generator Problem 218
5.3.4 Other Problems . 218

5.4 Complete Problems for PSPACE . 219
5.4.1 Word Problems . 219
5.4.2 Fullness Problem for Regular Expressions 222
5.4.3 Complexity of Games . 226

5.5 Complete problems with exponential complexity 228
5.5.1 The power of squaring . 228
5.5.2 An exponential space complete problem 229
5.5.3 An exponential time complete problem 230
5.5.4 Other Problems . 231

5.6 Elementary Problems . 231
5.6.1 The power of negation . 231
5.6.2 Homomorphism, rotation, smearing and padding 235
5.6.3 Free computation and cyclic ruler 236
5.6.4 The main result . 243

5.7 Final Remarks . 246

257

256

Chapter 6

Separation Results

March 3, 1999

6.1 Separation Results

Let K and K
′ be language classes. By a separation result for (K,K

′) we mean one
showing the existence of a language L ∈ K −K

′; L is said to separate K from K
′.

If the answers to the inclusion questions “Is K included in K
′?” of chapter 4 are

mostly negative as generally conjectured, it follows that techniques for separating
classes are needed to resolve these open problems. The K-complete languages are
the obvious candidates for languages L that separate K from K

′. Unfortunately,
given a specific L (such as a K-complete language) and a specific K

′, a proof that
L 6∈ K

′ typically appears to require powerful combinatorial methods quite beyond
our present ability. Separation results based on combinatorial methods are rare (but
we will see them in a later chapter). Instead, it is easier to construct a non-specific
L in stages: for instance, in each stage we try to include in or exclude from L some
words so as to ensure that L is not equal to each language in K

′. While diagonalizing
over K

′, we must ensure that L remains in K. We are just diagonalizing over K
′,

of course, and chapter 4 contains such constructions. In any case, assuming that we
manage to separate K from K

′, there are two typical consequences:

(a) We can infer that other pairs of classes must also be separated as follows. By
a translation result we mean one with the following structure:

K1 ⊆ K2 ⇒ K
′
1 ⊆ K

′
2

where Ki,K
′
i

(i = 1, 2) are classes. Using this translation result, a separation
result for (K ′

1,K
′
2) implies a separation result for (K1,K2). This method is

especially useful in separating nondeterministic classes which tend to resist
direct diagonalization.

257

258 CHAPTER 6. SEPARATION RESULTS

(b) We can infer lower bounds on languages in K. In particular, any K-complete
language (with respect to some reducibility ≤) is not in K

′, provided K
′ is

closed under the reducibility ≤. For instance, we can separate PSPACE from
NLOG using the diagonalization technique above. Since the fullness problem
for regular expressions (chapter 5) is PSPACE -complete, we conclude that the
problem cannot be solved in logarithmic space.

Most of the translational techniques are based on the idea of ‘padding’. The
idea originated with Ruby and Fischer [25] and was popularized by Ibarra [14]. We
have already encountered padding in section 1 of the previous chapter: for instance,
padding can ‘translate’ a complete problem for NSPACE(nk+1) into a complete
problem for NSPACE(nk). Padding techniques typically translate an inclusion be-
tween two classes with lower complexity into an inclusion between classes at higher
complexity. For this reason, such results are sometimes called upward translation

results. For instance, the following will be shown:

If NLOG ⊆ DLOG then LBA ⊆ DLBA.

If NP ⊆ P then NEXPT ⊆ DEXPT .

Limited forms of ‘downward translation result’ are known. Translational tech-
niques will treated in sections 3 and 4.

Section 5 draws conclusions of type (b) above. The technique is based on efficient
reducibilities; Meyer [19, 29] first exploited such techniques. The efficient reductions
shown in the previous chapter allow us to deduce lower bounds on the various
complete problems studied there.

Section 6 considers what may be described as weak separation results: these show
that two classes K and K

′ must be distinct, K 6= K
′. Hence either K \K ′ or K

′ \K

(or perhaps both) must be non-empty although the proof does not indicate which
is the case. For instance, we can show DLOG 6= NTIME(nk) for any k. Again the
padding technique is useful. It should be noted that these weak results cannot be
strengthened too easily: this will be clarified in the chapter on relativization where
we show that these results can be relativized to force inclusion in either direction.

Section 7 presents strong separation results. The idea is that the explicit lower
bounds derived in section 5 are of the ‘infinitely often’ type (e.g., every acceptor for
such a language must, for some c > 0, take at least c

n steps for infinitely many n).
We want to strengthen this to the ‘eventually’.

Section 8 shows the limitations to the separation results. For instance, we demon-
strate that there are complexity functions f, g such that f is ‘arbitrarily more com-
plex’ than g and yet DSPACE(f) = DSPACE(g). In other words, these two classes
are inseparable.
On strong separation for characteristic classes. Let us make precise our above
remarks about infinitely-often versus eventually bounds. The terminology will be
useful in other contexts as well.

6.2. THE BASIC SEPARATION RESULTS 259

Definition 1 Let D be a set, θ a binary relation over D, and let f, g : D → D be

partial functions with domain and range D.

(i) The relation θ is said to hold infinitely often between f and g if there are infinitely

many x ∈ D such that both f(x) and g(x) are defined, and the relation f(x)θg(x)
holds. We write ‘fθg (i.o.)’ or ‘(∃∞x)f(x)θg(x)’ in this case.

(ii) The relation θ is said to hold eventually between f and g if for all but finitely

many x ∈ D, whenever f(x) and g(x) are defined then the relation f(x)θg(x) holds.

We write ‘fθg (ev.)’ or ‘(∀∞x)f(x)θg(x)’ in this case.

As an example, if f and g are total complexity functions, then f dominates g if
and only if f ≥ g (ev.). Note that if fθg (i.o.) then there are infinitely many values
of x ∈ D at which f and g are simultaneously defined. However, it is possible that
fθg (ev.) for the trivial reason that there are only finitely many of values of x ∈ D

for which both f and g are defined.
Suppose we have a language L that separates the pair of characteristic classes

(DTIME(t),DTIME (t′)), i.e., L ∈ DTIME(t) − DTIME(t′). This implies that for
any acceptor M for L, there exists a c > 0 such that there are infinitely many values
of n such that M requires more than t

′(n) steps on inputs of length n:

AcceptTimeM(n) > ct
′(n) (i.o.). (6.1)

Recall that AcceptTimeM(n) is undefined unless M accepts some word of length n.
Note that (6.1) is equivalent to AcceptTime M(n) 6= O(t′(n)). We want to strengthen
(6.1) to:

AcceptTimeM(n) > ct
′(n) (ev.). (6.2)

for some c > 0. We could write this in the equivalent form: AcceptTime M(n) =
Ω(t′(n)).

We say that we have a strong separation result for the pair of characteristic
classes (DTIME(t),DTIME (t′)) if we show the existence of an infinite1 language
L in DTIME(t) − DTIME(t′) such that any acceptor M for L satisfies (6.2). This
notion of strong separation extends naturally to other characteristic classes.

6.2 The Basic Separation Results

Hartmanis and Stearns [12] began the study of time-based complexity theory and
obtained the so-called deterministic time hierarchy theorem. Together with Lewis
[11], they extended the result to space complexity. The main goal of this section
is to present these two separation theorems, together with a separation theorem
for reversal complexity. These theorems are considered basic because their proofs
involve the simplest form of diagonalization and also because most other separation
results ultimately rely on them. We also see that the diagonalization arguments here

1To avoid the trivial interpretation of ‘eventually’ explained earlier.

260 CHAPTER 6. SEPARATION RESULTS

depend on the existence of tape reduction theorems (for space, time and reversal,
respectively).

Our first hierarchy theorem is the following.2

Theorem 1 (Deterministic space hierarchy) Let s1 and s2 be complexity functions

where s2(n) = ω(s1(n)). If s2 is space-constructible then

DSPACE(s2)−DSPACE(s1) 6= ∅.

Proof. Let Σ = {0, 1} and fix any encoding of all 1-tape Turing machines with
input alphabet Σ. Let

φ0, φ1, . . .

be a listing of these machines in the order of their code. We may assume that the
code for machine φi is the binary string (still denoted) i. Note that each machine uses
states and symbols from the universal sets Q∞ and Σ∞, so our encoding assumes a
fixed letter homomorphism h0 from Q∞ ∪ Σ∞ to binary strings.

We now describe an acceptor M that diagonalizes over each machine φ i. On
input x of length n, M does the following: M marks off exactly s 2(n) tape cells.
Since s2(n) < ∞ (by definition of space-constructible), the marking takes a finite
number of steps. Treating x as the code of the machine φx, we would like M to
“begin simulating φx on x, accepting iff either φx does not accept or if φx tries
to leave the area containing the marked cells”. The problem is that φ x may loop
without ever leaving the marked cells, and a simplistic simulation would not detect
this. To overcome this difficulty, we apply Sipser’s technique as shown in section
9 of chapter 2: for each accepting configuration C of φx that ‘can fit’ within the
marked cells, M does a search of the tree T (C) rooted at C. If it discovers the
initial configuration C0(x) in T (C), M rejects. If for all such C’s, M fails to discover
the initial configuration then M accepts. M can do this search in space s 2(n). We
should clarify the qualification that C ‘can fit’ within the marked cells: by this we
mean that the work tapes of C can be represented using the marked cells, but the
input tape of C is directly represented as the input tape of the simulating machine.

We now show that the language L(M) separates DSPACE(s2) from DSPACE(s1).
By construction, L(M) ∈ DSPACE(s2). It remains to show that L(M) is not in
DSPACE(s1). Suppose L(M) is accepted by some deterministic N in space s1. By
the tape reduction theorem for space, we may assume that N is 1-tape and hence,
by properties of the usual coding of Turing machines, we get this property: there
are infinitely many indices x such that L(M) = L(φx) and φx accepts in space s1(n).

Using the said letter homomorphism h0 that encodes states and symbols from
the universal sets as binary strings, we may assume that each configuration of N
that uses space s is encoded by a binary string of length ON(s). Choose the length of
x sufficiently large so that ON(s1(|x|)) ≤ s2(|x|). We now prove that M accepts x iff

2The original result requires the qualification s2(n) > log n.

6.2. THE BASIC SEPARATION RESULTS 261

φx rejects x. If φx accepts x then it accepts in a configuration C with space at most
s1(|x|) and C can be encoded in space ON(s1(|x|)) ≤ s2(|x|). Thus we will search
the tree T (C) and find the initial configuration, leading to rejecting. On the other
hand, if φx does not accept x, then the search of the tree T (C) for each accepting
configuration C fails and by definition M accepts. This proves L(M) 6= L(φx).
Q.E.D.

If we are interested in separating the running space class DSPACE r(s2) from
DSPACEr(s1), then we can avoid the assumption s2 be space-constructible (Exer-
cises).

We now show the time analogue of the previous theorem. However the hierarchy
is not as tight because the tape reduction theorem for deterministic time (viz., the
Hennie-Stearns theorem) incurs a logarithmic slow-down.

Theorem 2 (Deterministic time hierarchy) Let t1 and t2 be complexity functions

with t1(n) log t1(n) = o(t2(n)). If t2 is time-constructible and t1(n) > n then

DTIME(t2)−DTIME(t1) 6= ∅.

Proof. The proof is similar to the previous one, except that we now appeal to the
existence of a universal machine.3 Let U = {U0, U1, . . .} be a universal machine
simulating all 2-tape deterministic machines over some fixed input alphabet. Again
we construct an acceptor M that diagonalizes over each U i that happens to accept
in time o(t2). The machine M operates as follows: on input x of length n, M first
copies the input x onto two of its work-tapes. Next, M uses these two copies of x

as input to simulate the universal machine Ux on input x for at most t2(n) of steps
(each step of M corresponds to a step of Ux). To ensure that at most t2(n) steps
are used, M will concurrently time-construct t2(n), using the original x as input. If
Ux accepts within t2(n) steps then M rejects; otherwise M accepts. Clearly L(M) is
in DTIME(2n + t2(n)) = DTIME(t2).

It remains to show that L(M) 6∈ DTIME(t1). For the sake of a contradiction,
assume that L(M) is accepted by some acceptor in time t1. The Hennie-Stearns
theorem then implies that L(M) is accepted by some 2-tape machine N in time
t1 log t1. From the recurrence property of universal machines, there are infinitely
many indices x such that L(N) = L(Ux) and Ux uses time ON(t1 log t1). Choosing
x such that n = |x| is sufficiently large,

2n + ON(t1(n) log t1(n)) ≤ t2(n).

If Ux accepts x, then M needs 2n + ON(t1(n) log t1(n)) steps to simulate Ux on x

until completion. Since this number of steps is at most t 2(n), M will discover that

3We could, as in the previous proof, argue directly about the standard encoding of Turing
machines, but the use of universal machines is a slightly more general (abstract) approach. Our
deterministic space hierarchy theorem, however, does not seem to yield as easily to an argument
by universal machines. Why?

262 CHAPTER 6. SEPARATION RESULTS

Ux accepts x and M so rejects x by our construction. If Ux does not accept x,
then we similarly see that M will accept x. This proves L(M) 6= L(U x) = L(N), a
contradiction. Q.E.D.

The above result can be sharpened in two ways: if t1 is also time-constructible
then Paul [22] shows that the above separation of time classes can be achieved
with t2(n) = o(t1(n) logε

t1(n)) for any ε > 0. If we consider classes defined by
Turing machines with some fixed number of tapes, Fürer [10] has shown the above
separation can be achieved with t2 = o(t1) provided we restrict attention to Turing
machines with a fixed number k of tapes, k ≥ 2.

Using the space and time hierarchy theorems, we can infer separation for some
of the inclusions on our canonical list:

Corollary 3

(a) P ⊂ DEXPT ⊂ DEXPTIME

(b) NLOG ⊂ PSPACE ⊂ EXPS ⊂ EXPSPACE

Finally we present a hierarchy theorem for reversal complexity[5]. Although we
can give a direct proof using the tape reduction theorem for reversals, the follow-
ing shorter proof follows from relationships between reversal and space complexity
shown in chapter 2.

Theorem 4 (Deterministic reversal hierarchy) Let r1(n) and r2(n) be complexity

functions such that (r1(n))2 = o(r2(n)), r1(n) = Ω(log n) and r2(n) is reversal-

constructible. Then

DREVERSAL(r2(n))−DREVERSAL(r1(n)) 6= ∅.

Proof. Since (r1(n))2 = o(r2(n)), by the deterministic space hierarchy theorem, there
exists a language L such that

L ∈ DSPACE(r2(n))−DSPACE((r1(n))2).

Using the relation DSPACE(r2) ⊆ DREVERSAL(r2) and DREVERSAL(r1) ⊆
DSPACE(r2

1), we conclude

L ∈ DREVERSAL(r2(n))−DREVERSAL(r1(n)).

Q.E.D.

6.3. PADDING ARGUMENTS AND TRANSLATIONAL LEMMAS 263

6.3 Padding Arguments and Translational Lemmas

The theme of the hierarchy theorems in the previous section is: given a complexity
function f1(n) what is the smallest complexity function f2(n) such that there is a
language L accepted within complexity f2(n) but not f1(n). In each case, f2(n) need
not be more than quadratic in f1(n). The basic technique in these proofs requires
constructing a diagonalizing machine M that can “efficiently decide” whether a
simulated machine N accepts in a given amount of resource.

This approach becomes quite ineffectual when N is nondeterministic and we want
to decide if N accepts within time t. The best nondeterministic method known for
deciding this question amounts to a naive deterministic simulation of N, a procedure
that takes time exponential in t. This implies that f 2(n) is exponentially larger than
f1(n).

To separate nondeterministic space, we could use Savitch’s technique to deter-
ministically simulate nondeterministic space-bounded computations, using quadrat-
ically more space. The next two sections show more efficient techniques to separate
nondeterministic time and space.

We begin with a translational lemma under composition of complexity functions.

Lemma 5 (Function-composition translation for space) Let s 1(n) ≥ n, s2 ≥ n and

f ≥ n be complexity functions, and assume f is space-construcible. For X = D or

N , XSPACE(s1) ⊆ XSPACE(s2) implies XSPACE(s1 ◦ f) ⊆ XSPACE(s2 ◦ f).

Proof. The structure of the proof is suggested by following the arrows in this “com-
mutative diagram”:

XSPACE(s1) XSPACE(s2)

XSPACE(s2 ◦ f)XSPACE(s1 ◦ f)

6 6

-

-

Suppose that XSPACE(s1) ⊆ XSPACE(s2) and (Σ, L) is accepted by some M
in space s1 ◦ f . We want to show that L ∈ XSPACE(s2 ◦ f). First ‘translate’ L to
XSPACE(s1) by padding. More precisely, the padded version of L is

L
′ = {x$i : x ∈ L, |x$i

| = f(|x|)}

where $ is a new symbol not in Σ. First we demonstrate that L
′ is in XSPACE(s1):

on input x$i of length n we check if |x$i| = f(|x|) using space at most n, since f

is space-constructible. If not, reject; else we simulate M on input x, and accept
iff M accepts. Clearly the space used is at most max{n, s1(f(|x|))} = s1(n), as
desired. Therefore, by assumption, L

′ is accepted by some M′ in space s2. Next we
demonstrate that L is in space XSPACE(s2◦f): on input x of length n, construct x$i

264 CHAPTER 6. SEPARATION RESULTS

such that |x$i| = f(|x|) using space f(n). Now simulate M ′ on x$i using s2(|x$i|) =
s2(f(n)) space. Q.E.D.

We illustrate the use of this lemma in the next result. In the proof, we use the
fact that n

r for any rational number r ≥ 1 is space-constructible (see Exercises in
chapter 2).

Lemma 6 (Ibarra [14]) For all reals r > s ≥ 1, NSPACE(nr)−NSPACE(ns) 6= ∅.

Proof. Choose positive integers a, b such that

r >
a + 1

b
>

a

b
> s.

Note that a > b ≥ 1. For the sake of contradiction, assume that NSPACE(nr) =
NSPACE(ns). Then

NSPACE(n(a+1)/b) ⊆ NSPACE(na/b).

From this inclusion, an application of the previous translation lemma with f(n) =
n

(a+1)b and also with f(n) = n
ab, yields (respectively)

NSPACE(n(a+1)2) ⊆ NSPACE(na(a+1)),

NSPACE(na(a+1)) ⊆ NSPACE(na
2
).

Hence
NSPACE(n(a+1)2) ⊆ NSPACE(na

2
)

We now claim that for any k ≥ 2 that is a power of two, the inclusion

NSPACE(n(a+1)k

) ⊆ NSPACE(na
k

)

holds. The basis case has just been shown. For the induction, assume the inclusion
holds for k. Then we can deduce

NSPACE(n(a+1)2k

) ⊆ NSPACE(na
2k

)

by two applications of the translation lemma (the reader should verify this). If we
choose k ≥ a, then (a + 1)k ≥ 2ak + 1 for a > 1. Thus

DSPACE(n1+2a
k

) ⊆ NSPACE(n1+2a
k

)

⊆ NSPACE(n(a+1)k

)

⊆ NSPACE(na
k

), (by what we had just shown)

⊆ DSPACE(n2a
k

)

where the last inclusion follows from Savitch’s theorem. But DSPACE(n 1+2a
k

) ⊆

DSPACE(n2a
k

) contradicts the deterministic space hierarchy theorem. Q.E.D.

This result will be improved in the next section. We now prove another transla-
tional lemma due to Savitch.

6.3. PADDING ARGUMENTS AND TRANSLATIONAL LEMMAS 265

Definition 2 Let s(n) < ∞ be a complexity function that is defined for all suffi-

ciently large n. We say s is a moderately growing if it is unbounded, s(n) 6= O(1),
and there is a constant c such that, eventually, s(n) ≤ c · s(n− 1).

Observe that the functions in log n, logO(1)
n, n

O(1) and O(1)n are moderately

growing. However functions such as 22n

and 2n
k

(k > 1) are not.

Theorem 7 (Upward translation of space) Let s, s
′ be complexity functions. If s is

moderately growing and space-constructible, and if s(n) ≤ s
′(n) <∞ for all n, then

NSPACE(s) ⊆ DSPACE(s) =⇒ NSPACE(s′) ⊆ DSPACE(s′).

Proof. The proof is similar in structure to that for the translational lemma. Let
(Σ, L) be accepted by some nondeterministic M in space s

′. We shall show that L

is in DSPACE(s′). Again we translate L to a related problem in NSPACE(s) as
follows: let $ be a new symbol not in Σ and define the following padded version of
L:

L
′ = {x$i : M accepts x in space s(|x$i

|), i ≥ 0}.

Clearly, L
′ ∈ NSPACE(s).

Since NSPACE(s) ⊆ DSPACE(s), we infer that L
′ is accepted by some halting

deterministic M′ in space s.
We now construct a deterministic M′′ to accept L as follows: on input x ∈ Σ∗,

simulate M′ on x$i for i = 0, 1, 2, . . . , until the first i such that M′ accepts x$i. At
that point M′′ accepts. Otherwise M′′ runs forever.

Correctness of M′′: It is easy to show that M′′ accepts L. We next claim that
M′′ accepts in space s

′(n). To see this, let x ∈ L. If s
′(|x|) = s(|x|) then it is not

hard to see that M′ accepts x in space s
′(|x|) space. Otherwise, s

′(|x|) > s(|x|) and
there is a smallest i > 0 such that

s(|x$i
|) ≥ s

′(|x|) > s(|x$i−1
|).

Note that i is well-defined since s is unbounded and s
′ is finite. Now for any

j = 0, . . . , i − 1, s(|x$j |) < s
′(|x|). Hence if M′ accepts x$j , then M′′ accepts x in

less than s
′(|x|) space; otherwise, surely M′ accepts x$i. This is because we see that

M accepts x in space s(|x$i|), and by definition of L
′, x$i ∈ L

′ = L(M′). Hence
M′′ accepts in space at most s(|x$i|). But since s is moderately growing, there is
some c ≥ 1 such that s(|x$i|) ≤ cs(|x$i−1|). This proves that M′′ accepts in space
cs(|x$i−1|). The claimed bound follows by space compression. This completes the
proof. Q.E.D.

Corollary 8 If NLOG ⊆ DLOG then LBA=DLBA.

Similarly, we can prove translational lemmas for time complexity (Exercises) and
deduce:

266 CHAPTER 6. SEPARATION RESULTS

If NP ⊆ P then NEXPT ⊆ DEXPT .

These upward translation results raises the possibility of some form of ‘downward
translation’. Our next result may be regarded as partial downward translation. It
involves the so-called tally or contentless languages: these are languages over a single
letter alphabet, say {1}. In the remainder of this section, let Σ be any alphabet
with k ≥ 2 letters. We might as well assume Σ = {1, 2, . . . , k}. For any w ∈ Σ,
let tally(w) ∈ {1}∗ denote the unary representation of the integer w (regarded as a
k-adic number). Then for any language (Σ, L), define the language ({1}, tally(L))
where

tally(L) = {tally(w) : w ∈ L}.

Conversely, define the function untally that takes any unary word w ∈ {1}∗ to its
k-adic representation untally(w) ∈ Σ∗. For any tally language ({1}, L), define the
language (Σ, untally(L)} where

untally(L) = {untally(w) : w ∈ L}.

Thus tally and untally are inverses of each other.

Lemma 9 (Space translation for tally languages) Let X = N or D, let L be a

language and f a complexity function with f(n) ≥ n. Then L ∈ XSPACE(f(O(n)))
iff tally(L) ∈ XSPACE(f(O(log n))).

Proof. If (Σ, L) is accepted in space f(O(n)) by some machine M then we can accept
tally(L) as follows: on input 1n, we first compute w ∈ Σ∗ such that ν(w) = n. This
takes space |w| = O(log n). Now we simulate M on w, taking space f(O(log n)).
Conversely, if tally(L) is accepted by some N in space f(O(log n)) then we could
try to accept L as follows:

On input w ∈ Σ∗, compute tally(w) and then simulate N on tally(w)
using space f(O(log(|tally(w)|))) = f(O(|w|)).

The only problem is that untally(w) needs space O(1) |w|. To circumvent this,
because untally(w) is ‘contentless’, it suffices to keep track of the position of the
input head of N on the virtual input tally(w). The space necessary to keep track of
the head position is O(|w|) which is order of f(O(|w|)) since f(n) ≥ n. Q.E.D.

We then obtain the following weak downward translation:

Corollary 10 (Savitch) If DLBA = LBA then DLOG|{1} = NLOG |{1}.

Proof. Let L be a tally language in NLOG = NSPACE(O(log n)). Then the
above lemma implies that untally(L) ∈ LBA = NSPACE(O(n)). So by assump-
tion untally(L) ∈ DLBA. Another application of the lemma shows that L =
tally(untally(L)) ∈ DLOG . Q.E.D.

Combining the upward and weak downward translation results, we conclude that

DLBA = LBA ⇐⇒ DLOG |{1} = NLOG|{1}.

Similar results relating to time complexity of tally languages can be shown.

6.4. SEPARATION FOR NONDETERMINISTIC CLASSES 267

6.4 Separation for Nondeterministic Classes

The reader may verify that the proof of Ibarra in the last section fails for nonde-
terministic time. This situation was first remedied by Cook [6] who showed the
analogue of Ibarra’s result [14]: for all reals r > s ≥ 1,

NTIME(nr)−NTIME(ns) 6= ∅.

Cook’s technique was generalized to a very strong form by Seiferas, Fischer and
Meyer [27, 28]. Unfortunately their original proof is quite involved (using a form
of recursion theorem for nondeterministic time – see Exercises). Simpler (but still
delicate) proofs have been found by Žák [32] and by Li [16]; both these proofs have
the added bonus of providing a tally language to separate the classes, answering an
open question in [27]. Here we follow the proof of Žák.

We require some preparatory results. First, we note a simple but important
consequence of the nondeterministic tape reduction theorem of Book, Greibach and
Wegbreit (chapter 2):

Lemma 11 For any alphabet Σ, there is a 2-tape universal acceptor U = {U0, U1, . . .}

for the class RE |Σ such that for each nondeterministic acceptor M over the input

alphabet Σ, and each complexity function t(n) > n, if M accepts in time t(n) there

exist infinitely many indices i such that Ui accepts L(M) in time OU,M(t(n)).

Proof. For any machine N accepting in time t(n) > n, it follows from the nondeter-
ministic tape reduction theorem that there is a 2-tape machine M accepting L(N).
It is seen from our standard construction of a universal machine U for RE |Σ that
there are infinitely many indices i such that L(U i) = L(M) and Ui accepts in time
c · t(n) for some c that depends on M (rather than on i) and U . Q.E.D.

So the point of this lemma is that we can efficiently simulate any multitape
acceptor M by infinitely many 2-tape versions as given by a universal machine U .

Let us fix Σ = {0, 1} and U as in the above lemma. For any complexity function
t and any Turing acceptor M, define the t-cutoff language defined by M to be

L
t(M) = {x ∈ {0, 1}∗ : M accepts x in time t(|x|)}.

Note that L
t(M) ⊆ L(M) and L

t(M) is not necessarily in NTIME(t) unless t is
time-constructible or if M accepts in time t. Relative to the universal machine U

we define:

NTIMEU (t) = {L(Ui) : Ui accepts in time t}

NTIME cut

U
(t) = {Lt(Ui) : i = 0, 1, . . .}

Discussion. We may call the classes NTIME U (t) and NTIME cut

U
(t) universal-

time classes (relative to U) since they refer to a ‘universal’ standard of time-keeping

268 CHAPTER 6. SEPARATION RESULTS

as defined by the steps of U . In contrast, the usual classes may be called local-time

classes since a time step as defined by a Turing machine φ i is not quite comparable
to that defined by another φj when the tape alphabets and state sets of φi and φj

are different. The connection between universal and local time is as follows: for each
i, there is a constant Oi(1) such that each step of φi is simulated by Oi(1) steps of
Ui. Note that the universal-time classes NSPACE U (t) do not in general enjoy the
linear speedup property: it is not clear that NTIME U (t) is equal to NTIMEU (2t),
for instance. However, by the linear speedup theorem for local-time classes we can
conclude that

NTIME(t) = NTIMEU (O(t)).

The crux of the diagonal process in our proof is captured in the following some-
what technical result. The statement of the result is somewhat long but its proof is
not much longer.

Lemma 12 Let K = K|Σ be a class and U be any universal acceptor for K. Sup-

pose 1 ∈ Σ, and there exist languages (Σ, L) and (Σ, D), and functions α : L →

N = {0, 1, 2, . . .} and β : L→ N with the following property: For all x ∈ L and for

all j (0 ≤ j ≤ β(x)),

x1j
∈ D ⇐⇒

{

x1j+1 ∈ Uα(x) if j < β(x)

x 6∈ Uα(x) if j = β(x).
(6.3)

If α is an onto function then D 6∈ K.

Let us call L the ‘unpadded’ set and D the ‘diagonal’ set. Intuitively, deciding if
an unpadded word x is in D is equivalent to the question whether Uα(x) accepts the

padded strings x1j (for j = 0, . . . , β(x)). On the other hand, Uα(x) accepts x1β(x)

iff x is not in the diagonal set D. These two incompatible conditions imply D 6∈ K.
Observe the highly stylized nature of this translation.

Proof. Aiming towards a contradiction, assume D = L(U i) for some i ≥ 0. Since
α : L → N is onto, let x ∈ L such that α(x) = i. If β(x) = 0 then we have that
x ∈ D iff x 6∈ Uα(x), contradicting our assumption that D = L(Uα(x)). Observe that
if β(x) ≥ 1 then x ∈ D iff x1 ∈ L(Uα(x)) iff x1 ∈ D. If β(x) ≥ 2 then x1 ∈ D iff

x12 ∈ L(Uα(x)) iff x12 ∈ D. Repeating this, we see that x, x1, x12
, . . . , x1β(x) are all

in D or none are in D. However, x ∈ D iff x1β(x) 6∈ L(Uα(x)) = D, contradiction.
Q.E.D.

Theorem 13 If t(n) > n + 1 is time-constructible then there is a tally language D

in NTIME(t(n))−NTIME cut

U
(t(n− 1)).

Proof. We use the universal machine U for RE|Σ of lemma 11. Let Σ be the unary
alphabet {1}. Let U

′ be an ‘efficient’ universal acceptor for the class NTIME cut

U
(t(n−

1))|Σ obtained by simulating exactly t(n− 1) steps of U , accepting if and only if U

6.4. SEPARATION FOR NONDETERMINISTIC CLASSES 269

accepts within t(n − 1) steps. Note that U
′ can simulate U in realtime (i.e. step

for step). However, U
′ needs an extra n steps to initially write onto another tape

the word 1n−1 which then serves as input for the ‘parallel’ process to time-construct
t(n− 1). Hence, U

′ on inputs of length n runs in time n + t(n− 1).
We inductively define an increasing sequence of integers

n0 < n1 < · · · < ni < · · ·

as follows: n0 = 1 and
ni+1 = 1 + ni + ci

where ci is the number of steps sufficient (for some fixed Turing machine) to deter-

ministically simulate the behaviour of U
′
i
on input 1ni . Observe that ci is well-defined

because U
′
i

accepts in at most t(n− 1) steps on inputs of length n. (In general we
expect ci to be exponential in t(ni − 1), but no matter.) To apply the previous
lemma, we define the ‘unpadded set’ L to be {1ni : i = 0, 1, . . .} and the functions
α, β : L→ N are given by:

α(1ni) = i,

β(1ni) = 1 + ci

for i ≥ 0. Finally, we define the diagonal language D ⊆ {1}∗ by constructing a
machine MD to accept D:

(A) On input 1n, MD computes in phases where in phase i (i = 0, 1, . . .) MD

simulates U
′
i

on input 1ni . MD stops in the middle of phase k + 1 where k is
defined by the inequality

nk+1 < n ≤ nk+2.

It is easy to organize the computation of MD so that at the end of each phase,
when MD has just finished simulating U

′
i
on input 1ni , MD has a copy of 1ni+1

on a separate tape, ready to be used as input for the next phase. Furthermore,
the time to carry out each phase is O(ni+1) steps (actually, O(ni) steps suffice)
for i = 0, . . . , k, and the partial phase k + 1 uses only O(n) time. The total
time to do phases 0 to k, including the partial (k + 1)st phase, is

k
∑

i=0

O(ni+1) + O(n) =
k

∑

i=0

O(
n

2i
) + O(n) = O(n).

Here we use the fact that ci ≥ ni and so ni+1 > 2ni.

(B) If n = nk+1 − 1 then MD can in O(n) steps discover whether 1nk ∈ U
′
k
. This

is because nk+1 − 1 > ck and MD can deterministically simulate U
′
k

on 1nk in
at most ck steps. MD rejects iff U

′
k

accepts 1nk . Note that in this case, with
x = 1nk ,

1n = x1β(x) = x11+ck ∈ L(MD) ⇐⇒ x 6∈ L(U ′
α(x)).

270 CHAPTER 6. SEPARATION RESULTS

(C) If n < nk+1 − 1 then MD simulates U
′
k

on 1n+1, accepting if and only if U
′
k

accepts. Thus with x = 1nk and j = n− nk < nk+1 − nk − 1 ≤ ck,

x1j
∈ L(MD) ⇐⇒ x1j+1

∈ L(U ′
α(x))

We observe that steps (A) and (B) take O(n) time; step (C) takes 1+n+ t(n) since
U

′ takes 1 + n + t(n) steps on inputs of length n + 1. This implies D = L(MD) ∈
NTIME(t+O(n)) = NTIME(t), by the speedup theorem for nondeterministic time.
An application of the previous lemma shows D 6∈ NTIME cut

U
(t(n− 1)). Q.E.D.

Note that step (C) is where the padding takes place: it reduces the query about
x1j to one above x

j+1. Our main result of this section follows immediately.

Theorem 14 (Nondeterministic time hierarchy) If t(n) > n+1 is time-constructible

then there exists a tally language in

NTIME(t(n))−NTIME(o(t(n− 1))

Proof. For any function t
′(n), if t

′(n) = o(t(n− 1)) then

NTIME(t′) ⊆ NTIME cut

U
(t(n− 1)).

An application of the previous theorem yields the desired separation. Q.E.D.

In the statement of this theorem, we need the ‘−1’ in defining one of the com-
plexity classes because we need to pad at least one symbol for the induction to go
through. It is not known if this ‘−1’ can be removed or if it is essential.

Now we can infer Cook’s result that NTIME(nr) − NTIME(ns) 6= ∅ (r > s ≥

1): first choose a rational number b such that r > b > s. The function n
b is

“approximately” time-constructible in this sense: there exists a time-constructible
function t such that t(n) = Θ(nb) (Exercises). Clearly (n + 1)s = o(t(n)), so
the preceding theorem implies NTIME(t)−NTIME(ns) (and hence NTIME(nr)−
NTIME(ns)) is non-empty.

As another application of this theorem, we infer that NTIME(n2n)−NTIME (2n)
is non-empty. On the other hand, the theorem fails to decide whether NTIME(n22n

)−
NTIME(22n

) is empty. This remains an open problem.

We now show a corresponding separation result for nondeterministic space [27].
The proof below employs the technique used in showing that nondeterministic space
is closed under complementation.4

Theorem 15 Let s2 be space-constructible, s2(n) ≥ log n. If s1(n) = o(s2(n)) then

NSPACE(s2)−NSPACE(s1) 6= ∅.

4The original proof of Seiferas-Fischer-Meyer is more involved. Immerman [15] attributes the
idea of the present proof to M. Fischer.

6.5. APPLICATIONS TO LOWER BOUNDS 271

Proof. Let U be a universal acceptor for all nondeterministic 1-tape Turing acceptors.
We describe an acceptor M to diagonalize over each U i: on input x of length n, we
mark out s2(n) cells. For each accepting configuration C that fits inside these
marked cells, we call a subroutine that uses Immerman’s technique to unequivocally
check if C can be reached from the initial configuration. (Recall that this means
that there is at least one terminating computation path and further all terminating
computation paths accept or all reject.) If any subroutine call loops, then we loop;
if any accepts, then we reject; if all reject, then we accept.

By now, it is a simple exercise to show that L(M) separates NSPACE(s2) from
NSPACE(s1). Q.E.D.

6.5 Applications to Lower Bounds

Informally, if L ≤ L
′ where ≤ denotes some efficient reducibility then the complexity

of L is at most the complexity of L
′ plus the complexity of the reducibility ≤. For

a simple illustration of such results, we consider many-one reducibilities. First, a
definition.

Definition 3 For any transformation t : Σ∗ → Γ∗, and f a complexity function,

we say that t is f -bounded if for all x, |t(x)| ≤ f(|x|).

Lemma 16 Let L be many-one reducible to L
′ via a transformation g and L

′ ∈

X-TIME-SPACE(t, s) where X = N or D, and let t, s be non-decreasing complexity

functions. If g can be computed in time u(n) and is f(n)-bounded then

(i) L ∈ XTIME(t(f(n)) + u(n)) and

(ii) L ∈ X-TIME-SPACE(u(n)t(f(n)), s(f(n)) + log f(n)).

Proof. Let M accept L
′ in time t and space s, and let T be the log-space transducer

that transforms L to L
′. It is straightforward to show (i) by constructing an acceptor

N for L: on input x, N simulates T on x to obtain T(x); then it simulates M on T(x),
accepting if and only if M accepts. Since |T(x)| ≤ f(|x|) and t is non-decreasing,
the desired time bound of t(f(n)) + u(n) on N follows immediately. Note that if M
is deterministic then so is N.

We show (ii). To achieve a space bound of s(f(n))) + log f(n), we modify the
above construction of M by using the technique from chapter 4 (section 2): simulate
the acceptor M on input T(x) without keeping the entire input string in storage,
but use T as a subroutine to (re)compute each symbol of T(x) as needed by M. To
do this, we need O(log f(n)) space to represent the position of the input head of M
on T(x). The space bound of (ii) follows from this ‘O(log f(n))’ plus the s(f(n))
space used by M on T(x). Q.E.D.

272 CHAPTER 6. SEPARATION RESULTS

The reader can find analogous results for other types of reducibilities.
It is desirable in applying the lemma to have a small bounding function f . As

seen in the transformations in chapter 5, f is typically linear, f(n) = O(n); this
simply means that t belongs to the class Llin of log-linear transformations defined
in chapter 4 (section 2).

The principal application of such a lemma is to obtain lower bounds on specific

languages. Meyer and Stockmeyer [20, 29, 21] and Hunt [13] were the first to infer
such lower bounds on natural computational problems. The basic structure of such
proofs is outlined next. Assume that we want to prove a lower bound of s(n) on the
deterministic space-complexity of a language L0.

(a) Show that L0 is hard for some complexity class. Choose a suitable class K of
languages such that each L ∈ K is efficiently reducible to L0. For instance,
suppose there is a k ≥ 1 such that each L ∈ K is many-one reducible to L0

via a n
k-bounded log-space transformation.

(b) Infer the lower bound by appeal to a separation result. Assume that we want
to show a space lower bound. Suppose that s(n) ≥ log n is non-decreasing
and there is a separation result for (K,DSPACE (s)). Then we claim that
s
′(n) = s(n1/k) is an i.o. lower bound on the space-complexity of L0. For

the sake of contradiction, assume otherwise that L0 ∈ DSPACE(s′). By our
choice of K, there exists a language L1 ∈ K − DSPACE(s). But the above
lemma implies that L1 can be accepted in space O(s′(nk) + log n) = O(s(n)),
contradiction.

Note that in this outline, we normally only have to show step (a) since step (b)
is usually routine5. Since step (a) involves showing L0 to be K-hard, this explains
why showing a problem to be hard for a class is often called a ‘lower bound proof’.

The remainder of this section illustrates such applications.

Lower bound on the fullness problem for regular languages. Recall the
problem FULL = FULL(+, ·, ∗) of checking if a given regular expression α de-
notes the set {0, 1}∗. In chapter 5 we showed that the problem FULL is hard for
NSPACE(n) under log-linear transformations. It easily follows from the outline (a)
and (b), by appealing to the nondeterministic space hierarchy theorem, that

FULL 6∈ NSPACE(o(n)).

Hence every nondeterministic acceptor for FULL must use more than linear
space infinitely often. Stated in isolation, this statement should be appreciated for
its depth since, as remarked in chapter 1, it is a statement about all imaginable (but
mostly unimaginable) Turing machines that accept FULL. Yet, because of the long
development leading up to this point, this statement may seem rather easy.

5Or rather, radically new separation results do not seem to be easy to derive – and so step (b)
is typically an appeal to one of the separation theorems we have shown here.

6.5. APPLICATIONS TO LOWER BOUNDS 273

Similarly, using the log-linear reductions in section 5 of chapter 5, we conclude
that any deterministic acceptor M for the problem FULL(+, ·, ∗, 2) uses space more
than c

n infinitely often, for some c ≥ 0.6

Nondeterministic time lower bounds for complements of languages. It
follows from the log-linear transformation shown in chapter 5 that any nondeter-
ministic acceptor M for the problem INEQ = INEQ(+, ·, 2) uses time more than
c
n infinitely often, c > 0. Now consider what is essentially 7 the complementary

problem: let EQUIV = EQUIV(+, ·, 2) denote the set of pairs (α, β) of {+, ·, 2}-
expressions encoded over the binary alphabet such that L(α) = L(β). We would
like a lower bound on EQUIV based on a lower bound on INEQ. Towards this end,
we use a nice separation result attributed to Young [30].

Lemma 17 If t is time-constructible then

NTIME(n · t(n))− co-NTIME(t(n)) 6= ∅.

Proof. Let U be an efficient universal acceptor for the characteristic class NTIME(t)|Σ
where Σ = {0, 1}. So for any (Σ, L) ∈ NTIME(t) there are infinitely many indices i

such that Ui accepts L in time OL(t(n)). Using the usual encodings, we may assume
that Ui accepts in time c · |i| · t(n) for some constant c = c(U) > 0 that does not
depend on i or n. Let L0 consist of those words x such that Ux accepts x. Then it
follows that L0 can be accepted in n · t(n) using a direct simulation of U . To prove
the lemma, it remains to show that L0 6∈ co-NTIME(t(n)). Suppose otherwise,
L0 ∈ co-NTIME(t(n)). Then let co-L0 be accepted by Ux for some x; this means
that x ∈ co-L0 iff Ux accepts x. On the other hand, by definition of L0, we have
x ∈ co-L0 iff Ux does not accept x. Contradiction. Q.E.D.

Lemma 18 The problem EQUIV requires nondeterministic time greater than c
n

i.o., for some c > 0.

Proof. The above lemma shows the existence of an L in NTIME(n2n)−co-NTIME(2n).
Since L is in NEXPT , chapter 5 shows that L is many-one reducible to INEQ via
some log-linear transformation t. Furthermore, t has the property that for all x, t(x)
represents a well-formed pair of {+, ·, 2}-expressions. This implies co-L is many-one
reducible to EQUIV via t. Choose c = 21/b where t is bn-bounded, b > 0. As-
sume for the sake of contradiction that EQUIV ∈ NTIME(cn). Then lemma 16 (i),
implies that co-L ∈ NTIME(cbn) = NTIME(2n). This contradicts our assumption
L 6∈ co-NTIME(2n). Q.E.D.

6One is tempted to say, this problem is not in NSPACE (o(O(1)n)). But notice that we have not
defined the meaning of o(E) where E is a big-Oh expression.

7EQUIV only differs from the complement of INEQ by being restricted to words that represent
pairs of well-formed expressions.

274 CHAPTER 6. SEPARATION RESULTS

6.6 Weak Separation

The following result of Book [2] is useful in distinguishing between two classes:

Theorem 19 Let J,K be classes and ≤ a reducibility. Suppose K has a complete

language under ≤-reducibility. If J is the limit of the some strictly increasing se-

quence

J1 ⊂ J2 ⊂ J3 ⊂ · · ·

where each Ji is closed under ≤-reducibility, then J 6= K.

Proof. Let L be K-complete under ≤-reducibility. If J = K then L ∈ J i for some i.
By the basic inclusion lemma, chapter 4, K ⊆ J i. This contradicts the fact that J

properly contains Ji. Q.E.D.

Of course, this theorem achieves only a weak separation between J and K, since
it does not tell us if J−K 6= ∅ or K−J 6= ∅ (although one of these must hold true).
We illustrate an application of the lemma:

Theorem 20 PLOG is distinct from NP and from P.

Proof. We know that NP has complete languages under ≤L

m
. The technique (in

chapter 4) for showing that DLOG is closed under log-space reducibility easily shows
that DSPACE(logk

n) is closed under ≤L

m
reducibility. PLOG is the limit of the

increasing sequence

DSPACE(log n) ⊆ DSPACE(log2
n) ⊆ DSPACE(log3

n) ⊆ · · · .

By the deterministic space hierarchy theorem, we know that this sequence is strictly
increasing. Hence the previous theorem applies showing that NP 6= PLOG . Simi-
larly, since P also has complete languages under ≤L

m
, we also conclude P 6= PLOG .

Q.E.D.

Consider the following attempt to show DLOG 6= P : we can define the strictly
increasing sequence

DTIME(n) ⊆ DTIME(n2) ⊆ DTIME(n3) ⊆ · · ·

and using ≤L

m
as our reducibility, etc., we find that one of the conditions of the

lemma fails (where?).

The following chart from Book[2]: shows some of the known distinctions between
the various classes.

6.7. STRONG SEPARATION 275

PLOG (a) DLOG NP (b) (c) P (d)

PLOG

(a) = DSPACE (logk n) 6=
DLOG 6= 6=
NP 6= ? ?

(b) = NTIME (nk) 6= 6= 6= 6=
(c) = NTIME (n + 1) 6= 6= 6= 6= 6=
P 6= ? ? ? 6= 6=
(d) = DTIME (nk) 6= 6= 6= 6= ? ? 6=
DTIME (n + 1) 6= 6= 6= 6= 6= 6= 6= 6=

Notes: k is any integer greater than 1. An entry “?” indicates that it is not
known if the two classes are equal or not.

6.7 Strong Separation

In section 5 we show the ‘infinitely often’ (i.o.) type of lower bound on the complexity
of languages. In this section we consider the ‘almost every’ (a.e.) version. It is
important to realize that strong separation results only make sense for characteristic
classes. Geske and Huynh have proved strong hierarchy theorems in this sense.

Observe that most natural problems do not seem to possess non-trivial a.e.
lower bounds. For instance, the reader can easily be convinced after checking some
cases that all known NP-complete problems have infinite subsets that are easily
recognizable in polynomial time. It is unknown whether there are NP-complete
problems without this property. One of the few examples of a natural problem that
may possess a non-trivial a.e. lower bound is primality testing: it is unknown if there
is an infinite subset of the prime numbers that can be recognized in deterministic
polynomial time. More precisely8, is there a language L ∈ P such that L∩ Primes

is infinite?

Meyer and McCreight [19] shows that for any space-constructible complexity
function s(n) ≥ n, there exists a language whose running space complexity is lower
bounded by s(n) (a.e.). The following theorem adapts the proof for accepting space
complexity and avoids the assumption s(n) ≥ n.

Theorem 21 Let s be an non-decreasing, unbounded space-constructible function.

Then there exists an infinite language L0 in DSPACE(s) such that if N is any

acceptor for L0,

AcceptSpaceN(n) = Ω(s(n)).

8Recently Goldwasser and Killian show that there is an infinite subset that can be recognized
in expected polynomial time. Expected complexity classes will be considered in a later chapter.

276 CHAPTER 6. SEPARATION RESULTS

This result can be regarded as a strong version of the deterministic space hierar-
chy theorem for characteristic classes. Similar results have been obtained in [3, 31].
These proofs use ideas from the earlier work of Rabin [23] and Blum [1].
Proof. The language L0 will be defined by describing an acceptor M for it. Let
U = {U0, U1, . . .} be a universal machine for the class RE |{0, 1}. The basic idea
is for M to diagonalize over each Ui that accepts in space cs(n) for some c > 0.
More precisely, suppose the input to M is the binary string i (regarded as an integer
when convenient). First we mark out exactly s(|i|) tape squares on each of its work-
tape. In the subsequent simulation, the computation will never exceed these marked
squares. Hence L(M) clearly is in DSPACE(s).

In the following description, we see that M on input i will compute an index
δ(i) ≥ 0 such that

δ(i) = odd ⇒ M accepts i and Ubδ(i)/2c rejects i.

δ(i) = even ⇒ M rejects i and Ubδ(i)/2c accepts i.

We say that the index j ≥ 0 is ‘cancelled’ by input i if j = bδ(i)/2c; thus if
j is cancelled, then L(Uj) 6= L(M). Note that we try to cancel each j twice but
of course, this is impossible if L(U j) is a trivial language. The binary string δ(i)
will be written on a tape reserved for this purpose (say tape 1) at the end of the
computation on i. So the machine M is doing double duty: as an acceptor as well
as some kind of transducer (but only on the side).

Define ŝ(n) = max{n, s(n)} and let Ci denote the set

Ci = {δ(j) : 0 ≤ j ≤ ŝ(|i|)}

Note that Ci ⊆ Ci+1 and we define C∞ to be the union over all Ci.
Let the input to M be i. Our goal is to cancel some k 6∈ C i. To do this, we

successively submit each k = 0, . . . , ŝ(|i|) to the following ‘test’: we say k passes the
test if it satisfies the following three conditions.

(i) First k 6∈ Ci.
(ii) If k = odd then Ubk/2c does not accept i in space s(|i|). This covers
three possibilities: the machine either tries to use more than s(|i|) space,
or rejects within s(|i|) space, or loops within s(|i|) space.
(iii) If k = even then Ubk/2c accepts i in space s(|i|).

We claim that this test can be done in s(|i|) space for each k = 0, . . . , ŝ(|i|). To
do part (i) of the test, we check if k = δ(j) for each j = 0, . . . , ŝ(|i|). For each j, we
determine δ(j) by recursively calling M on input j. (Note that the restriction that
j ≤ ŝ(|i|) means that j ≤ |i| < i and hence there is no problem of self-reference;
this is the reason we use ŝ(n) instead of s(n) in defining C i.) Since s(n) is non-
decreasing, we do not use more than s(|i|) space. For part (ii) and (iii) of the test,

6.7. STRONG SEPARATION 277

we see that M can decide whether Ubk/2c accepts i within space s(|i|): in particular,
we must be able to detect when Ubk/2c loops within space s(|i|) (which we know how
to do from chapter 2, section 9). Thus the test can indeed be carried out within the
marked space.

If any of these k passes the test, we write this k on tape 1 (so δ(i) = k) and we
accept iff k is odd. Otherwise, every such value of k fails the test and we write 0 on
tape 1 and reject the input i. (We may assume that the index 0 corresponds to a
machine that accepts all its inputs.)

This completes the description of M. Now we must prove that our construction is
correct. First we claim that M accepts infinitely many inputs because for each index
k corresponding to a machine Uk that rejects all its inputs in constant space, there
is some input x = x(k) such that M on input x accepts and outputs δ(x) = 2k + 1.
This claim amounts to showing that 2k + 1 ∈ C∞. Choose the smallest x such
that Cx contains each j < 2k + 1 that will eventually be cancelled, i.e., C x contains
C∞ ∩ {0, . . . , 2k}, and ŝ(|x|) ≥ 2k + 1. (Such a choice can be found.) Then M on
input x will eventually test 2k+1, and by choice of k, it will detect that U k does not
accept x within the space s(|x|). Hence M accepts with output 2k + 1 as desired.

Let N be any acceptor satisfying

AcceptSpaceN(n) ≤ c · s(n) (i.o.) (6.4)

for each choice of c > 0. It remains show that N cannot accept the same language
as M.

Since we have shown that M accepts infinitely many inputs, we may assume that
AcceptSpaceN(n) is defined for infinitely many values of n. Now there is some h ≥ 0
such that N accepts the language L(Uh). By usual properties of universal machines,

AcceptSpaceUh
(n) ≤ c0 ·AcceptSpaceN(n) (6.5)

for some constant c0 > 0. Choosing c = 1/c0, inequalities (6.4) and (6.5) imply that
AcceptSpace

Uh
(|x|) ≤ c · c0s(|x|) = s(|x|). So it suffices to show that h is cancelled

(since bδ(x)/2c = h implies that M on input x will accept iff U h does not accept x

in space s(|x|) iff x 6∈ L(Uh) = L(N).)
Since s is unbounded and non-decreasing, we may choose the smallest input x

such that

(a) ŝ(|x|) ≥ 2h,

(b) Cx contains all indices k < 2h that are eventually cancelled, C∞∩{0, . . . , 2h−
1} ⊆ Cx.

(c) x ∈ L(Uh).

Consider the action of M on such an input x: M will test each k = 0, 1, . . . , 2h−1
and, by choice of x, each such k will fail the test. Thus M on input x will eventually

278 CHAPTER 6. SEPARATION RESULTS

test 2h. If 2h ∈ Cx then h is cancelled already, and we are done. If 2h 6∈ Cx then
our test calls for M to simulate Uh running on input x. But we just showed that Uh

on |x| uses at most s(|x|) space. Since x ∈ L(Uh), the test succeeds with M rejecting
x and outputting δ(x) = 2h. Thus h is cancelled after all. Q.E.D.

The preceding theorem shows a language L0 that is hard (a.e.) for the charac-
teristic class DSPACE(s). In order to infer that problems reducible to L 0 are also
hard (a.e.), we need some converse of lemma 16. First, we define a language (Σ, L)
to be invariant under padding if there is a symbol # ∈ Σ such that for all x ∈ Σ∗,
x ∈ L iff x# ∈ L. The following is due to Stockmeyer [30]. The present proof
applies to running space only:

Theorem 22 Suppose L is reducible to L
′ via some log-linear transformation and

L
′ is invariant under padding. If s(n) ≥ log n is non-decreasing and the running

space for L is at least s(n) (a.e.) then for some c > 0, the running space for L
′ at

least s(cn) (a.e.).

Proof. Suppose to the contrary that there is an acceptor N for L
′ such that for all

c > 0, N uses running space less than s(cn) (i.o.). Let L ≤Llin

m
L
′ via some log-linear

transformation t where |t(x)| ≤ b|x| for integer b ≥ 1. We obtain an acceptor M for
L from any acceptor N for L

′ as follows. On input x:

For i = 0, 1, 2, . . . do:
For j = 0, 1, 2, . . . , b|x|, do:

If |t(x)#j | > b|x|

then exit current for-loop (i.e. go to i + 1);
Simulate N on input t(x) ·#j using only i space;
If N attempts to use more than i space,

then continue current for-loop (i.e. go to j + 1);
If N halts, then accept if N accepts, else reject;

End

End

The outer for-loop is potentially infinite since i can grow arbitrarily large, but
the inner for-loop is bounded by b|x|. It should be clear that M accepts L. Let
reduce(x) denote the set

{t(x) ·#j : |t(x)#j
| ≤ b|x|, j ≥ 0}.

The basic idea of M is to reduce the decision on x to deciding a member of reduce(x)
for which N requires the least space. Because of padding, we see that x ∈ L implies
reduce(x) ⊆ L

′ and x 6∈ L implies reduce(x) ∩L
′ = ∅. To see the space usage of M,

suppose y ∈ reduce(x) requires the least space to compute. In the above simulation
of N on y = t(x) · #j, we assume that M does not explicitly store the word y, but
uses counters to store the value j and the input head position on y. Then

RunSpaceM(x) ≤ RunSpaceN(y) + O1(log |y|) (6.6)

6.8. INSEPARABILITY RESULTS 279

where the term O1(log |y|) comes from storing the counters for j and the head
position on y.

Choose c = 1/b. To derive our contradiction, we show that if N runs in less
than s(cn) (i.o.) then M will also use less than s(n) space (i.o.), contradicting our
assumption on L. Let E be an infinite set of ‘easy lengths’ for N. More precisely,
for each input y with length |y| in E, RunSpace N(y) < s(cn). Let E

′ be the set of
lengths of inputs for M that can be reduced to those with length is in E, i.e. for
each input x with |x| ∈ E

′ there is some y ∈ reduce(x) with |y| ∈ E. Then (6.6)
shows that for such x,

RunSpaceM(x) < s(c|y|) + O1(log |y|)

= O2(s(cb|x|)) = O2(s(|x|)).

Using linear compression of space, M can be modified to ensure that for all n in E
′,

RunSpaceM(n) < s(n).

We also see that E
′ is infinite: for each n ∈ E, we have dcne ∈ E

′ since if |x| = dcne
then some member of reduce(x) has length n. This contradicts the assumption that
the running space for L is ≥ s(n) (a.e.). Q.E.D.

The requirement that L
′ is invariant under padding cannot be omitted in the

above theorem. To see this, suppose the language (Σ, L) requires running space
≥ s(n) (a.e.). Define the language

L
′ = {xx : x ∈ L} ∪ {x ∈ Σ∗ : |x| = odd}.

Clearly L ≤Llin

m
L
′ but it is easy to design an acceptor for L

′ that uses no space for
all inputs of odd length.

Lynch [17] shows that if a problem L is not in P then L contains a subset whose
running time complexity is lower bounded by n

k (a.e.) for every k ≥ 1; see Even,
Selman and Yacobi [9] for a generalization of such results. Schnorr and Klupp [26]
obtains a result similar to Lynch within a natural context: there is a subset of the
language SAT that is a.e. hard. These results should remind the reader of the result
of Ladner in chapter 4.

6.8 Inseparability Results

To complement the separation results, we now show some results that reveal limits to
our attempts to separate complexity classes. These results are somewhat surprising
because they only rely on certain rather simple properties that are seen to hold for
typical complexity measures such as time and space. Blum [1] first formalized such
properties of complexity measures.

Let Σ = {0, 1} and let U = {Ui} be a universal machine for some class K = K|Σ,
and R be any language over the alphabet Σ ∪ {#}. We say that the pair (U,R) is
a Blum measure for K if:

280 CHAPTER 6. SEPARATION RESULTS

(B1) x ∈ L(Ui) iff there is an m such that i#x#m ∈ R.

(B2) R is recursive and defines a partial function r(i, x) in the sense that if r(i, x) ↓
(i.e. r(i, x) is defined) then there is a unique m ∈ Σ∗ such that i#x#m ∈ R

and if r(i, x) ↑ (i.e. is undefined) then for all m ∈ Σ∗, i#x#m 6∈ R.

We also write Ri(x) for r(i, x). Intuitively, Ri(x) = m implies that Ui on input
x accepts using m units of some abstract resource. Note that if x 6∈ L(U i) then,
consistent with our use of acceptance complexity, R i(x) ↑. The reader may verify
that we may interpret this abstract resource to be time, space, reversal or some
other combinations (e.g. products) of these. One caveat is that for space resource,
we must now say that the space usage is infinite or undefined whenever the machine
loops (even if it loops in finite space).

The hierarchy theorems suggests a general theorem of this form: there is total
recursive function g(n) there exists for all total recursive functions t(n), the pair

(DTIME(g ◦ t),DTIME(t))

can be separated: DTIME(g(t(n)) − DTIME(t(n)) 6= ∅. Unfortunately, we now
show that such a theorem is impossible without restrictions on t(n). This is implied
by the following theorem of Borodin [4, 18, page 148].

Theorem 23 (Gap lemma) Let (U,R) be a fixed Blum measure for all recursively

enumerable languages. For any total recursive function g(n) > n there exists a

total recursive function t(n) such for all i, there are only finitely many n such that

t(n) < Ri(n) < g(t(n)).

Proof. We define t(n) to be the smallest value m satisfying predicate

P (n,m) ≡ (∀i)[m < Ri(n) < g(m)⇒ n ≤ i]

As usual, when an integer n appears in a position (e.g. R i(n)) that expects a
string, we regard it as its binary representation. Note that this definition of t(n),
if total and recursive, would have the desired properties for our theorem. First we
show that the predicate P (n,m) is partial recursive. P (n,m) can be rewritten as
(∀i)[n ≤ i or ¬(m < Ri(n) < g(m))], or

(∀i < n)[m ≥ Ri(n) or Ri(n) ≥ g(m)].

It is now clear that P (n,m) is decidable, and so, by searching for successive values of
m, we get a partial recursive procedure for t(n). To show that this procedure is total
recursive, we show that for any n, there is at least one value of m satisfying P (n,m).
Define m0 = 0 and for each i = 1, 2, ., define mi = g(mi−1). Hence m0 < m1 < · · ·.
Consider the gaps between m0,m1, . . . ,mn+1: there are n + 1 gaps so that at least

6.9. CONCLUSION 281

one of them [mj,mj+1] (j = 0, . . . , n) does not contain a value of the form Ri(n),
i = 0, . . . , n− 1. Then P (n,mj) holds. Q.E.D.

For instance it easily follows that there exist complexity functions t i (i = 1, 2, 3)
such that the following holds:

DTIME(t1) = DTIME(2t1)

DTIME(t2) = NTIME(t2)

DSPACE(t3) = NSPACE(t3)

Thus such pairs of classes are inseparable. Such results, like the union the-
orem mentioned in section 6, employ complexity functions that are highly non-
constructible. Such inseparability results are instructive: it tells us that the con-
structibility conditions in our separation results cannot be removed with impunity.
There are many other results of this nature (e.g., [24, 8]).

6.9 Conclusion

This chapter shows some basic separation results and uses translational methods
to obtain further separations. We also illustrate techniques for stronger or weaker
notions of separation. These results mostly apply to space and time classes: it
would be satisfying to round up our knowledge in this ‘classical’ area by extending
the results here to encompass reversal or simultaneous complexity classes. We also
show that there are limits to such separations if we do not restrict ourselves to nice
complexity functions.

282 CHAPTER 6. SEPARATION RESULTS

Exercises

[6.1] Let t be any total time-constructible function. Show that there is time-
constructible function t

′ such that NTIME(t′)−NTIME(t)6=∅.

[6.2] (A distributed decrementing counter) Reconstruct Fürer’s result stated in
section 2. We want to simulate each t1(n)-bounded machines in t2(n) steps.
On input w, we want to simulate the machine Mw for t2(|w|) steps. To
do this, we a construct a “decrementing-counter” initialized to the value of
t2(|w|), and try to decrement this counter for each step of the simulation.
The problem is that since we are restricted to k ≥ 2 (which is fixed in
Fürer’s version of the theorem) tapes. So the counter must reside on one of
the tracks of a work tape (which has to be used for the actual simulation of
Mw. The idea is to use a ”distributed representation of numbers” such that
there are low order bits scattered throughout the representation (note that
to decrement, it is easy to work on low order bits, and propagate the borrow
to a higher order bit if necessary). So we form a balanced binary with nodes
labeled by a digit between 0 and B−1 (B is a fixed base of the representation,
and B = 4 suffices for us). A node at height h ≥ 0 (the leaves are height 0)
with a digit d represents a value of dB

h. The number represented is the sum
of values at all nodes. Clearly there are lots of redundancy and all the leaves
are low-order bits. We store the labels of the nodes in an in-order fashion so
the root label is in the middle of the representation. We want to decrement
at ANY leaf position. If necessary, borrows are taken from the parent of a
node. When the path from any leaf to the root has only zero labels, then
this representation is exhausted and we must redistribute values. Show that
if we do a total of m decrements (as long as the tree is not exhausted) then
the time is O(m) on a Turing machine. Apply this to our stated theorem
(we have to show that the tree is not too quickly exhausted and we must
show how to reconstruct exhausted trees)

[6.3] Reprove the deterministic space hierarchy theorem for running complexity.
The statement of the theorem is as before except that we do not assume s2

to be space constructible.

[6.4] (a) (Hong) Show that the transformation w 7→ tally(w) (where w ∈ {1, . . . , k}∗

and tally(w) ∈ {1}∗) can be computed in space-reversals O(n, log n) and also
in space-reversals O(log n, n).
(b) Generalize this result by giving tradeoffs between space and reversals.

[6.5] Show that for t any total time-constructible function then there exists a
deterministic 1-tape acceptor M that time-constructs some t

′ such that

L(M) ∈ DTIME(t′)−
∞
⋃

j=0

NTIME(t(n + j)).

6.9. CONCLUSION 283

[6.6] Separate the following pairs of classes:
(a) DTIME(2n) and DTIME(3n)
(b) NSPACE(2n) and NSPACE(3n)
(c) NSPACE(22n

) and DSPACE(23n

).

[6.7] Show the translational lemma for time resource analogous to lemma 5. Con-
clude that if NP ⊆ P then NEXPT ⊆ DEXPT .

[6.8] (I. Simon) Assume the one-way oracle machines (section 3, chapter 4) for
this question. Show that Savitch’s upward space translation result can
be relativized to any oracle. More precisely, for any oracle A, and space-
constructible and moderately growing function s, NSPACE A(s) ⊆ DSPACEA(s)
implies that that for all s

′(n) ≥ s(n), NSPACEA(s′) ⊆ DSPACEA(s).

[6.9] Where does the proof of Ibarra’s theorem break down for nondeterministic
time complexity?

[6.10] Complete the proof of Cook’s result that NTIME(nr)−NTIME(ns)6=∅ from
section 4: It is enough to show that for any b = k2−m ≥ 1 where k,m are
positive integers, there exists a time-constructible function t(n) = Θ(n b).
Hint: Show that in linear time, you can mark out Θ(n1/2) cells. Extend
this to Θ(n2−m

), and use the time-constructibility of the function n
k for any

integer k ≥ 1 and an exercise in chapter 2.

[6.11] (Recursion theorem for nondeterministic time) Let Σ = {0, 1, $} and let
U = {Ui} be a universal machine for the class RE |Σ. For all indices i, if
Ui accepts in time t0 then there exists an index j such that Uj accepts the
language

{x : j$x ∈ L(Ui)}

in time Oi(1) + t0(|j$| + n). Remark. This lemma is used the Seiferas-
Fisher-Meyer proof of the hierarchy theorem for nondeterministic time. This
lemma is analogous to the second recursion theorem (also called the fixed
point theorem) in recursive function theory.9

[6.12] (Žák) If t is time-constructible and t(n + 1) = O(t(n)) then for each c > 0,
NTIME(t)−NTIME cut

U
(ct) 6= ∅. Hint: use Žák’s theorem 13.

[6.13] (Book) Show the time analogue of the space translation lemma for tally
languages: Let f(n) ≥ 2n, X = D or N . Then

L ∈ XTIME(f(O(n))) ⇐⇒ tally(L) ∈ XTIME(f(O(log n))).

9The second recursion theorem is as follows: let U be a universal machine for RE |{0, 1}. Then
for every total recursive function f there exists an index i such that Ui(x) = Uf(i)(x) for all x. As
pointed out in the excellent exposition in [7, chapter 11], this theorem is the quintessence of diagonal
arguments; it can be used (perhaps as an overkill) to give short proofs for many diagonalization
results.

284 CHAPTER 6. SEPARATION RESULTS

[6.14] (Wilson) Show that if every tally language in NP ∩ co-NP belongs to P

then NEXPT ∩ co-NEXPT ⊆ DEXPT . Hint: You may use the result of the
previous exercise.

[6.15] (Book) Let Φ ⊆ DLOG (the logarithmic space computable transforma-
tions), X = D or N . Show that if L is XTIME(O(n))-complete under ≤Φ

m

then L is XTIME(nO(1))-complete under ≤DLOG
m

.

[6.16] Provide the proofs for the rest of the entries in the chart at the end of
section 5.

[6.17] (Book) Show that if NP ⊆ P then NEXPT ⊆ DEXPT .

[6.18] (Book) Show that NP |{1}6=DSPACE(logO(1)
n))|{1}.

[6.19] (Loui) Try to imitate the proof of theorem 20 to attempt to show that
P 6= PSPACE . Where does the proof break down?

[6.20] (open) Separate NTIME(22n

) from NTIME(n22n

).

[6.21] (open) Improve the nondeterministic time hierarchy theorem of Seiferas-
Fischer-Meyer by changing the theorem statement from ‘o(t(n − 1))’ to
‘o(t(n))’.

[6.22] Suppose that the outline (a) and (b) in section 5 were stated for the class
DSPACE(F) in place of K, where F is a set of complexity functions. State
the conditions on F for the same conclusion to hold.

[6.23] (Stockmeyer) Say a language (Σ, L) is naturally padded if there is a symbol
6∈ Σ, some integer j0, and a logspace transformation t : Σ∗#∗ → Σ∗

such that (a) L · #∗ ≤L

m
L via t, and (b) |t(x#j)| = |x| + j for all x ∈ Σ∗

and j ≥ j0. Prove theorem 22 using this “ natural padding” instead of the
“invariance under padding” assumption.

[6.24] (Stockmeyer) Suppose L is Karp-reducible to L
′ via a polynomial time

transformation t that is linearly bounded. If L has an t(n) (a.e.) lower
bound on its acceptance time, show a corresponding a.e. lower bound on L

′.

[6.25] Define an even stronger notion of separation: the characteristic classes
DTIME(t′) and DTIME(t) are said to be very strongly separated if there
exists an infinite language L in DTIME(t ′)−DTIME(t) such that for any ac-
ceptor M for L, AcceptT imeM(x) > t(|x|) for almost every input x ∈ L(M).
(In other words, we use ‘a.e. x’ rather than ‘a.e. n’.) Extend the proof of
theorem 21 to this setting of very strong separation.

[6.26] (Even, Long, Yacobi) Say L is easier than L
′ if for all N accepting L

′ there
is an M accepting L such that

6.9. CONCLUSION 285

1. AcceptT imeM(x) = |x|O(1) + AcceptT imeN(x) for all input x.

2. For some k > 0, (AcceptT imeM(x))k ≤ AcceptT imeN(x) for infinitely
many x.

If only (1) is satisfied then we say that L is not harder than L
′. Show that

if there exists a language L0 ∈ NP − co-NP then:
(a) There exists a recursive language L1 6∈ NP ∪ co-NP such that L0 is not
harder than L1 and L1 is not harder than L0.
(b) There exists a recursive language L2 6∈ NP ∪ co-NP such that L1 is
easier than L0.

[6.27] (Ming Li) Show that for all j > 1, NTIME(nj)−D-TIME-SPACE(nj
, o(n))

is non-empty.

[6.28] (Ming Li) Show that there is a language in NTIME(n) that cannot be
accepted by any deterministic simple Turing machine in time O(n 1.366).

286 CHAPTER 6. SEPARATION RESULTS

Bibliography

[1] Manuel Blum. A machine-independent theory of the complexity of recursive
functions. Journal of the ACM, 14(2):322–336, 1967.

[2] Ronald V. Book. Translational lemmas, polynomial time, and (log n) j-space.
Theoretical Computer Science, 1:215–226, 1976.

[3] A. Borodin, R. Constable, and J. Hopcroft. Dense and non-dense families of
complexity classes. 10th Proc. IEEE Symp. Found. Comput. Sci., pages 7–19,
1969.

[4] Alan Borodin. Computational complexity and the existence of complexity gaps.
Journal of the ACM, 19(1):158–174, 1972.

[5] Jianer Chen and Chee-Keng Yap. Reversal complexity. SIAM J. Computing,
to appear, 1991.

[6] Steven A. Cook. A hierarchy for nondeterministic time complexity. Journal of

Computers and Systems Science, 7:343–353, 1973.

[7] Nigel J. Cutland. Computability: an introduction to recursive function theory.
Cambridge University Press, 1980.

[8] S. Even, T. J. Long, and Y. Yacobi. A note on deterministic and nonderministic
time complexity. Information and Control, 55:117–124, 1982.

[9] S. Even, A. L. Selman, and Y. Yacobi. Hard-core theorems for complexity
classes. Journal of the ACM, 32(1):205–217, 1985.

[10] Martin Fürer. The tight deterministic time hierarchy. 14th Proc. ACM Symp.

Theory of Comp. Sci., pages 8–16, 1982.

[11] J. Hartmanis, P. M. Lewis II, and R. E. Stearns. Hierarchies of memory limited
computations. IEEE Conf. Record on Switching Circuit Theory and Logical

Design, pages 179–190, 1965.

[12] J. Hartmanis and R. E. Stearns. On the computational complexity of algo-
rithms. Trans. Amer. Math. Soc., 117:285–306, 1965.

287

288 BIBLIOGRAPHY

[13] Harry B. Hunt, III. On the time and tape complexity of languages, I. 5th Proc.

ACM Symp. Theory of Comp. Sci., pages 10–19, 1973.

[14] O. Ibarra. A note concerning nondeterministic tape complexities. J. ACM,
19:608–612, 1972.

[15] Neil Immerman. Nondeterministic space is closed under complement. Structure

in Complexity Theory, 3:112–115, 1988.

[16] Ming Li. Some separation results. Manuscript, 1985.

[17] Nancy A. Lynch. On reducibility to complex or sparse sets. Journal of the

ACM, 22:341–345, 1975.

[18] M. Machtey and P. Young. An Introduction to the General Theory of Algo-

rithms. Elsevier North Holland, New York, 1978.

[19] A. R. Meyer and E. M. McCreight. Computationally complex and pseudo-
random zero-one valued functions. In Z. Kohavi and A. Paz, editors, Theory of

machines and computations, pages 19–42. Academic Press, 1971.

[20] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expres-
sions with squaring requires exponential space. 13th Proc. IEEE Symp. Found.

Comput. Sci., pages 125–129, 1972.

[21] Albert R. Meyer. Weak monadic second order theory of successor is not
elementary-recursive. In Dold and Eckmann (eds.), editors, Logic Collo-

quium: Symposium on Logic Held at Boston University, 1972-73, pages 132–
154. Springer-Verlag, 1975.

[22] Wolfgang Paul. Komplexitaetstheorie. Teubner, Stuttgart, 1978.

[23] Michael Rabin. Degree of difficulty of computing a function. Technical Report
Tech. Report 2, Hebrew Univ., 1960.

[24] C. W. Rackoff and J. I. Seiferas. Limitations on separating nondeterministic
complexity classes. SIAM J. Computing, 10(4):742–745, 1981.

[25] S. Ruby and P. C. Fischer. Translational methods in computational complexity.
6th IEEE Conf. Record on Switching Circuit Thoery, and Logical Design, pages
173–178, 1965.

[26] C. P. Schnorr and H. Klupp. A universally hard set of formulae with respect
to non-deterministic Turing acceptors. IPL, 6(2):35–37, 1977.

[27] J. I. Seiferas, M. J. Fischer, and A. R. Meyer. Refinements of the nondeter-
ministic time and space hierarchies. 14th Annual Symposium on Switching and

Automata Theory, pages 130–136, 1973.

BIBLIOGRAPHY 289

[28] J. I. Seiferas, M. J. Fischer, and A. R. Meyer. Separating nondeterministic time
complexity classes. Journal of the ACM, 25(1):146–167, 1978.

[29] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time.
5th Proc. ACM Symp. Theory of Comp. Sci., pages 1–9, 1973.

[30] Larry J. Stockmeyer. The complexity of decision problems in automata theory
and logic. Technical Report Project MAC Tech. Rep. TR-133, M.I.T., 1974.
PhD Thesis.

[31] B. A. Trachtenbrot. On autoreducibility. Soviet Math. Dokl., 11(3):814–817,
1970.

[32] Stanislav Žák. A Turing machine time hierarchy. Theoretical Computer Science,
26:327–333, 1983.

290 BIBLIOGRAPHY

Contents

6 Separation Results 257

6.1 Separation Results . 257
6.2 The Basic Separation Results . 259
6.3 Padding Arguments and Translational Lemmas 263
6.4 Separation for Nondeterministic Classes 267
6.5 Applications to Lower Bounds . 271
6.6 Weak Separation . 274
6.7 Strong Separation . 275
6.8 Inseparability Results . 279
6.9 Conclusion . 281

291

Chapter 7

Alternating Choices

March 8, 1999

7.1 Introduction to computing with choice

The choice-mode of computation comes in two main flavors. The first, already
illustrated in Chapter 1 (section 6.2), is based on probability. The second is a
generalization of nondeterministism called alternation. Let us briefly see what an
alternating computation looks like. Let δ be the usual Turing transition table that
has choice and let C0(w) denote the initial configuration of δ on input w. For this
illustration, assume that every computation path is finite; in particular, this implies
that no configuration is repeated in a computation path. The computation tree
T (w) = Tδ(w) is defined in the obvious way: the nodes of T (w) are configurations,
with C0(w) as the root; if configuration C is a node of T (w) and C ` C

′ then C
′

is a child of C in T (w). Thus the leaves of T (w) are terminal configurations. The
description of an alternating machine M amounts to specifying a transition table δ

together with an assignment γ of a Boolean function γ(q) ∈ {∧,∨¬} to each state q

in δ. This induces a Boolean value on each node of T (w) as follows: the leaves are
assigned 1 or 0 depending on whether the configuration is accepting or not. If C is
not a leaf, and q is the state in C, then we require that the number of children of
C is equal to the arity of γ(q). For instance, if C has two children whose assigned
values are x and y then C is assigend the value γ(q)(x, y). Finally we say M accepts
w if the root C0(w) is assigned value 1.

The reader will see that nondeterministic computation corresponds to the case
where γ(q) = ∨ for all q. Since the introduction of alternating machines by Chandra,
Kozen and Stockmeyer[3] in 1978, the concept has proven to be an extremely useful
tool in complexity theory.

The model of probabilistic machines we study was introduced by Gill[7]. Let
us rephrase the description of probabilistic computation in chapter 1 in terms of
assigning values to nodes of a computation tree. A probabilistic machine is formally

291

292 CHAPTER 7. ALTERNATING CHOICES

a transition table δ where each configuration spawns either zero or two children. For
any input w, we again have the usual computation tree T (w). The leaves of T (w)
are given a value of 0 or 1 as in the alternating case. However, an internal node u

of T (w) is assigned the average (x + y)/2 of the values x, y of the two children of
u. The input w is accepted if the root is assigned a value greater than 1/2. (The
reader should be convinced that this description is equivalent to the one given in
chapter 1.) The function f(x, y) = (x + y)/2 is called the toss function because in
probabilistic computations, making choices is interpreted as branching according to
the outcomes of tossing a fair coin.

Hence, we see that a common feature of probabilistic and alternating modes is
that each mode amounts to a systematic bottom-up method of assigning values to
nodes of computation trees. One difference is that, whereas probabilistic nodes are
given (rational) values between 0 and 1, the alternating nodes are assigned Boolean
values. We modify this view of alternating machines by regarding the Boolean values
as the real numbers 0 and 1, and interpreting the Boolean functions ∧, ∨ and ¬ as
the real functions min, max and f(x) = 1− x (respectively).

With this shift of perspective, we have almost accomplished the transition to a
new syncretistic model that we call probabilistic-alternating machines. This model
was first studied in [23]. A probabilistic-alternating machine M is specified by giving
a transition table δ and each state is associated with one of the four real functions

min(x, y), max(x, y), 1− x,
x + y

2
. (7.1)

A configuration in state q spawns either zero or m children where m is the arity of
the function associated with q. Given an input w, we construct the tree T (w) and
assign values to its nodes in the usual bottom-up fashion (again, assuming T (w) is a
finite tree). We say M accepts the input w if the value at the root of T (w) is > 1/2.

Probabilistic and alternating machines in the literature are often studied inde-
pendently. In combining these two modes, we extend results known for only one
of the modes, or unify distinct results for the separate modes. More importantly,
it paves the way towards a general class of machines that we call choice machines.
Computations by choice machines are characterized by the systematic assignment
of ‘values’ to nodes of computation trees, relative to the functions γ(q) which the
machine associates to each state q. These functions are similar to those in (7.1),
although an immediate question is what properties should these functions satisfy?
This will be answered when the theory is developed. We call any assignment of
‘values’ to the nodes of a computation tree a valuation.1 Intuitively, these values
represent probabilities and lies in the unit interval [0, 1]. But because of infinite
computation trees, we are forced to take as ‘values’ any subinterval [a, b] of the
unit interval [0, 1]. Such intervals represent uncertainty ranges in the probabilities.

1The term ‘valuation’ in algebra refers to a real function on a ring that satisfies certain axioms.
Despite some concern, we will expropriate this terminology, seeing little danger of a context in
which both senses of the term might be gainfully employed.

7.2. INTERVAL ALGEBRA 293

This leads to the use of a simple interval algebra. The present chapter develops
the valuation mechanism needed for our theory of choice machines. We will ex-
tend probabilistic machines to a more general class called stochastic machines. This
chapter focuses on alternation machines, leaving stochastic machines to the next
chapter.

Other choice modes. Other authors independently proposed a variety of com-
putational modes that turn out to be special cases of our probabilistic-alternating
mode: interactive proof systems (Goldwasser, Micali and Rackoff [8]), Arthur-Merlin

games (Babai [2]), stochastic Turing machines (Papadimitriou [16]), probabilistic-

nondeterministic machines (Goldwasser and Sipser [9]). In general, communication
protocols and game playing models can be translated as choice machines. In par-
ticular, this holds for the probabilistic game automata (Condon and Ladner [4])
which generalize interactive proof systems and stochastic machines 2. Alternating
machines are generalized to logical type machines (Hong [11]) where machine states
can now be associated with any of the 16 Boolean functions on two variables. Some
modes bearing little resemblance to choice machines can nevertheless be viewed as
choice machines: for example, in chapter 9 we describe a choice mode that gen-
eralizes nondeterminism in a different direction than alternation. (This gives rise
to the so-called Boolean Hierarchy.) These examples suggests that the theory of
valuation gives a proper foundation for choice modes of computation. The litera-
ture can avoid our systematic development only by restrictions such as requiring
constructible time-bounds.

7.2 Interval algebra

The above introduction to probabilistic-alternating machines explicitly avoided in-
finite computation trees T (x). Infinite trees cannot be avoided in general; such is
the case with space-bounded computations or with probabilistic choices. To see why
infinite trees are problematic, recall that we want to systematically assign a value
in [0, 1] to each node of T (x), in a bottom-up fashion. But if a node u of T (x) lies
on an infinite path, it is not obvious what value to assign to u.

Our solution [23] lies in assigning to u the smallest ‘confidence’ interval I(u) ⊆
[0, 1] guaranteed to contain the ‘true’ value of u. This leads us to the following
development of an interval algebra

3.

In the following, u, v, x, y, etc., denote real numbers in the unit interval [0, 1].
Let

INT := {[u, v] : 0 ≤ u ≤ v ≤ 1}

2This game model incorporates ‘partially-hidden information’. It will be clear that we could add
partially-hidden information to choice machines too.

3Interval arithmetic, a subject in numerical analysis, is related to our algebra but serves a rather
different purpose. We refer the reader to, for example, Moore [15].

294 CHAPTER 7. ALTERNATING CHOICES

denote the set of closed subintervals of [0, 1]. An interval [u, v] is exact if u = v,
and we identify the exact interval [u, u] with the real number u. We call u and v

(respectively) the upper and lower bounds of the interval [u, v]. The unit interval
[0, 1] is also called bottom and denoted ⊥.

By an interval function we mean a function f : INTn
→ INT, where n ≥ 0

denotes the arity of the function. We are interested in six interval functions. The
first is the unary function of negation (¬), defined as follows:

¬[x, y] = [1− y, 1− x].

The remaining five are binary functions:

minimum (∧), maximum (∨),
toss (f),
probabilistic-and (⊗), probabilistic-or (⊕).

It is convenient to first define them as real functions. The real functions of
minimum and maximum are obvious. The toss function is defined by

x fy :=
x + y

2
.

We saw in our introduction how this function arises from probabilistic (coin-tossing)
algorithms. The last two functions are defined as follows:

x⊗ y := xy

x⊕ y := x + y − xy

Thus ⊗ is ordinary multiplication of numbers but we give it a new name to signify
the interpretation of the numbers as probabilities. If E is the event that both E 1

and E2 occur, then the probability Pr(E) of E occurring is given by

Pr(E) = Pr(E1)⊗ Pr(E2).

We assume that E1, E2 are independent events. Similarly ⊕ has a probabilistic
interpretation: if E is the event that either E1 or E2 occurs, then

Pr(E) = Pr(E1)⊕ Pr(E2).

To see this, simply note that x⊕ y can also be expressed as 1− (1− x)(1− y). For
brevity, we suggest reading ⊗ and ⊕ as ‘prand’ and ‘pror’, respectively.

We note that these 5 real functions can also be regarded as functions on [0, 1]
(i.e., if their arguments are in [0, 1] then their values remain in [0, 1]). We may then
extend them to the subintervals INT of the unit interval as follows. If ◦ is any of
these 5 functions, then we define

[x, y] ◦ [u, v] := [(x ◦ u), (y ◦ v)].

7.2. INTERVAL ALGEBRA 295

For instance, [x, y]⊗ [u, v] = [xu, yv] and [x, y] ∧ [u, v] = [min(x, u),min(y, v)].

Alternatively, for any continuous function f : [0, 1]→ [0, 1], we extend the range
and domain of f from [0, 1] to INT by the definition f(I) = {f(x) : x ∈ I}. If f is
also monotonic, this is equivalent to the above.

One easily verifies:

Lemma 1 All five binary functions are commutative. With the exception of f, they

are also associative.

The set INT forms a lattice with ∧ and ∨ as the join and meet functions,
respectively4. It is well-known that we can define a partial order ≤ in any lattice
by:

[x, y] ≤ [u, v] ⇐⇒ ([x, y] ∧ [u, v]) = [x, y]. (7.2)

Note that (7.2) is equivalent to:

[x, y] ≤ [u, v] ⇐⇒ x ≤ u and y ≤ v.

When we restrict this partial ordering to exact intervals, we get the usual ordering
of real numbers. For reference, we will call ≤ the lattice-theoretic ordering on INT.

The negation function is not a complementation function (in the sense of Boolean
algebra [5]) since neither I∧¬I = 0 nor5

I∨¬I = 1 holds for all I ∈ INT. However
it is idempotent, ¬¬I = I. Probabilistic-and and probabilistic-or can be recovered
from each other in the presence of negation. For example,

I ⊗ J = ¬(¬I ⊕¬J).

It easy to verify the following forms of de Morgan’s law:

Lemma 2

¬(I ∧ J) = ¬I ∨ ¬J

¬(I ∨ J) = ¬I ∧ ¬J

¬(I f J) = ¬I f ¬J

¬(I ⊗ J) = ¬I ⊕ ¬J

¬(I ⊕ J) = ¬I ⊗ ¬J

where I, J ∈ INT.

4A lattice X has two binary functions, join and meet, satisfying certain axioms (essentially all
the properties we expect from max and min). Lattice-theoretic notations can be found, for instance,
in [5]. The lattice-theoretic properties are not essential for the development of our results.

5We assume that ¬ has higher precedence than the binary operators so we may omit parenthesis
when convenient.

296 CHAPTER 7. ALTERNATING CHOICES

In view of these laws, we say that the functions ∧ and ∨ are duals of each other

(with respect to negation); similarly for the pair ⊗ and ⊕. However, f is self-dual.

We verify the distributivity of ∧ and ∨ with respect to each other:

I ∨ (J1 ∧ J2) = (I ∨ J1) ∧ (I ∨ J2)

I ∧ (J1 ∨ J2) = (I ∧ J1) ∨ (I ∧ J2).

Furthermore, f, ⊗ and ⊕ each distributes over both ∧ and ∨:

I f(J1 ∧ J2) = (I f J1) ∧ (I f J2), I f(J1 ∨ J2) = (I f J1) ∨ (I f J2)

I ⊗ (J1 ∧ J2) = (I ⊗ J1) ∧ (I ⊗ J2), I ⊗ (J1 ∨ J2) = (I ⊗ J1) ∨ (I ⊗ J2)

I ⊕ (J1 ∧ J2) = (I ⊕ J1) ∧ (I ⊕ J2), I ⊕ (J1 ∨ J2) = (I ⊕ J1) ∨ (I ⊕ J2)

However ⊗ and ⊕ do not distribute with respect to each other (we only have
x⊗ (y ⊕ z) ≤ (x⊗ y)⊕ (x⊗ z)). And neither ∧ nor ∨ distributes over f, ⊗ or ⊕.

Another Partial Order. For our applications, it turns out that a more useful
partial order on INT is v , defined by:

[x, y] v [u, v] ⇐⇒ x ≤ u and v ≤ y.

Clearly v is the reverse of the set inclusion relation between intervals: I v J ⇐⇒

J ⊇ I as sets. With respect to the v -ordering, all exact intervals are maximal
and pairwise incomparable6. In view of our interpretation of intervals as ‘intervals
of confidence’, if I v J then we say J has ‘at least as much information’ as I. For
this reason, we call v the information-ordering. In contrast to the lattice-theoretic
≤-ordering, v only gives rise to a lower semi-lattice with the meet function u
defined by

[x, y] u [u, v] = [min(x, u),max(y, v)].

(The following suggestion for defining the join t fails: [x, y] t [u, v] = [max(x, u),
min(y, v)].) Note that bottom ⊥ is the least element (“no information”) in the
information-ordering.

Example 1 The strong 3-valued algebra described7 by Chandra, Kozen and Stock-
meyer [3] is a subalgebra of our interval algebra, obtained by restricting values to
{0, 1,⊥}. See figure 7.1 for its operation tables. They only were interested in the
functions ∧, ∨, ¬. Thus our interval algebra gives a model (interpretation) for this
3-valued algebra.

The contrast between ≤ and v is best exemplified by the respective partial
orders restricted to this 3-valued algebra, put graphically:

6I and J are v -comparable if I v J or J v I, otherwise they are v -incomparable.
7Attributed to Kleene.

7.2. INTERVAL ALGEBRA 297

∧ 0 1 ⊥

0

1

⊥

0

0

0

0

1

⊥

0

⊥

⊥

∨ 0 1 ⊥

0

1

⊥

0

1

⊥

1

1

1

⊥

1

⊥

Figure 7.1: The strong 3-valued algebra.

����
0

����
⊥

����
1

≤

≤

����
⊥

����
0 ����

1

S
S

S
S �

�
�
�

vv

This information ordering gives rise to some important properties of interval
functions:

Definition 1

(i) An n-ary function

f : INTn
→ INT

is monotonic if for all intervals J1, . . . , Jn, J
′
1, . . . , J

′
n
:

J1 v J
′
1, . . . , Jn v J

′
n
⇒ f(J1, . . . , Jn) v f(J ′

1, . . . , J
′
n
).

(ii) f is continuous if it is monotonic and for all non-decreasing sequences

I
(1)
i
v I

(2)
i
v I

(3)
i
v · · ·

(i = 1, . . . , n), we have that

f(lim
j

{I
(j)
1 }, . . . , lim

j

{I
(j)
n
}) = lim

j

f(I
(j)
1 , . . . , I

(j)
n

). (7.3)

298 CHAPTER 7. ALTERNATING CHOICES

Note that a continuous function is assumed monotonic. This ensures that the
definition above is well-defined. More precisely, taking limit on the right-hand side
of (7.3) is meaningful because monotonicity of f implies

f(I
(1)
1 , . . . , I

(1)
n

) v f(I
(2)
1 , . . . , I

(2)
n

) v f(I
(3)
1 , . . . , I

(3)
n

) v · · · .

Lemma 3 The six functions ∧, ∨, f, ⊗, ⊕ and ¬ are continuous.

We leave the proof as an exercise. Continuity of these functions comes from
continuity of their real counterpart.

Example 2 The cut-off function δ 1
2
(x) is defined to be 1 if x >

1
2 and 0 otherwise.

We extend this function to intervals in the natural way: δ 1
2
([u, v]) = [δ 1

2
(u), δ 1

2
(v)].

This function is monotonic but not continuous.

The following simple observation is useful for obtaining monotonic and continu-
ous functions.

Lemma 4

(i) Any composition of monotonic functions is monotonic.

(ii) Any composition of continuous functions is continuous.

7.3 Theory of Valuations

To give a precise definition for the choice mode of computation, and its associated
complexity measures, we introduced the theory of valuations. We first signal a
change in emphasis as we go into choice modes:

• Until now, ‘rejection’ is usually equated with ‘non-acceptance’. Henceforth we
subdivide non-acceptance into two possibilities: rejection and indecision.

• We refine our terminology to distinguish between the global decision versus
local answers of a Turing acceptor. On a given input, there is one global
decision whether to accept, reject or to remain undecided. This decision is
based the the entire computation tree. However, each terminal configuration
gives a local answer, based on the path leading to that configuration. We
retain the terminology of accept/reject/undecided for the global decision but
to avoid confusion, introduce a different terminology to discuss local answers.

7.3. THEORY OF VALUATIONS 299

Local Answers

We replace the accept and reject states (qa and qr) by the new distin-
guished states,

qY , qN ∈ Q∞.

We call them the YES-state and NO-state, respectively, and arrange
our transition tables so configurations with these states are necessarily
terminal. A terminal configuration C is called a YES-configuration,
NO-configuration or a YO-configuration, depending on whether its
state is qY , qN or some other state. A complete computation path is
called a YES-path, NO-path or YO-path, depending on whether it
terminates in a YES, NO or otherwise. Thus a YO-path either termi-
nates in a YO-configuration or is non-terminating. We also speak of
a machine or configuration giving a “YES, NO or YO-answer”: such
locution would be self-evident.

The global decision is determined by the acceptance rules, to be defined below.
Naturally, the global decision is some generalized average of the local answers. This
global/local terminology anticipates the quantitative study of errors in a computa-
tion (see chapter 8). For now, it suffices to say that all error concepts are based on
the discrepancies between global decisions and local answers. The seemingly innocu-
ous introduction of indecision and YO-answers8 is actually critical in our treatment
of errors.

Let f be a function on INT, i.e., there is an n ≥ 0 (n is the arity of f) such that

f : INTn
→ INT.

The 0-ary functions are necessarily constant functions, and the identity function

ι(I) = I has arity 1.

Definition 2 A set B of functions on INT is called a basis set if the functions

in B are continuous and if B contains the identity function ι and the three 0-ary
functions 0, 1 and ⊥.

Definition 3 Let B be a basis set. A B-acceptor is a pair M = (δ, γ) where δ is

a Turing transition table whose states are ordered by some total ordering
M
<, and γ

associates a basis function γ(q) to each state q,

γ : Q→ B.

Moreover, δ has the property that if C is a configuration of δ in state q and γ(q) = f

has arity n, then C either is a terminal configuration or has exactly n immediate

successors C1, . . . , Cn such that the Ci’s have distinct states.

8We owe the YO-terminology to the unknown street comedian in Washington Square Park who
suggested that in a certain uptown neighborhood of Manhattan, “we say YO to drugs”. Needless
to say, this local answer is in grave error.

300 CHAPTER 7. ALTERNATING CHOICES

Name Basis B Mode Symbol

deterministic ∅ D

nondeterministic {∨} N

probabilistic { f} Pr

alternating {∧,∨,¬} A

interactive proofs { f,∨} Ip

probabilistic-alternating { f,∧,∨,¬} PrA

stochastic { f,⊗,⊕,¬} St

stochastic-alternating { f,⊗,⊕,∧,∨,¬} StA

Figure 7.2: Some Choice Modes and their Symbols.

We simply call M a choice acceptor (or machine) if B is understood.

Explanation. We describe how choice machines operate. If the immediate
successors of a configuration C are C1, . . . , Cn such that the state of Ci is less than

the state of Ci+1 (under the ordering
M
<) for each i = 1, . . . , n− 1, then we indicate

this by writing9

C ` (C1, . . . , Cn).

If q is the state of C, we also write γ(C) or γC instead of γ(q). We require that
the C1, . . . , Cn to have distinct states because the value of the node (labeled by) C

in the computation tree is given by γC(v1, . . . , vn) where vi is the value of the node

(labeled by) Ci. Without an ordering such as
M
< on the children of C, we have no

definite way to assign the vi’s as arguments to the function γC . But for basis sets
that we study, the functions are symmetric in their arguments and so we will not

bother to mention the ordering
M
<.

It is useful to collect some notations for B-choice machines for some important
bases B. Since every basis set contains the functions ι, 0, 1,⊥, we may omit them
when writing out B.

The mode symbol extends our previous notations for non-deterministic or de-
terministic classes. For instance, the notation IpTIME (f(n)) clearly refers to the
class of languages accepted by “interactive proof machines” in time f(n). Of course,
the precise definition of time or space complexity for such computations is yet to be
rigorously defined.

We shall say a B-machine makes B-choices. Thus, nondeterministic machines
makes nondeterministic choices and alternating machines makes alternating choices.
MIN- and MAX-choices are also called universal choices and existential choices;

9This notation could cause some confusion because we do not want to abandon the original
meaning of “C ` C ′”, that C′ is a successor of C. Hence “C ` C ′” does not mean that C has only
one successor; to indicate this, we need to write “C ` (C ′)”.

7.3. THEORY OF VALUATIONS 301

Coin-tossing choices are also called random choices or probabilistic choices.
From the table, it is evident that we differentiate between the words ‘proba-

bilistic’ and ‘stochastic’: the adjective ‘probabilistic’ applies only to coin-tossing
concepts – a usage that conforms to the literature. The adjective ‘stochastic’ is
more general and includes coin-tossing concepts.

We abbreviate a probabilistic-alternating machine to ‘PAM’, and a stochastic-
alternating machine to ‘SAM’.

If γ(q) = ∧ (respectively, ∨, f,⊗,⊕,¬) then q is called an MIN-state (respec-
tively, MAX-, TOSS-, PrAND-, PrOR-, NOT-state). If the state of C is an MIN-
state (MAX-state, etc.), then C is an MIN-configuration (MAX-configuration, etc.).

Example 3 In chapter 2 we showed that a deterministic 1-tape Turing machine
can accept the palindrome language

Lpal = {w : w ∈ {0, 1}∗, w = w
R
}

in (simultaneous) linear time and linear space or in (simultaneous) quadratic time
and logarithmic space. Furthermore, if Lpal is accepted nondeterministically in time
t and space s then s(n) · t(n) = Ω(n2). Now we show that an alternating machine M
can accept L in linear time but using only logarithmic space. Hence the alternating
mode is strictly more powerful than the fundamental mode. Of course, the formal
definition of what it means for a choice machine to accept a word, and the notion
of space and time complexity is yet to come. But if our machine halts on all paths,
then these concepts are intuitively obvious: we rely on such intuitions for the reader
to understand the example. The idea of the construction is that M accepts an input
w provided for all i = 1, . . . , n, w[i] = w[n + 1− i], provided |w| = n.

In phase 1, the machine M on input w of length n marks out some m ≥ 0 cells
using existential choice. It is not hard to show that the simple procedure P that
repeatedly increments a binary counter from 0 to 2m, taking O(2m) steps overall.
In phase 2, M deterministically checks if 2m−1

< n ≤ 2m using this procedure P ,
answering NO otherwise. Hence phases 1 and 2 take linear time. In phase 3, M
universally guesses a bit for each of the marked cells. This takes O(log n) steps. At
the end of phase 3, M is armed with a binary number i between 0 and 2m+1. Then
it deterministically tests if w[i] = w[n − i]. If i > n then this test, by definition,
passes. In any case this test takes a linear number of steps, again using procedure
P . This completes our description of M. It is clear that M accepts L pal and uses
O(log n) space.

We now want to define acceptance by choice machines. Basically we need to
assign intervals [u, v] ∈ INT to nodes in computation trees. The technical tool we
employ is the concept of a ‘valuation’.

Definition 4 Let M= (δ, γ) be a choice machine. The set of configurations of δ is

denoted ∆(M). A valuation of M is a function

V : ∆(M)→ INT.

302 CHAPTER 7. ALTERNATING CHOICES

A partial ordering on valuations is induced from the v -ordering on INT as follows:

for valuations V1 and V2, define V1 v V2 if

V1(C) v V2(C)

for all C ∈ ∆(M). The bottom valuation, denoted V⊥, is the valuation that always

yield ⊥. Clearly V⊥ v V for any valuation V .

Definition 5 Let ∆ ⊆ ∆(M). We define the following operator τ∆ on valuations.

If V is a valuation, then τ∆(V) is the valuation V
′ defined by:

V
′(C) =



















⊥ if C 6∈ ∆ or C is YO-configuration,
1 else if C is a YES-configuration,
0 else if C is a NO-configuration,
γC(V (C1), . . . , V (Cn)) else if C ` (C1, . . . , Cn).

For instance, we may choose ∆ to be the set of all configurations of M that uses
at most space h (for some h).

Lemma 5 (Monotonicity) ∆1 ⊆ ∆2 and V1 v V2 implies τ∆1(V1) v τ∆2(V2).

Proof. We must show τ∆1(V1)(C) v τ∆2(V2)(C) for all C ∈ ∆(M). If C 6∈ ∆1,
then this is true since the left-hand side is equal to ⊥. So assume C ∈ ∆ 1. If C is
terminal, then τ∆1(V1)(C) = τ∆2(V2)(C) (= 0, 1 or ⊥). Otherwise, C ` (C1, . . . , Cn)
where n is the arity of γC . Then

τ∆1(V1)(C) = γC(V1(C1), . . . , V1(Cn))

v γC(V2(C1), . . . , V2(Cn))

= τ∆2(V2)(C).

where the v follows from the monotonicity of γC . Q.E.D.

For any ∆ ⊆ ∆(M) and i ≥ 0, let τ
i

∆ denote operator obtained by the i-fold
application of τ∆, i.e.,

τ
0
∆(V) = V, τ

i+1
∆ (V) = τ∆(τ i

∆(V)).

As corollary, we get
τ

i

∆(V⊥) v τ
i+1
∆ (V⊥)

for all i ≥ 0. To see this, use induction on i and the monotonicity lemma.

Definition 6 From the compactness of the interval [0, 1], we see that there exists a

unique least upper bound Val∆ defined by

Val∆(C) = lim{τ i

∆(V⊥)(C) : i ≥ 0},

for all C ∈ ∆. If ∆ = ∆(M), then we denote the operator τ∆ by τM, and the

valuation Val∆ by ValM.

7.3. THEORY OF VALUATIONS 303

A simple consequence of the monotonicity lemma is the following:

∆1 ⊆ ∆2 ⇒ Val∆1 v Val∆2 .

To see this, it is enough to note that for all i ≥ 0, τ
i

∆1
(V⊥) v τ

i

∆2
(V⊥).

For any operator τ and valuation V , we say V is a fixed point of τ if τ(V) = V .

Lemma 6 Val∆ is the least fixed point of τ∆, i.e.,

(i) It is a fixed point: τ∆(Val∆) = Val∆

(ii) It is the least such: for all valuations V , if τ∆(V) = V then Val∆ v V .

Proof.

(i) If C is terminal then it is easy to see that τ∆(Val∆)(C) = Val∆(C). For
non-terminal C, if C ` (C1, . . . , Cn) then

τ∆(Val∆)(C) = γC(Val∆(C1), . . . ,Val∆(Cn))

= γC(lim
i

{τ
i

∆(V⊥)(C1)}, . . . , lim
i

{τ
i

∆(V⊥)(Cn)})

= lim
i

{γC(τ i

∆(V⊥)(C1), . . . , τ
i

∆(V⊥)(Cn))} (by continuity)

= lim
i

{τ
i+1
∆ (V⊥)(C)}

= Val∆(C).

(ii) V⊥ v V , so τ
i

∆(V⊥) v τ
i

∆(V) = V for all i ≥ 0. Hence Val∆ v V .

Q.E.D.

Example 4 To see that a fixed point of τ∆ need not be unique, consider a binary
computation tree in which all paths, with a single exception, terminate at accepting
configurations. The exception is the infinite path π that always branches to the
right. We could make sure that each node in this tree has a distinct configuration.
Assuming that all nodes are MIN-configurations, a fixed point valuation V 1 of the
computation tree is where all nodes have value 1. Another fixed point valuation
V2 assigns each nodes in π to 0 but the rest has value 1. But the least fixed point
valuation V0 assigns to the value ⊥ to each node on the path π and the value 1 to
the rest.

Definition 7 An interval I ⊆ [0, 1] is a accepting if it is contained in the half-open

interval (1
2 , 1], i.e., I ⊆ (1

2 , 1]. It is rejecting if I ⊆ [0, 1
2); it is undecided if it is

neither accepting nor rejecting.

304 CHAPTER 7. ALTERNATING CHOICES

Note that I is accepting/rejecting iff each v ∈ I is greater/less than 1
2 . Similarly

I is undecided iff 1
2 ∈ I.

Definition 8 (Acceptance rule for choice machines)
(i) Let w be a word in the input alphabet of a choice acceptor M, and ∆ a set of

configurations of M. The ∆-value of w, denoted Val ∆(w), refers to Val∆(C0(w))
where C0(w) is the initial configuration of M on w. If ∆ = ∆(M), the set of all

configurations of M, we write ValM(w) instead of Val∆(M)(w).
(ii) We say M accepts, rejects or is undecided on w according as Val M(w) is ac-

cepting, rejecting or undecided.

(iii) A machine is said to be decisive if every word is either accepted or rejected;

otherwise it is indecisive

(iv) The language accepted by M is denoted L(M). The language rejected by M is

denote L(M). Thus, M is decisive iff

L(M) = co-− L(M).

Convention. In the course of this section, we will introduce other types of
fixed point valuations. It is helpful to realize that we will use ‘Val ’ (with various
subscripts) only to denote valuations that are least fixed points of the appropriate
operators.

7.3.1 Tree Valuations and Complexity

To discuss complexity in general, we need an alternative approach to valuations,
called ‘tree valuations’. To emphasize the difference, the previous notion is also
called ‘configuration valuations’.

Configuration valuations allows us to define the notion of acceptance or rejec-
tion. They can also define space complexity: thus, we say that M accepts input
w in space h if Val∆(w) is accepting with ∆ comprising all those configurations
of M that uses space ≤ h, Unfortunately, configuration valuations are not suited
for time complexity. To see why, note that they are unable to distinguish be-
tween different occurrences of the same configuration C in computation trees.
That is, once we fix ∆, then the valuation of C is uniquely determined. But sup-
pose C occurs in two positions (say, C1 and C2) of a computation tree. Assume
the depth of C1 is less than the depth of C2. In a time-limited computation, we
are interested in computation trees with bounded depths. We want “valuation”
V of such trees which may distinguish between C1 and C2: thus, V (C1) may
have more information than V (C2), since it is allowed a longer computation
time in its subtree.

The following treatment is abbreviated since it imitates the preceding develop-
ment.

7.3. THEORY OF VALUATIONS 305

Definition 9 Fix a choice machine M and let w any input.

(i) The complete computation tree TM(w) of M on w is an ordered tree whose nodes

are labeled by configurations from ∆M such that the root is labeled with the initial con-

figuration C0(w), and whenever a node u is labeled by some C and C ` (C1, . . . , Cn)
then u has n children u1, . . . , un which are ordered so that ui is labeled by Ci. We

write u ` (u1, . . . , un) in this case. By abuse of terminology, we sometimes identify

a node u with its label C.

(ii) A tree T
′ is a prefix of another tree T if T

′ is obtained from T by pruning10

some subset of nodes of T . In particular, if T
′ is non-empty then the root of T

′ is

the root of T . If T is labeled, then T
′ has the induced labeling.

(iii) A computation tree T of w is a prefix of the complete computation tree TM(w).
We call TM(w) the completion of T .

(iv) A (tree) valuation on a computation tree T is a function V that assigns a value

V (u) ∈ INT for each node u in the completion TM(w) of T , with the property that

nodes not in T are assigned ⊥. We also call V a tree valuation of w. If V, V
′ are

valuations of w then we define

V v V
′

if V (u) v V
′(u) for all u ∈ TM(w).

(v) The bottom valuation, denoted V⊥, assigns each node of TM(w) to ⊥. Clearly

V⊥ is the v -minimum tree valuation, for any given w.

(vi) The operator τT transforms a valuation V on T to a new valuation τT (V) on

T as follows: for each node u ∈ TM(w),

τT (V)(u) =



















⊥ if u is a leaf of T or u 6∈ T,

1 else if u is a YES-node,
0 else if u is a NO-node,
γu(V (u1), . . . , V (un)) else if u ` (u1, . . . , un).

Let the least fixed point of τT be denoted by ValT . In fact, τ
i

T
(V⊥) v τ

i+1
T

(V⊥) for

all i ≥ 0 and we have

ValT = lim{τ i

T
(V⊥) : i ≥ 0}.

(vii) An accepting/rejecting/undecided tree for w is is any computation tree T of

w such that ValT (u0) is accepting/rejecting/undecided where u0 is the root of T .

We claim that Val T is the least fixed point without proof because it is proved
exactly as for configuration valuations; furthermore, the next section gives another
approach.

Let us say a word w is accepted or rejected by M in the ‘new sense’ if there is
an accepting/rejecting tree for w. We next show the new sense is the same as the

10To prune a node u from T means to remove from T the node u and all the descendents of u.
Thus, if we prune the root of T , we an empty tree.

306 CHAPTER 7. ALTERNATING CHOICES

old. First we introduce a notation: if ∆ ⊆ ∆(M) then let

T∆(w)

denote the largest computation tree T of w all of whose nodes are labeled by elements
of ∆. It is not hard to see that this tree is uniquely defined, and is non-empty if
and only if the initial configuration C0(w) is in ∆. Equivalence of the two senses of
acceptance amounts to the following.

Lemma 7 Fix M and input w.

(a) If T is an accepting/rejecting computation tree of w then Val∆(w) is also ac-

cepting/rejecting, where ∆ is the set of labels in T .

(b) Conversely, for any ∆ ⊆ ∆(M), if Val∆(w) is accepting/rejecting then T∆(w) is

also accepting/rejecting.

Its proof is left as an exercise.

Definition 10 (Acceptance Complexity) Let r be any extended real number.

(i) We say that M accepts x in time r if there is an accepting tree T on input x

whose nodes are at level at most r (the root is level 0).
(ii) We say M accepts x in space r if there is an accepting tree T on input x whose

nodes each uses space at most r.

(iii) We say M accepts x in reversal r if there is an accepting tree T on input x such

that each path in the tree makes at most r reversals.

(iv) A computation path C1`C2` · · · `Cm makes (at least) r alternations if there are

k = brc+ 1 configurations

Ci0 , Ci1 , . . . , Cik

1 ≤ i1 < i2 < · · · < ik ≤ m such that each Cij
(j = 0, . . . , k) is either a MIN-

or a MAX-configuration. Furthermore, Cij−1 and Cij
(j = 1, . . . , k) make different

choices (one makes a MIN- and the other a MAX-choice) if and only if there are

no NOT-configurations between them along the path. M accepts x in r alternations

if there is an accepting tree T on input x such that no path in the tree makes 1 + r

alternations.

(v) Let r1, r2, r3 be extended real numbers. We say M accepts x in simultaneous

time-space-reversal (r1, r2, r3) if there is an accepting tree T that satisfies the re-

quirements associated with each of the bounds ri (i = 1, . . . , 3) for the respective

resources.

(vi) For complexity functions f1, f2, f3, we say that M accepts in simultaneous time-

space-reversal (f1, f2, f3) if for each x ∈ L(M), M accepts x in simultaneous time-

space-reversal (f1(|x|), f2(|x|), f3(|x|)). This definition extends to other simultane-

ous bounds.

7.3. THEORY OF VALUATIONS 307

We have just introduced a new resource ‘alternation’. Unlike time, space and
reversals, this resource is mode-dependent. For example, the machine in the palin-
drome example above has one alternation and nondeterministic machines has no
alternations. We have a similar monotonicity property for tree valuations: if T is a
prefix of T

′ then
ValT v ValT ′ .

In consequence, we have:

Corollary 8 If M accepts an input in time r then it accepts the same input in time

r
′ for any r

′
> r. Similarly for the other resources.

Our definition of accepting in time r is phrased so that the accepting tree T need
not include all nodes at levels up to brc. Because of monotonicity, it may be more
convenient to include all nodes up to level brc. But when other resource bounds are
also being considered, we may no longer be free to do this.

The following result is fundamental:

Theorem 9 (Compactness) If a choice machine M accepts a word x then it has

a finite accepting tree on input x. Similarly, if M rejects a word, then there is a

finite rejecting tree.

The proof will be deferred to the next section. Thus, if an input is accepted,
then it is accepted in finite amounts of time, space, etc. This result implies that the
complexity measures such as time, space, reversals or alternation are Blum measures
(chapter 6, section 8).

On rejection and running complexity. The above definitions of complexity
is concerned with accepted inputs only, and no assumptions on the computation of
M are made if w 6∈ L(M). In other words, we have been discussing acceptance com-
plexity. We now introduce running complexity whose general idea is that complexity
bounds apply to rejected as well as accepted words. Should running complexity al-
low indecision on an input? Since indecision can always be achieved with the empty
computation tree, we insist that there be no indecision in running complexity.

Definition 11 (Running time complexity) Fix a choice machine M.

(i) We say M rejects an input w in k steps if there is a rejecting tree of M on w

whose nodes have level at most k.

(ii) For any complexity function t(n), we say M rejects in time t(n) if for all

rejected inputs w, M rejects w in time t(|w|).
(iii) M runs in time (t, t′) if each input of length n is either accepted in time t(n) or

rejected in time t
′(n). If t = t

′, we simply say M runs in time t.

This definition extends naturally to other resources. Note that if M has a running
time that is finite, i.e., t(n) < ∞ for all n, then it is decisive. Thus, we can
alternatively say that M is halting if it is decisive.

308 CHAPTER 7. ALTERNATING CHOICES

Complexity classes. We are ready to define complexity classes for choice
modes. Our previous convention for naming complexity classes extends in a natural
way: First note that our notation for complexity classes such as NTIME(F) or
D-TIME-REVERSAL(F, F

′) has the general format

Mode-Resources (Bounds)

where Mode is either N or D, Resources is a sublist of time, space , reversal . and
Bounds is a list of (families of) complexity functions. The complexity class defined
by choice machines can be named using the same format: we only have to add
symbols for the new modes and resources. The new mode symbols appears in the
last column of the table at the beginning of this section. They are

Pr, A, Ip, PrA, St, StA

denoting (respectively) the probabilistic, alternating, interactive proof, probabilistic-
alternating, stochastic, stochastic-alternating modes. We have one new resource,
with symbols11

ALTERNATION or ALT .

Example 5

(i) Thus PrTIME(nO(1)) denotes the class of languages accepted in polynomial time
by probabilistic machines. This class is usually denoted PP .
(ii) The class IpTIME (nO(1)) contains the class usually denoted IP in the literature.
If we introduce (see next chapter) the notion of bounded-error decision, indicated
by the subscript ‘b’, then we have

IP = IpTIME(nO(1)).

(iii) If F, F
′ are families of complexity functions, PrA-TIME-SPACE (F, F

′) denotes
the class of languages that can be accepted by PAMs in simultaneous time-space
(t, s) for some t ∈ F, s ∈ F

′.
(iv) We will write A-TIME -ALT (nO(1)

, O(1)) for the class of languages accepted by
alternating machines in polynomial time in some arbitrary but constant number of
alternations. This class is denoted PH and contains precisely the languages in the
polynomial-time hierarchy (chapter 9).

Example 6 Note that {⊗}-machines (respectively, {⊕}-machines) are equivalent
to {∧}-machines ({∨}-machines). A more interesting observation is that the prob-
abilistic mode is at least as powerful as nondeterministic mode:

N-TIME-SPACE-REVERSAL(t, s, r) ⊆ Pr-TIME-SPACE-REVERSAL(t + 1, s, r)

11Since “alternation” is the name of a mode as well as of a resource, awkward notations such as
A-ALT (f(n)) arise.

7.4. BASIC RESULTS 309

for any complexity functions t, s, r. To see this, let N be any nondeterministic
machine that accepts in time-space (t, s). Let M be the following probabilistic
machine: on input w, first toss a coin. If tail, answer YES; otherwise simulate N
and answer YES iff N answers YES. The jargon ‘toss a coin and if tail then do
X, else do Y’ formally means that the machine enters a TOSS-state from which
there are two next configurations: in one configuration it does X and in the other
choice it does Y. The reader may verify that M accepts L(N) in time-space-reversal
(t + 1, s, r).

7.4 Basic Results

In the last section, the least fixed point tree valuation Val T for a computation tree
T is obtained by repeated application of the operator τT to the bottom valuation
Val⊥. We now obtain Val T in an alternative, top-down way.

For each integer m ≥ 0, let Tm denote the prefix of T obtained by pruning away
all nodes at level m + 1. Thus T0 consists of just the root of T . By monotonicity,

ValTm
v ValTm+1 .

Lemma 10

(i) For any finite computation tree T , the fixed point of τT is unique (and, a fortiori,
equal to the least fixed point ValT). Moreover, this fixed point is easily computed

‘bottom-up’ (e.g., by a postorder traversal of T).

(ii) For any computation tree T (finite or not), the valuation

V
∗
T

:= lim{Val Tm
: m ≥ 0}

is a fixed point of τT .

(iii) V
∗
T

is equal to the least fixed point, ValT .

(iv) A computation tree T is accepting/rejecting if and only if it has a finite prefix

that is accepting/rejecting.

Proof.(i) This is seen by a bottom-up examination of the fixed point values at each
node.
(ii) If u is a leaf then clearly τT (V ∗

T
)(u) = V

∗
T
(u). Otherwise, let u ` (u1, . . . , un).

τT (V ∗
T
)(u) = γu(V ∗

T
(u1), . . . , V

∗
T
(un))

= γu(lim
m≥0
{ValTm

(u1)}, . . . , lim
m≥0
{ValTm

(un)})

= lim
m≥0
{γu(ValTm

(u1), . . . ,ValTm
(un))}

= lim
m≥0
{ValTm

(u)}

= V
∗
T
(u)

310 CHAPTER 7. ALTERNATING CHOICES

This proves that V
∗
T

is a fixed point of τT .
(iii) Since Val T is the least fixed point, it suffices to show that V

∗
T
v ValT . This

easily follows from the fact that VTm
v ValT .

(iv) If a prefix of T is accepting/rejecting then by monotonicity, T is accept-
ing/rejecting. Conversely, suppose T is accepting/rejecting. Then the lower bound
of ValT (u0) is greater/less than 1

2 , where u0 is the root of T . By the characteri-
zation of ValT in part (iii), we know that the lower/upper bound of Val Tm

(u0) is
monotonically non-decreasing/non-increasing and is greater/less than 1

2 in the limit
as m goes to infinity. Then there must be a first value of m when this lower/upper
bound is greater/less than 1

2 . This m gives us the desired finite prefix Tm of T .
Q.E.D.

This lemma has a two-fold significance: First, part (iv) proves the compactness
theorem in the last section. Second, part (iii) shows us an constructive way to
compute ValT , by approximating it from below by Val Tm

with increasing m. This
method is constructive (in contrast to the τ

m

T
(V⊥) approximation) because Tm is

finite for each m, and the proof of part (i) tells us how to compute Val Tm
.

The following lemma is useful for stochastic-alternating computations:

Lemma 11 Let T be a computation tree of a choice machine M on w, and i ≥ 0.
(i) If M is a probabilistic-alternating machine then τ

i+1
T

(V⊥)(u) = [x, y] implies 2i
x

and 2i
y are integers.

(ii) If M is a stochastic-alternating machine then 22i

x and 22i

y are integers.

We leave the proof as an exercise.

We now have the machinery to show that the language accepted by a B-choice
machine M is recursively enumerable provided each function in B is computable. To
be precise, assume a suitable subset X of [0, 1] consisting of all the ‘representable’
numbers, and call an interval representable if its endpoints are representable. We
assume 0, 1 ∈ X. We require X to be dense in [0, 1] (for example, X ⊆ [0, 1] is the
set of rational numbers or X is the set of “binary rationals” which are rationals with
finite binary expansion). We say f ∈ B is computable (relative to the representa-
tion of X) if it returns a representable value when given representable arguments;
moreover this value is computable by some recursive transducer.

Theorem 12 Let B be a basis set each of whose functions are computable.

a) The class of languages accepted by B-machines is precisely the class RE of re-

cursively enumerable languages.

b) The class of languages accepted by decisive B-machines is precisely the class

REC.

Proof. a) Languages in RE are accepted by B-choice machines since B-choice ma-
chines are generalizations of ordinary Turing machines. Conversely, let M be a
B-choice machine and w an input word. To show that L(M) is in RE , it is sufficient

7.4. BASIC RESULTS 311

to give a deterministic procedure for checking if w ∈ L(M), where the procedure
is required to halt only if w is in L(M). The procedure computes, for successive
values of m ≥ 0, the value Val Tm

(u0) where Tm is the truncation of TM(w) below
level m and u0 the root. If Tm is accepting for any m, the procedure answers YES.
If Tm is non-accepting for all m, the procedure loops. Lemma 10 not only justifies
this procedure, but it also shows how to carry it out: the values Val Tm

(u) of each
node u ∈ Tm is computed in a bottom-up fashion. The computability of the basis
functions B ensures this is possible.

b) We leave this as an exercise. Q.E.D.

One can view the theorem as yet another confirmation of Church’s thesis. Our
next result shows that negation ¬ can be avoided in stochastic-alternating machines
at the cost of an increase in the number of states. The following generalizes a result
for alternation machines in [3].

Theorem 13 For any stochastic-alternating acceptor M, there is a stochastic-

alternating acceptor N such that N has no NOT-states, L(M) = L(N), and for

all w and t, s, r, a ≥ 0: M accepts w in (time, space, reversal, alternation) (t, s, r, a)
iff N accepts w in (time, space, reversal, alternation) (t, s, r, a).

Proof. The idea is to use de Morgan’s law to move negation to the leaves of the
computation tree. Let M be any SAM. We construct a SAM N satisfying the re-
quirements of the theorem. For each state q of M, there are two states q

+ and q
−

for N. For any configuration C of M, let C
+ (resp., C

−) denote the corresponding
configuration of N where q

+ (resp., q
−) is substituted for q. In N, we regard q

+
0 ,

q
+
Y

and q
+
N

(respectively) as the initial, YES and NO states. However, we identify
q
−
Y

, q
−
N

(respectively) with the NO, YES states (note the role reversal). Of course,
the technical restriction does not permit two YES- or two NO-states, so we will iden-
tify them (q+

Y
= q

−
N

, q
+
N

= q
−
Y

). The functions γ(q+), γ(q−) assigned to the states in
N are defined from γ(q) in M as follows:

γ(q+) =

{

γ(q) if γ(q) 6= ¬

ι if γ(q) = ¬

γ(q−) =



































ι if γ(q) = ¬
∧ if γ(q) = ∨
∨ if γ(q) = ∧f if γ(q) = f
⊕ if γ(q) = ⊗
⊗ if γ(q) = ⊕

Hence N has no NOT-states. We now state the requirements on transitions of
N (this easily translates into an explicit description of the transition table of N).

312 CHAPTER 7. ALTERNATING CHOICES

Suppose that C1`C2. If C1 is not a NOT-configuration then

C
+
1 ` C

+
2 and C

−
1 ` C

−
2 .

If C1 is a NOT-configuration then

C
+
1 ` C

−
2 and C

−
1 ` C

+
2 .

Our description of N is complete: there are no transitions besides those listed above.
Let T be an accepting computation tree of N for an input word w; it is easy to

see that there is a corresponding computation tree ̂T for N with exactly the same
time, space, reversal and alternation complexity. In fact there is a bijection between
the nodes of T and ̂T such a node labeled C in T corresponds to one labeled C

+ or
C

− in ̂T . The fact that T and ̂T have identical alternating complexity comes from
the carefully-crafted definition of N.

Our theorem is proved if we show that ̂T is accepting. Let Tm be the truncation
of the tree T at levels below m ≥ 0; ̂Tm is similarly defined with respect to ̂T .
For h ≥ 0, let V

h

m
denote the valuations on Tm given by h-fold applications of the

operator τTm
to ⊥:

V
h

m
= τ

h

Tm
(V⊥)

and similarly define ̂V
h

m
= τ

h

̂Tm

(V⊥). We now claim that for all m,h and C ∈ Tm,

V
h

m
(C) =

{

̂V
h

m
(C+) if C

+ ∈ ̂T

¬ ̂V
h

m
(C−) if C

− ∈ ̂T

Here, we have abused notation by identifying the configuration C with the node of
Tm that it labels. But this should be harmless except for making the proof more
transparent. If h = 0 then our claim is true

⊥ = V
h

m
(C) = ̂V

h

m
(C+) = ¬ ̂V

h

m
(C−)

since ¬⊥ = ⊥. So assume h > 0. If C is a leaf of T , it is also easy to verify our
claim. Hence assume C is not a leaf. Suppose C

− ` (C−
1 , C

−
2) occurs in ̂T . Then

V
h

m
(C) = γ(C)(V h−1

m
(C1), V

h−1
m

(C2))

= γ(C)(¬ ̂V
h−1
m

(C−
1),¬ ̂V

h−1
m

(C−
2)) (by induction)

= ¬γ(C−)(̂V
h−1
m

(C−
1), ̂V

h−1
m

(C−
2)) (de Morgan’s law for γ(C))

= ¬ ̂V
h

m
(C−).

Similarly, we can show V
h

m
(C) = ̂V

h

m
(C+) if C

+ ` (C+
1 , C

+
2) occurs in ̂T . We

omit the demonstration in case C is a NOT-configuration. Finally, noting that
V

m+1
m

= ValTm
and ̂V

m+1
m

= Val
̂Tm

, we conclude that ValTm
= Val

̂Tm

. It follows ̂T

is accepting. Q.E.D.

7.4. BASIC RESULTS 313

Consequence of eliminating negation. This proof also shows that negation
can be eliminated in alternating machines and in PAMs. With respect to SAMs
without negation, the use of intervals in valuations can be replaced by ordinary
numbers in [0, 1] provided we restrict attention to acceptance complexity. A valuation
is now a mapping from ∆ ⊆ ∆(M) into [0, 1]. Likewise, a tree valuation assigns a real
value in [0, 1] to each node in a complete computation tree. We now let V⊥ denote
the valuation that assigns the value 0 to each configuration or node, as the case may
be. The operator τ∆ or τT on valuations is defined as before. Their least fixed point
is denoted Val∆ or ValT as before. The connection between the old valuation V

and the new valuation V
′ is simply that V

′(C) or V
′(u) (for any configuration C or

node u) is equal to the lower bound of the interval V (C) or V (u). When we discuss
running complexity, we need to consider the upper bounds of intervals in order to
reject an input; so we are essentially back to the entire interval.

Convention for this chapter. In this chapter, we only consider alternating
machines, PAMs and SAMs with no NOT-states. We are mainly interested in ac-

ceptance complexity. In this case, we may restrict valuations take values in [0, 1]
instead of in INT (we call these real values probabilities). With this convention, the
acceptance rule becomes:

M accepts a word w iff the probability Val M(w) is greater than 1
2 .

It is sometimes convenient to construct SAMs with NOT-states, knowing that
they can be removed by an application of the preceding theorem.

Suppose we generalize SAMs by allowing the k-ary versions of the alternating-
stochastic functions:

Bk := {max
k

,min
k

, f
k

,⊗k,⊕k},

for each k ≥ 2. For example,f
3
(x, y, z) = (x + y + z)/3,

⊕3(x, y, z) = 1− (1− x)(1− y)(1− z).

Consider generalized SAMs whose basis set is ∪k≥2Bk. Note that even though the
basis set is infinite, each generalized SAM uses only a finite subset of these functions.
It is easily seen that with this generalization for the alternating choices (max k, mink

and ⊗k), the time complexity is reduced by at most a constant factor. It is a little
harder (Exercise) to show the same for the stochastic choices (f

k,⊕k,⊗k).
A useful technical result is tape reduction for alternating machines. The follow-

ing is from Paul, Praus and Reischuk [18].

Theorem 14 For any k-tape alternating machine M accepting in time-alternation

(t(n), a(n)), there is a simple alternating machine N accepting the same language

and time-alternation (O(t(n)), a(n)+O(1)). Here N is ‘simple’ as in ‘simple Turing

machines’, with only one work-tape and no input tape.

314 CHAPTER 7. ALTERNATING CHOICES

This leads, in the usual fashion, to a hierarchy theorem for alternating time:

Theorem 15 Let t(n) be constructible and t
′(n) = o(t(n)). Then

ATIME(t)−ATIME(t′) 6= ∅.

We leave both proofs as exercises.

Theorem 16 (Space compression) Let B be any basis set. Then the B-choice ma-

chines have the space compression property. More precisely, if M is a B-choice

machine accepting in space s(n) then there is another N which accepts the same

language in space s(n)/2. Furthermore, N has only one work-tape.

Proof. We only sketch the proof, emphasizing those aspects that are not present
in the proof of original space compression theorem in chapter 2. As before, we
compress 2 symbols from each of the k work-tapes of M into one composite symbol

(with k tracks) of N. We show how N simulates one step of M: suppose M is in
some configuration C and C ` (C1, . . . , Cm). Assume that the tape head of N is
positioned at the leftmost non-blank cell of its tape. By deterministically making a
rightward sweep across the non-blank part of its work-tape, N can remember in its
finite state control the two composite symbols adjacent to the currently scanned cell
in each track: the cells of M corresponding to these remembered symbols constitute
the current neighborhood. In the original proof, N makes a leftward sweep back
to its starting position, updating the contents of the current neighborhood. The
new twist is that there are now m ways to do the updating. N can use choice to
ensure that each of these possibilities are covered. More precisely, before making
the return sweep, N enters a state q such that γ(q) = γ(C) and then N branches
into m different states, each corresponding to a distinct way to update the current
neighborhood. Then N can make a deterministic return sweep on each of the m

branches. By making some adjustments in the finite state of N, we may ensure that
N uses space s(n)/2. Further, N is also a B-machine by construction. Q.E.D.

For any family of functions B over INT, let B
∗ denote the closure of B (under

function composition): B
∗ is the smallest class of functions containing B and closed

under function composition.12 For example, the function h(x, y, z) = x f(y fz) =
x/2 + y/4 + z/4 is in the closure of the basis { f}. The closure of a basis set is also
a basis set (in fact, an infinite set).

Theorem 17 (Linear Speedup) Let B be an admissible family which is closed under

function composition, B = B
∗. Then the B-choice machines have the linear speedup

property. More precisely, if M is a B-choice machine accepting in time t(n) > n

then there is another N which accepts the same language in time n + t(n)/2.

12More precisely, if f ∈ B∗ is a function of arity k and gi (i = 1, . . . , k) are functions of arity mi

in B∗ then f(g1(x̄1), . . . , gk(x̄2)) is a function in B∗ of arity p ≤
∑

k

i=1
mi where x̄i is a sequence

of mi variables and p is the number of distinct variables in x̄1x̄2 · · · x̄k.

7.5. ALTERNATING TIME VERSUS DETERMINISTIC SPACE 315

Proof. The proof is similar to that for ordinary Turing machines in chapter 2, so we
only emphasize the new aspects. The new machine N has k +1 work-tapes if M has
k. Each tape cell of N encodes up to d > 1 (for some d to be determined) of the
original symbols. N spends the first n steps making a compressed copy of the input.
Thereafter, N uses 8 steps to simulates d steps of M. In general, suppose that M is
in some configuration C and d moves after C, there are m successor configurations
C1, . . . , Cm (clearly m is bounded by a function of M and d only). Suppose that the
complete computation tree in question is T . The value Val T (C) is given by

f(ValT (C1), . . . ,ValT (Cm))

where f ∈ B since B is closed under function composition. We show how N can
determine this f : first N takes 4 steps to determine the contents of the ‘current
neighborhood’ (defined as in the original proof). From its finite state constrol, N
now knows f and each Ci (i = 1, . . . ,m). So at the end of the fourth step, N could
enters a state q where γ(q) = f and such that q has m successors, corresponding
to the Ci’s. In 4 more steps, N deterministically updates its current neighborhood
according to each Ci. It is clear that by choosing d = 16, N accepts in time n+t(n)/2.
One minor difference from the original proof: previously the updated tapes represent
the configuration at the first time some tape head leaves the current neighborhood,
representing at least d steps of M. Now we simply simulate exactly d steps and so
it is possible that a tape head remain in the current neighborhood after updating.
Q.E.D.

As corollary, if we generalize alternating machines by replacing the usual basis
set B = {∧,∨,¬} by its closure B

∗, then the generalized alternating time classes
enjoy the time speedup property. A similar remark holds for the other modes.

7.5 Alternating Time versus Deterministic Space

This section points out strong similarities between alternating time and determinis-
tic space. This motivates a variation of choice machines called the addressable-input
model. We first prove the following result of Chandra, Kozen and Stockmeyer:

Theorem 18 For all t, ATIME(t) ⊆ DSPACE(t).

Proof. Let M be an alternating machine accepting in time t. We describe a
deterministic N that simulates M in space t. Let w be the input and N computes
in successive stages. In the mth stage (m = 1, 2, 3, . . .), N computes Val Tm

where
Tm is the truncation of the complete computation tree TM(w) at levels below m.
For brevity, write Val m for ValTm

. If Tm is accepting then N accepts, otherwise it
proceeds to the next stage. So if w is not in L(M) then N will not halt.

To complete the proof, we show that the mth stage can be carried out using
O(m) space. We describe a procedure to compute the values Val m(C) of the nodes

316 CHAPTER 7. ALTERNATING CHOICES

C in Tm in a post-order manner. The structure of this search is standard. We
inductively assume that the tapes of N contain three pieces of information when we
visit a configuration C:

(a) The configuration C. This requires O(m) space. In particular, the input head
position can be recorded in O(log m) space (rather than O(log |w|) space).

(b) A representation of the path π(C) from the root of Tm to C. If the path has
length k, we store a sequence of k tuples from the transition table of M where
each tuple represents a transition on the path π(C). The space for storing the
k tuples is O(m) since k ≤ m. These tuples allow us to “backup” from C to
any of its predecessors C

′ on the path (this simply means we reconstruct C
′

from C).

(c) All previously computed values Val m(C ′) where C
′ is the child of some node

in the path π(C). The space is O(m), using the fact that Val m(C ′) is 0 or 1.

We maintain this information at each “step”. A step (at current configuration
C) either involves descending to a child of C or backing up from C to its parent. We
descending to a child of C provided C is not a leaf and at least one child of C has
not yet been visited. Maintaining (a)-(c) is easy in this case. So suppose we want to
backup from C to its parent C

′. We claim that Valm(C) can be determined at this
moment. This is true if C is a leaf of Tm. Otherwise, the reason we are backing up to
C

′ is because we had visited both children C1, C2 of C. But this meant we had just
backed up from (say) C2 to C, and inductively by our claim, we have determined
Valm(C2). From (c), we also know Valm(C1). Thus we can determine Valm(C), as
claimed. Eventually we determine the value of Val m at the root. Q.E.D.

Discussion. (A) This theorem shows that deterministic space is at least as

powerful as alternating time. This suggests new results as follows: take a known
simulation by deterministic space and ask if it can be improved to an alternat-
ing time simulation. This methodology has proven fruitful and has resulted in a
deeper understanding of the space resource. Thus, in section 8, a known inclu-
sion DTIME(t) ⊆ DSPACE(t/ log t) was sharped to DTIME(t) ⊆ ATIME(t/ log t).
This strengthening apparently lead to a simplification of the original proof. This
paradox is explained by the fact that the control mechanism in alternating compu-
tation is “in-built”; an alternating simulation (unlike the original space simulation)
need not explicitly describe this mechanism.

(B) In fact there is evidence to suggest that alternating time and deterministic
space are very similar. For instance, we prove (§7.7) a generalization of Savitch’s
result, which yields the corollary

NSPACE(s) ⊆ ATIME(s2).

This motivates another class of new results: given a known result about deterministic
space, try to prove the analogue for alternating time, or vice-versa. For instance, the

7.5. ALTERNATING TIME VERSUS DETERMINISTIC SPACE 317

last section shows a tape-reduction and a hierarchy theorem for alternating-time; a
motivation for these results is that we have similar results for deterministic space.
We now give another illustration. In chapter 2, we show that DSPACE r(s) is closed
under complementation for all s finite (i.e., s(x) < ∞ whenever defined). We ask
for a corresponding result for ATIME r(t). (Note that the subscript ‘r’ indicates
running complexity.) As it turns out, this result13 is rather easy for alternating
time:

Theorem 19 For all complexity function t(n),

ATIME r(t) = co-ATIME r(t).

Similarly, the following time classes are closed under complementation

PrTIME r(t),StTIME r(t),PrA-TIME r(t),StA-TIME r(t).

Proof. Recall the construction in theorem 13 of a machine N without negation from
another machine M that may have negation. Now let M be an alternating machine.
Suppose that we make q

−
0 (instead of q

+
0) the start state of N but q

+
Y

= q
−
N

remains
the YES state. On re-examination of the proof of theorem 13, we see that this N
accepts co-L(M). The proof for the other time classes are similar. Q.E.D.

(C) Continuing our discussion: by now it should be realized that the fundamental
technique for space simulation is to ‘reuse space’. This usually amounts to cycling
through an exponential number of possibilities using the same space. In alternating
time, the corresponding technique is to make exponentially many universal or exis-
tential choices. While a deterministic space search proceeds from what is known to
what is unknown, alternating time search proceeds in reverse direction: it guesses
the unknown and tries to reduce it to the known. This remark may be clearer by
the end of this chapter.

(D) We should caution that the research programs (A) and (B) have limitations:
although the deterministic space and alternating time are similar, it is unlikely
that they are identical. Another fundamental difficulty is that whereas sublinear
deterministic space classes are important, it is easy to see that alternating machines
do not allow meaningful sublinear time computations. This prompted Chandra,
Kozen and Stockmeyer to suggest14 a variation of alternating machines which we
now extend to choice machines:

Definition 12 (Addressable-input Machine Model) An addressable-input choice

machine M is one that is equipped with an extra address tape and two distinguished

states called the READ and ERROR states. The address tape has a binary alphabet

whose content is interpreted as an integer. Whenever M enters the READ state,

13Paul and Reischuk show that if t is time-constructible then ATIME(t) = co-ATIME(t).
14In this suggestion, they are in good company: historically, the read-only input tape of Turing

machines was invented for a similar purpose.

318 CHAPTER 7. ALTERNATING CHOICES

the input head is instantaneously placed at the (absolute) position indicated by the

address tape. If this position lies outside the input word, the ERROR state will be

entered and no input head movement occurs. The machine can still move and use

the input head in the usual fashion.

We assume the address tape is one-way (and hence is write-only). Hence for

complexity purposes, space on the address tape is not counted. We also assume that

after exiting from the READ state, the contents of the address tape is erased, in an

instant.

The addressable-input model is defined so that such machines are at least as
powerful as ordinary choice machines. However, it is not excessively more powerful;
for instance the preceding theorem 18 holds even with this model of alternation
(Exercises). This addressable-input model now admits interesting alternating time
classes with complexity as small as log n (not log log n, unfortunately). We will be
explicit whenever we use this version of choice machines instead of the ordinary
ones.

7.6 Simulations by Alternating Time

We present efficient simulations of other complexity resources by alternating time.
We begin with an alternating time simulation of deterministic space and reversals.

Theorem 20 Let t, s be complexity functions such that t(n) ≥ 1 + n. Under the

addressable-input model,

D-TIME-REVERSAL(t, r) ⊆ ATIME(O(r log2
t)).

If r(n) log2
t(n) ≥ n, then this result holds under the ordinary model.

Proof. Given a deterministic M accepting in time-reversal (t, r), we show an alter-
nating machine N accepting the same language L(M) in time O(r log 2

t).
Recall the concept of a (full) trace15 in the proof of chapter 2. On any input w,

N existentially chooses some integer r ≥ 1 and writes r full traces

τ1, τ2, . . . , τr,

on tape 1. These are intended to be the traces at the beginning of each of the r

phases. On tape 2, N existentially chooses the time t i (in binary) of each τi,

t1 < t2 < · · · < tr.

We may assume τr is the trace when the machine accepts. Note that τ1 (which we
may assume correct) is simply the trace of the initial configuration and so t 1 = 0.

15Briefly, the trace of a configuration in a computation path records its state and for each tape,
the scanned symbol, the absolute head position and the head tendencies.

7.6. SIMULATIONS BY ALTERNATING TIME 319

Relative to this sequence, we say that an integer t ≥ 0 belongs to phase j if t j ≤ t <

tj+1.
Then N proceeds to verify τr. To do this, it writes on tape 3 the pairs (τr−1, tr−1)

and (τr, tr) and invokes a procedure TRACE. N accepts if and only if this invocation
is successful (i.e., the procedure accepts). In general, the arguments to TRACE are
placed on tape 3, and they have the form

(σ, s0), (τ, t0)

where s0 < t0 are binary integers lying in the range

ti ≤ s0 < t0 ≤ ti+1

for some i = 1, . . . , r− 1, and σ, τ are traces such that the head tendencies in σ and
in τi agree, and similarly the head tendencies in τ and in τ i agree (with the possible
exception of t0 = ti+1 and τ = τi+1). Intuitively, TRACE(σ, s0, τ, t0) accepts if σ is
the trace at time s0, τ is the trace at time t0, and there is a (trace of a) path from
σ to τ . TRACE does one of two things:

(i) Suppose s0 +1 < t0. Let t
′ = b(s0 + t0)/2c. Now TRACE existentially chooses

a trace τ
′ where the head tendencies in τ

′ agree with those of σ. Then it univer-
sally chooses to recursively call TRACE(σ, s0, τ

′
, t

′) and TRACE(τ ′
, t

′
, τ, t0).

(ii) Suppose s0+1 = t0. TRACE verifies τ can be derived from σ in one step of M,
and any head motion is consistent with the head tendencies in σ. Of course,
we allow the head tendencies to be different but only when σ is the last trace
in a phase (it is easy to determine if this is the case). Any head motion in
the σ to τ transition causes the corresponding tape cell in τ to be ‘marked’.
Note that the marked cells were written in some previous phase (unless they
are blanks), and our goal is to verify their contents. Suppose that the tape
symbols and head positions in the k + 1 tapes of τ are given by

b0, . . . , bk, n0, . . . , nk.

Then TRACE universally chooses to call another procedure SYMBOL with
arguments (i, bi, ni, t0) for each cell ni in tape i that is marked. Intuitively,
SYMBOL(i, bi, ni, t0) verifies that just before time t0, the tape symbol in cell
ni of tape i is bi.

We now implement SYMBOL(i′, b′, n′
, t0). If i

′ = 0 then we want to check that
the input symbol at position n

′ is b
′. This can be done in O(log n) steps, using

the input addressing ability of our alternating machines (note that r log 2
t > log n).

Otherwise, suppose that t0 belongs to phase j0. We then existentially choose some
j,

j = 0, . . . , j0 − 1,

320 CHAPTER 7. ALTERNATING CHOICES

some t
′ and a trace σ

′. Intuitively, this means that cell n
′ in tape i

′ was last visited
by σ

′ which occurs at time t
′ in phase j. We want the following to hold:

(a) tj ≤ t
′
< tj+1 ≤ t0.

(b) The head tendencies σ
′ and in τj agree.

(c) The head i
′ is in position n

′ scanning symbol b
′ in σ

′.
(d) On each tape, the head position in σ

′ lies in the range of possible cell positions
for that phase j.
(e) On tape i

′, cell n
′ is not visited in any of phases j + 1, j + 2, . . . , j0.

Conditions (a)-(e) can be directly verified using the information on tapes 1 and 2.
Armed with σ

′ and t
′, we then universally choose one of two actions: either call

TRACE(τj , tj , σ
′
, t

′) or TRACE(σ′
, t

′
, τj+1, tj+1). If tj = t

′ then the first call is
omitted.

Correctness. Let us show that TRACE and SYMBOL are correct. Suppose input
w is accepted by M. Then it is not hard to see that N accepts. To show the converse,
suppose N accepts w relative to some choice of traces τ1, . . . , τr in tape 1 and times
t1, . . . , tr on tape 2. Suppose the call TRACE(σ, s0, τ, t0) is successful and t0 belongs
to phase j. Then this call generates a trace-path

(σ0, . . . , σm) (7.4)

from σ0 = σ to σm = τ (where m = t0 − s0) with the following properties:

1. σi−1 derives σi for i = 1, . . . ,m according to the rules of M.

2. Each pair (σi−1, σi) in turn generates at most k + 1 calls to SYMBOL, one
call for each “marked” cell in σ i. Each of these calls to SYMBOL leads to
acceptance. For this reason we call (7.4) a ‘successful’ trace-path for this call
to TRACE.

3. Some of these calls to SYMBOL in turn calls TRACE with arguments belong-
ing some phase ` (1 ≤ ` < j). We call any such phase ` a supporting phase of
TRACE(σ, s0, τ, t0).

Notice that if phase ` is a supporting phase for some accepting call to TRACE

then there must be two successful calls of the form

TRACE(τ`, t`, σ
′
, t

′) and TRACE(σ′
, t

′
, τ`+1, t`+1) (7.5)

for some σ
′
, t

′. We claim:

(a) If TRACE(σ, s0, τ, t0) accepts and phase ` is a supporting phase of
TRACE(σ, s0, τ, t0), then the traces τ1, . . . , τ`+1 on tape 1 and times
t1, . . . , t`+1 on tape 2 are correct (i.e., τi is the trace at the beginning of
the ith phase at time ti for i = 1, . . . , ` + 1.)

7.6. SIMULATIONS BY ALTERNATING TIME 321

(b) If, in addition, we have that σ = τj and s0 = tj for some j = 1, . . . , r,
then τ is indeed the trace of the t0th configuration in the computa-
tion path of M on input w. (Note that (b) implies the correctness of
SYMBOL.)

We use induction on `. Case ` = 1: τ1 is always correct and t1 = 0. By (7.5), we
see directly that there must be two successful calls of the form TRACE(τ1, t1, σ

′
, t

′)
and TRACE(σ′

, t
′
, τ2, t2). One immediately checks that this implies τ2, t2 are correct.

This proves (a). Part (b) is immediate.
Case ` > 1: for part (a), again we know that there are two successful calls of the

form (7.5). But notice that phase ` − 1 is a supporting phase for the first of these
two calls: this is because in τ`, some tape head made a reversal that this means
that this head scans some symbol last visited in phase ` − 1. Hence by induction
hypothesis, the traces τ1, . . . , τ` and times t1, . . . , t` are correct. Furthermore, as in
(7.4), we have a successful trace-path from τ` to τ`+1. Each trace (except for τ`)
in the trace-path in turn generates a successful call to SYMBOL with arguments
belonging to some phase less than `, and by induction (b), these are correct. Thus
τ`+1 and t`+1 are correct. For part (b), we simply note that j− 1 is a support phase
for such a call to TRACE by the preceding arguments. So by part (a), τj and tj are
correct. Then we see that there is a trace-path starting from τj as in (7.4) that is
correct. Part (b) simply asserts that the last trace in (7.4) is correct. This completes
our correctness proof.

Complexity. The guessing of the traces τi and times ti on tapes 1 and 2 takes
alternating time O(r log t). If the arguments of TRACE belongs to phase j, then
TRACE may recursively call itself with arguments belonging to phase j for O(log t)
times along on a computation path of N. Then TRACE calls SYMBOL which in turn
calls TRACE but with arguments belonging to phase < j. Now each call to TRACE

takes O(log t) alternating steps just to set up its arguments (just to write down the
head positions). Thus it takes O(log2

t) alternating steps between successive calls to
SYMBOL. In the complete computation tree, we make at most r calls to SYMBOL

along any path. This gives an alternating time bound of O(r log 2
t). Q.E.D.

Corollary 21 DREVERSAL(r) ⊆ ATIME(r3)

We next show that alternating time is at least as powerful as probabilistic time.
The proof is based on the following idea: suppose a probabilistic machine accepts
an input x in m ≥ 0 steps and T is the computation tree. If T is finite and all its
leaves happen to lie a fixed level m ≥ 0 (m = 0 is the level of the root) then it is
easily seen that T is accepting iff the number of accepting leaves is more than half
of the total (i.e. more than 2m−1 out of 2m). In general, T is neither finite nor will
all the leaves lie in one level. But we see that if Tm is the truncation of T to level
m, then Tm if accepting iff the sum of the “weights” of accepting leaves in Tm is

322 CHAPTER 7. ALTERNATING CHOICES

more than 2m−1. Here we define a leaf at level i (0 ≤ i ≤ m) to have a weight of
2m−i. It is now easy to simulate a probabilistic machine M that uses time t(n) by
a deterministic machine N using space t(n), by a post-order traversal of the tree
Tt(n). But we now show that instead of deterministic space t(n), alternating time
t(n) suffices.

Theorem 22 For all complexity functions t, PrTIME (t) ⊆ ATIME(t).

Proof. Let M be a probabilistic machine that accepts in time t. We describe an
alternating machine N that accepts in time t. Let x be an input and Tm be the
computation tree of M on x restricted to configurations at level at most m. For any
configuration C in Tm, define

VALm(C) = 2m−level(C)ValTm
(C)

where ValTm
is, as usual, the least fixed point valuation of Tm. We abuse notation

with the usual identification of the nodes of Tm with the configurations labeling
them. Thus if C is the root then VALm(C) = 2mVal∆(C). If C is not a leaf, let CL

and CR denote the two children of C. Observe that

VALm(C) = VALm(CL) + VALm(CR).

Regarding VALm(C) as a binary string of length m + 1, we define for i = 0, . . . ,m,

BITm(C, i) := i
th bit of VALm(C)

CARm(C, i) := i
th carry bit of the summation VALm(CL) + VALm(CR)

where we assume that i = 0 corresponds to the lowest order bit. It is easy to see
that the following pair of mutually recursive formulas hold:

BITm(C, i) = BITm(CL, i)⊕BITm(CR, i)⊕CARm(C, i − 1)

CARm(C, i) = b
BITm(CL, i)) + BITm(CR, i) + CARm(C, i− 1)

2
c

Here, ⊕ denotes the exclusive-or Boolean operation: b⊕b
′ = 1 iff b 6= b

′. If i = 0,
CARm(C, i − 1) is taken to be zero.

If C is a leaf, we define CARm(C, i) = 0 and

BITm(C, i) =

{

1 if i is equal to m− level(C) and C answers YES;
0 otherwise.

To simulate M on input x, N first guesses the value m = t(|x|) in unary in tapes
1 and 2. Note that M accepts iff VALm(x) > 1/2, iff there exists an i, 0 ≤ i < m−1,
such that

7.6. SIMULATIONS BY ALTERNATING TIME 323

Either BITm(C0(x),m) = 1 (7.6)

or BITm(C0(x),m− 1) = BITm(C0(x), i) = 1. (7.7)

N checks for either condition (7.6) or (7.7) by an existential choice. In the latter
case, N makes a universal branch to check that BITm(C0(x),m − 1) = 1 and, for
some existentially guessed unary integer 0 < i < m− 1, BITm(C0(x), i) = 1.

It remains to describe the subroutine to verify BITm(C, i) = b for any arguments
C, i, b. It is assumed that just before calling this subroutine the following setup holds.
N has the first m cells on tapes 1,2 and 3 marked out. Head 1,2 and 3 are respectively
keeping track of the integers i, level(C) and i+level(C), in unary. Moreover, because
of the marked cells, it is possible to detect when these values equals 0 or m. The
configuration C is represented by the contents and head positions of tapes 4 to k+3
(k is the number of work-tapes of M) and the input tape. This setup is also assumed
when calling the subroutine to verify CARm(C, i) = b.

With this setup, in constant time, N can decide if C is a leaf of Tm (i.e. either
C is terminal or level(C) = m) and whether i = m− level(C). Hence, in case C is
a leaf, the subroutine can determine the value of BITm(C, i) in constant time. If C

is not a leaf, say C ` (CL, CR), then N guesses three bits, b1, b2 and c such that

b = b1⊕b2⊕c.

It then universally branches to verify

BITm(CL, i) = b1, BITm(CR, i) = b2, CARm(C, i − 1) = c.

It is important to see that N can set up the arguments for these recursive calls in
constant time. A similar subroutine for CARm can be obtained.

It remains to analyze the time complexity of N. We first define the function tm

to capture the complexity of BITm and CARm:

tm(d, i) =











1 if d = m

1 + tm(d + 1, 0) if (d < m) ∧ (i = 0)
1 + max{tm(d + 1, i), tm(d, i − 1)} else.

An examination of the recursive equations for BITm and CARm reveals that the
times to compute BITm(C, i) and CARm(C, i) are each bounded by O(tm(d, i))
where d = level(C). On the other hand, it is easily checked that the recursive
equations for tm satisfy

tm(d, i) ≤ m− d + i + 1 = O(m)

since i and d lie in the range [0..m]. This proves that the time taken by N is
O(m) = O(t(|x|)). Q.E.D.

324 CHAPTER 7. ALTERNATING CHOICES

This theorem, together with that in section 5, imply that deterministic space is
at least as powerful as probabilistic or alternating time separately:

PrTIME (t) ∪ATIME(t) ⊆ DSPACE(t)

It is not clear if this can be improved to showing that deterministic space is at
least as powerful as probabilistic-alternating time. If this proves impossible, then
the combination of probabilism and alternation is more powerful than either one
separately. This would not be surprising since probabilism and alternation seems
to be rather different computing concepts. Our current best bound on simulating
probabilistic-alternating time is given next.

Theorem 23 For all complexity functions t, PrA-TIME(t) ⊆ ATIME(t log t).

Proof. We use the same notations as the proof of the previous theorem. Let M
be a PAM that accepts in time t. Fix any input x and let Tm be the complete
computation tree of M on x restricted to levels at most m, and define VALm, BITm

and CARm as before. There is one interesting difference: previously, the values m

and i in calls to the subroutines to verify BITm(C, i) = b and CARm(C, i) = b were
encoded in unary. We now store these values in binary (the reader is asked to see
why we no longer use unary).

Consider the verification of BITm(C, i) = b for any inputs C, i, b, using alternat-
ing time. If C is a leaf this is easy. Suppose C is a TOSS-configuration. Then we
must guess three bits b1, b2, c and verify that BITm(CL, i) = b1, BITm(CR, i) = b1

and CARm(C, i − 1) = c. Here we use an idea from the design of logic circuits:
in circuits for adding two binary numbers, the carry-bits can be rapidly generated
using what is known as the ‘carry-look-ahead’ computation. In our context, this
amounts to the following condition:

CARm(C, i) = 1 ⇐⇒ if there is a j (j = 0, . . . , i) such that BITm(CL, j) =
BITm(CR, j) = 1 and for all k = j + 1, . . . , i, either
BITm(CL, k) = 1 or BITm(CL, k) = 1.

In O(log m) alternating steps, we can easily reduce these conditions to checking
BITm(C ′

, j) = b
′ for some j, b

′ and C
′ a child of C. (We leave this detail as exercise.)

Finally, suppose C is a MIN-configuration (a MAX-configuration is handled
similarly). By definition BITm(C, i) = BITm(CL, i) iff VALm(CL) < VALm(CR),
otherwise BITm(C, i) = BITm(CR, i). Now VALm(CL) < VALm(CR) iff there exists
a j (0 ≤ j ≤ m) such that

BITm(CL, h) = BITm(CR, h), (for h = j + 1, j + 2, . . . ,m),

BITm(CL, j) = 0,

BITm(CR, j) = 1.

Again, in O(log m) time, we reduce this predicate to checking bits of VALm(C ′), C
′

a child of C.

7.7. FURTHER GENERALIZATION OF SAVITCH’S THEOREM 325

To complete the argument, since each call to check a bit of VALm(C) is reduced in
O(log m) steps to determining the bits of VALm(C ′) where level(C ′) = level(C)+1,
there are at most m such calls on any computation path. To generate a call to C

′,
we use O(log m) time, so that the length of each path is O(m log m). Q.E.D.

7.7 Further Generalization of Savitch’s Theorem

Savitch’s theorem says that for all s(n) ≥ log n, NSPACE(s) ⊆ DSPACE(s2).
Chapter 2 gives a generalization of Savitch’s theorem. In this section, we further
improve the generalization in three ways: (i) by using alternating time, (ii) by
allowing small space bounds s(n), i.e., s(n) < log n, and (iii) by extending the class
of simulated machines from nondeterministic to alternating machines.

Consider what happens when s(n) < log n. Savitch’s proof method gives only
the uninteresting result NSPACE(s) ⊆ DSPACE(log2

n). Monien and Sudborough
[14] improved this so that for s(n) < log n,

NSPACE(s) ⊆ DSPACE(s(n) log n).

Using addressable-input alternating machines, Tompa [21] improved the Monien-
Sudborough construction to obtain:

NSPACE(s) ⊆ ATIME(s(n)[s(n) + log n])

for all s(n). Incorporating both ideas into the generalized Savitch’s theorem of
chapter 2, we get:

Theorem 24 For all complexity functions t(n) > n,

N-TIME-SPACE(t, s) ⊆ ATIME(s(n) log
n · t(n)

s(n)
)

where the alternating machine here is the addressable-input variety.

Proof. Let M be a nondeterministic machine accepting in time-space (t, s). We
describe a addressable-input alternating machine N to accept L(M). Let x be any
input, |x| = n. M begins by existentially guessing t = t(n) and s = s(n) and
marking out s cells on each work tape.

We number the n cells of the input tape containing x as 0, 1, . . . , n − 1 (rather
than the conventional 1, . . . , n). We will divide the cells 0, 1, . . . , n− 1 of the input
tape into intervals Iw (subscripted by words w ∈ {L,R}∗) defined as follows:

i ∈ Iw ⇐⇒ the most significant |w| bits in the binary representa-
tion of i corresponds to w

where the correspondence between words in {L,R}∗ and binary strings is given by
L ↔ 0 and R ↔ 1. It is also assumed here that the binary representation of i is

326 CHAPTER 7. ALTERNATING CHOICES

expanded to exactly dlog ne bits. Clearly Iw is an interval of consecutive integers.
For example: with n = 6,

Iε = [0..5], IL = [0..3], IR = [4..5], IRR = ∅.

Observe that

Iw = IwL ∪ IwR and |IwL| ≥ |IwR| ≥ 0.

The L-end (resp., R-end) cell of a non-empty interval is the leftmost cell (resp.,
rightmost) cell in that interval.

A storage configuration is a configuration in which the contents as well as head
position of the input tape are omitted. Let S, S

′ be storage configurations of M,
d, d

′ ∈ {L,R}, w ∈ {L,R}∗. Let conf (S, d, w) denote the configuration in which the
contents and head positions in the work-tapes are specified by S, with input tape
containing the fixed x and the input head scanning the d-end cell of interval I w. In
the course of computation, N will evaluate the two predicates REACH and CROSS

defined next. The predicate

REACH(S, S
′
, d, d

′
, w,m)

holds if there is a computation path π of length at most m from conf (S, d, w) to
conf (S′

, d
′
, w) where the input head is restricted to the interval Iw throughout the

computation, and the space used is at most s. Recall that s is the guessed value
of the maximum space usage s(|x|). Let L denote R and R denote L. Then the
predicate

CROSS (S, S
′
, d, d

′
, w,m)

holds if there is a computation path of length at most m from conf (S, d, wd) to
conf (S′

, d′, wd
′) where the input head is restricted to the interval Iw throughout the

computation, and the space used is at most s. Observe that the intervals Iwd and Iwd′

used in this definition are adjacent and Iwd∪Iwd′ ⊆ Iw (if d = d
′ then this inclusion is

proper). We assume in this definition IwR is non-empty; this automatically implies
IwL is non-empty. For instance: CROSS (S, S

′
, L,R,RLR,m) holds means there

is a path from conf (S,R,RLRL) to conf (S ′
, L,RLRR) of length at most m, as

illustrated in the following figure.

7.7. FURTHER GENERALIZATION OF SAVITCH’S THEOREM 327

'
&

	�
�
 �

$
�
�

•

•

≤ m

?

6

IRLRL
� -

IRLRR

� -

Figure 7.1 The input head positions implied by CROSS (S, S
′
, L,R,RLR,m)

We may assume that when M halts, its input head returns to cell 0. The simu-
lation of M amounts to the evaluation of REACH(S0, Sf , L, L, ε, t) where S0 is the
(trivial) initial storage configuration (independent of x) and S f is some existentially
guessed accepting storage configuration that uses at most s space, λ being the empty
string.

We describe the recursive evaluation of REACH(S, S
′
, d, d

′
, w,m). It is assumed

that the following setup holds at the time of calling the procedure: S and S
′ are

represented by the contents and head positions on designated tapes of N (if M has k

work-tapes, N uses 2k tapes for S and S
′). The argument w is on the address tape

of the N. The value m is written in binary on another tape. One of the following
three cases hold:

(i) |w| = dlog ne: this condition can be checked in constant time (for instance, by
keeping a tally of the length of w) provided that before the simulation begins,
the unary representation of dlog ne is guessed and verified once and for all. In
this case |Iw| = 1 and N enters the read state to read the input symbol x[w]
indexed by w. From the definition of REACH, from now on N can ignore its
input tape and call the predicate

REACHABLE(conf (S, d, w), conf (S ′
, d

′
, w),m)

where REACHABLE is the predicate in the original proof of the generalized
Savitch’s theorem (chapter 2, section 7). Recall that the predicate REACHABLE(C,C

′
,m)

holds if there is a computation path from configuration C to configuration C
′

of at most m steps using at most s space. The original simulation in chapter
2 uses O(s log m

s
) = O(s log t

s
) space, but this is easily modified to give us al-

ternating time O(s log t

s
) (Exercises). Another slight modification is to make

REACHABLEreject at once if input head ever moves at any time during the
simulation.

328 CHAPTER 7. ALTERNATING CHOICES

(ii) |IwR| = 0: then call REACH(S, S
′
, d, d

′
, wL,m). Note that |IwR| = 0 iff the

binary number corresponding to wR is greater than n − 1. This is easily
checked, for instance, by entering the READ state and seeing if we next enter
the ERROR state.

(iii) |IwR| ≥ 1 (so |w| < dlog ne): N existentially guesses whether there is a com-
putation path π from conf (S, d, w) to conf (S ′

, d
′
, w) with the input head re-

stricted to Iwd. If it guesses ‘no’ (and it will not make this guess unless d = d
′)

then it next calls

REACH(S, S
′
, d, d, wd,m)

If it guesses ‘yes’ (it could make this guess even if d = d
′) then it chooses

existentially two storage configurations S
′′
, S

′′′ in the computation path π and
then chooses universally to check one of the following:

REACH(S, S
′′
, d, d, wd,m),

CROSS (S′′
, S

′′′
, d, d

′
, w,m),

REACH(S′′′
, S

′
, d′, d

′
, wd

′
,m).

N existentially guesses one of the cases (i)-(iii), and then universally checks that its
guess is correct as well as performs the respective actions described under (i)-(iii).
This completes the description of REACH.

The subroutine for CROSS (S, S
′
, d, d

′
, w,m) has two cases:

(i)’ m ≤ s: in this case, N can check the truth of the predicate in time s (since a
nondeterministic machine is just a special case of alternation).

(ii)’ m > s: N guesses two storage configurations S
′′
, S

′′′ and a value d
′′ ∈ {L,R}

and universally branches to check

CROSS (S, S
′′
, d, d

′′
, w,m/2),

REACH(S′′
, S

′′′
, d′′, d′′, wd

′′
,m)and

CROSS (S′′′
, S

′
, d

′′
, d

′
, w,m/2).

We should explain this choice of S
′′
, S

′′′
, d

′′: if there is a computation path
from conf (S, d, wd) to conf (S ′

, d′, wd
′) that makes CROSS (S, S

′
, d, d

′
, w,m)

true then this path can be broken up into several disjoint portions where
the input head is confined to IwL or to IwR in each portion. Consider the
portion π of the path that contains the configuration at time m/2: let π be
confined to the interval Iwd′′ for some d

′′, and let the storage configurations at
the beginning and end of π be S

′′ and S
′′′, respectively. With this choice of

d
′′
, S

′′
, S

′′′, it is clear that the recursion above is correct.

7.7. FURTHER GENERALIZATION OF SAVITCH’S THEOREM 329

Note that it is unnecessary to check for m ≤ s in REACH (since REACH does not
reduce m in making recursive calls); likewise it is unnecessary to check for |I w| = 1
in CROSS (since it is called by REACH only with |Iw| ≥ 2). Observe that every two
successive calls to REACH or CROSS result in either |w| increasing by at least one or
m decreasing to at most m/2. Hence in 2(dlog ne+log(t/s)) = O(log(nt/s)) recursive
calls, we reduce the input to the ‘basis’ cases where either m ≤ s or |Iw| = 1. Each
recursive call of REACH or CROSS requires us to guess the intermediate storage
configurations S

′′
, S

′′′ in time O(s). Hence in O(s log(nt/s)]) steps we reach the basis
cases. In these basis cases, the time used is either O(s) time or that to compute
REACHABLE(C,C

′
,m). The latter is O(s log(t/s)) as noted before. The total time

is the sum of the time to reache the basis cases plus the time for basis cases. This
is O(s log(nt/s)]). Q.E.D.

The structure of the preceding proof involves dividing at least one of two quan-
tities in half until the basis case. An immediate consequence of the above results is
this:

Corollary 25

(i) NSPACE(s) ⊆ ATIME(s2).
(ii) PrTIME(nO(1)) ⊆ ATIME(nO(1)) = PrA-TIME(nO(1)) = PSPACE.

Borodin [3] observed that Savitch’s theorem is capable of generalization in an-
other direction. Incorporating Borodin’s idea to the previous theorem yields the
following “super” Savitch’s theorem. Recall the definition of alternating complexity
in section 3.

Theorem 26 Let t(n) > n, s(n) and a(n) be any complexity functions. Then

A-TIME-SPACE-ALTERNATION(t, s, a) ⊆ ATIME(s(n)[a(n) + log
n · t(n)

s(n)
])

where alternating machines are the addressable-input variety.

Proof. Suppose an alternating machine M accepts in time, space and alternating
complexity of t(n), s(n) and a(n). On input x, the machine N begins by guessing
the values t0 = t(|x|) and s0 = s(|x|). Let T (x) = Tt0,s0(x) be the computation
tree on x restricted to nodes at level ≤ t0 and using space ≤ s0. There are two
procedures involved: The main procedure evaluates a predicate ACCEPT (C) that
(for any configuration C as argument) evaluates to true if C ∈ T (x) and the least
fixed point value Val T (C) of C is equal to 1. The other procedure we need is
a variation of the predicate REACH(S, S

′
, d, d

′
, w,m) in the proof of theorem 24.

Define the new predicate

REACH′(S, S
′
, v, v

′
, w,m)

330 CHAPTER 7. ALTERNATING CHOICES

where S, S
′ are storage configurations, v, v

′
, w ∈ {L,R}∗ and m ≥ 1 such that

|wv| = |wv
′| = dlog ne. Let conf (S,w) where |w| = dlog ne denote the configuration

whose storage configuration is S and input tape contains x and the input head is at
position indicated by w. The predicate REACH ′ evaluates to true provided there
is a computation path π of length ≤ m from conf (S,wv) to conf (S ′

, wv
′) such that

all the intermediate configurations C use space ≤ s and has input head restricted
to the interval Iw. We further require that

(a) C and conf (S,wv) have opposite types, i.e., C is a MIN-configuration if and
only if conf (S,wv) is a MAX-configuration. Note that we assume M has no
NOT-configurations.

(b) The computation path π we seek must have only configurations of the same
type as C with the sole exception of its last configuration (which is equal to
conf (S,wv), naturally).

It is clear that we can compute REACH′ in alternating time O(s log t/s) as in the
case of REACH.

The procedure ACCEPT (C) proceeds as follows: suppose C is an MAX-configuration
(resp., MIN-configuration). Then the algorithm existentially (resp., universally)
chooses in time O(s) a configuration C

′ with opposite type than C. Let C =
conf (S, v) and C

′ = conf (S′
, v

′). Regardless of the type of C, the algorithm exis-
tentially chooses to call the following subroutines:

(1) ACCEPT (C ′)

(2) ¬REACH′(S, S
′
, v, v

′
, ε, t0) where the values S, S

′
, v, v

′ are related to C,C
′ as

above. Of course, by ¬REACH′ we mean that the procedure first enters a
NOT-state and then calls REACH′. (Here is an occasion where it is convenient
to re-introduce NOT-states.) The reader should easily see that the procedure
is correct.

We now analyze the complexity of the procedure ACCEPT. For any configuration
C let TC be the subtree of configurations reachable from C. Define depth(C) to be
the minimum k such that there is prefix T

′ of TC such that T
′ is accepting and each

path in T
′ has at most k alternation. In particular, observe that if x is accepted by M

then depth(C0(x)) is at most a(|x|), with C0(x) the initial configuration. Let W (k)
be the (alternating) time required by the procedure for ACCEPT (C) on input C

with depth k. Then we have

W (k) = O(s) + max{s log
t

s
,W (k − 1)}.

To see this, suppose C is an MAX- (resp., MIN-) configuration. Then O(s) is the
time to existentially (resp., universally) choose the configurations C

′ reachable from
C; s log t/s is the time to decide the predicate REACH ′; and W (k − 1) is the time

7.8. ALTERNATING TIME VERSUS DETERMINISTIC TIME 331

to recursively call ACCEPT (C ′). It is easy to deduce that W (k) has solution given
by:

W (k) = O(s · [k + log t/s]).

The theorem follows immediately. Q.E.D.

This is still not the last word on extensions of Savitch’s theorem! We return to
this in the next chapter.

7.8 Alternating Time versus Deterministic Time

The main result of this section is the following theorem:

Theorem 27 For all t, DTIME(t) ⊆ ATIME(t

log t
).

Tompa and Dymond [6] obtained this result by adapting the result of Hopcroft,
Paul and Valiant [12] showing DTIME(t) ⊆ DSPACE(t/ log t). Adleman and Loui
[1] gave an interesting alternative proof of the Hopcroft-Paul-Valiant result. The
Hopcroft, Paul and Valiant achievement showed for the first time that space is a
more powerful resource than time in a “sufficiently” powerful model of computation
(multi-tape Turing machines). Earlier results by Paterson [17] already established
such results for simple Turing machines, but the techniques were special to simple
Turing machines. Paul and Reischuk extended the Hopcroft, Paul and Valiant result
to alternating time, but their simulation needed alternating time t log log t/ log t. We
shall assume the addressable-input model of alternation in case t/ log t = o(n) in
the theorem, but otherwise, the regular model suffices.

An interesting corollary of this result, in conjunction with the alternating time
hierarchy theorem at the end of section 4, is that there are languages in DLBA that
cannot be accepted in deterministic linear time.

7.8.1 Reduction of Simulation to a Game on Graphs.

First consider the simpler problem of simulating a deterministic Turing machine
using as little deterministic space as possible. A key step is the reduction of this
problem to a combinatorial question on graphs. Suppose a deterministic k-tape
machine M accepts an input in t > 0 steps. Our goal is to describe a deterministic
machine N that simulates M using as little space as possible.

Let B = B(t) > 0 be the blocking factor, left unspecified for now. For i =
0, 1, . . . , dt/Be, let

ti := iB

be time samples, and let the cells of each work-tape be grouped into blocks consisting
of B consecutive cells. For each block b, let neighborhood (b) denote the set of 3

332 CHAPTER 7. ALTERNATING CHOICES

blocks consisting of b and the two adjacent blocks on either side of b. We construct
a directed acyclic graph G = (V,E) with node set

V = {0, 1, . . . , dt/Be}

and labels for each node. The label for a node i consists of the following two pieces
of information:

(i) positions h0, . . . , hk of the k + 1 tape heads and

(ii) a state q.

We say that this label of node i is correct if at time sample t i, the machine is in
state q and the heads are at positions given by h0, . . . , hk. We may say that block
b is visited in time sample tj if the label of node j says that there is a tape head
somewhere in b. Note that this definition is relative to the labeling, regardless of its
correctness. Once the labels are given, we can define an edge set E as follows. The
edges in E are those (i, j) satisfying one of two requirements:

(a) There is a tape block b visited at time sample tj , another tape block b′ visited
time sample ti such that neighborhood (b)∩ neighborhood (b′) is non-empty and,
previous to sample time tj , b′ is last visited in time sample ti.
(b) There is a tape block b visited in time sample tj such that neighborhood (b)
contains a block that has never been visited in time samples before tj , and
i = 0.

If (i, j) ∈ E then necessarily i < j, and if the labeling is correct then (i, i + 1) must
be in E. Let neighborhood (j) denote the union of the blocks in neighborhood (b)
where b range over all blocks visited in time sample t j. Clearly neighborhood (j) has
exactly 3k blocks. Let b be visited in time sample t j . Then there 5 blocks b

′ such
that neighborhood (b′) ∩ neighborhood (b) is non-empty. Each such b

′ contributes an
edge of the form (i, j) ∈ E for some i. This implies that the indegree of each node
in G is at most 5k. (The outdegree of G is similarly bounded by 5k; but this fact is
not needed.)

A description of G together with its labels can be written down using at most

t log t

B

space. This space is less than t if B is larger than log t. We attempt to find such a
graph G by testing successively larger values of t, and for each t, cycling through all
ways of assigning labels. It remains to show how to verify a proposed labelling. The
idea is that each node in G can be ‘expanded’ in the following sense: the expansion

of a node i ∈ G consists of the contents of the blocks in neighborhood (i) in time
sample ti. Note that the expansion of i can be encoded using O(B) space. The
edges of G define a predecessor-successor relationship: (i, j) is an edge mean that
i is a predecessor of j, and j the successor of i. Next we make an important but
elementary observation:

7.8. ALTERNATING TIME VERSUS DETERMINISTIC TIME 333

(*) If we already have the expansions of all the predecessors of node i ≥ 1
then we may expand node i simply by simulating the machine starting from
the moment (i − 1)B.

To do this, we first reconstruct the contents of blocks in neighborhood (i − 1) ∪
neighborhood (i), using the expansions of the predecessors of i. (There could be
overlap among the predecessor expansions, but it is easy to only use the contents of
the most recent version of a block.) Now simulate M starting from time sample t i−1

to time sample ti. At the end of the simulation, we may assume that the expansion
of node i is now available, in addition to the previous expansions. Details can be
filled in by the reader. Let us say that a node i is verified if we confirm that its label
(i.e., head positions and state) is correct.

(**) If the predecessors of node i are expanded and verified then we can also
expand and verify node i.

This is because we can compare the state and head positions in the expansion of i

with the labels of node i.
Now we can give a nondeterministic procedure to verify G: nondeterministically

expand nodes, one at a time. At any moment, the tapes of the simulator contain
some number of expanded nodes. Those nodes whose only predecessor is node 0
can be expanded at any moment; for any other node i, we can only expanded i if
all its predecessors are expanded. At the end of expanding node i, we verify the
label of i. We may nondeterministically contract any previous expansion if we wish;
contraction is just the inverse of expansion. Of course we may contract a node only
to re-expand it later. The space used by this procedure is O(B) times the maximum
number of expanded nodes at any moment. So to minimize space usage, we should
contract nodes “at suitable moments”. The graph G is said to be verified if its final
node dt/Be is verified in this process; we might as well assume that the label of
dt/Be always contains the accept state.

It is not hard to see that M accepts its input x iff there is a graph G that is
verified by this procedure. We can make this procedure deterministic by cycling
through all nondeterministic choices used in the expansion/contraction above. For
a space-efficient method of verifying G, Hopcroft, Paul and Valiant showed a general
strategy that never store more than t

B log t
expanded nodes at any moment during

the verification process. This means that the strategy never use more than t

log t

space since each expanded node uses O(B) space. This proves that DTIME(t) ⊆
DSPACE(t/ log t). The details of this will not be explicitly described since it is
essentially subsumed in the Tompa-Dymond alternating time implementation of the
strategy, shown next.

7.8.2 A Pebble Game.

Now we transcribe the previous expansion and contraction process for verifying
G into a combinatorial game on graphs. We are given a directed acyclic graph

334 CHAPTER 7. ALTERNATING CHOICES

G = (V,E) together with a goal node i0 ∈ V . There is only one player in this
game. There is an infinite supply of indistinguishable pebbles and each node of G

can hold a single pebble. A node is said to be pebbled if there is a pebble in it;
it is empty otherwise. Initially, all the nodes are empty. A pebbling step consists
of placing a pebble on an empty node u, provided all predecessors of u are already
pebbled. In particular, we can always pebble an empty source node (i.e., a node with
no predecessors). An unpebbling step consists of removing a pebble from a pebbled
node. A play is simply a sequence of pebbling or unpebbling steps, with the last
step being the pebbling of the goal node i0. At any moment during the play, there
is some number of pebbles on the graph, and our aim (as the player) is to choose
the steps in a play in order to minimize the maximum number k of pebbled nodes
at any time during the play. This number k is called the pebble cost of the play.

The reader will have no difficulty making the connection between this pebble
game and the simulation described earlier: pebbling (unpebbling) a node corre-
sponds to expansion (contraction) of nodes.

A game strategy is a rule to play the game for any graph. A trivial game strategy
is to pebble the nodes in topological order and never to unpebble any nodes. On an
n node graph, the pebble cost is n with this strategy. Can we do better in general?
The key result here says: for any directed acyclic graph G on n nodes with indegree

at most d, the strategy yields a play with pebble cost Od(n/ log n).
We want an ‘alternating version’ of playing this pebbling game. As usual, alter-

nation turns the problem inside-out (or rather, bottom-up): instead of proceeding
from the source nodes to the pebbling of the goal node i0, we ask how can we pebble
the goal node. This is viewed as a ‘challenge’ at node i0. The challenge at a node
u in turn spawns challenges at other nodes (which must include all predecessors of
u). This is roughly the idea for our key definition:

Definition 13 A pebbling tree for a directed acyclic graph G with goal node i0 is a

finite tree T satisfying the following.16 Each vertex u of T is associated with a triple

[i,X, Y] where X and Y are subsets of nodes of G, and i is a node of G. We called

i the challenged node, X the pebbling set, Y the unpebbling set (at vertex u). At

each vertex u, define the set C(u) of (currently) pebbled nodes at u by induction on

the level of u: if u is the root then C(u) is simply the pebbling set at u; otherwise if

u is a child of u
′ then C(u) = (C(u′) − Y) ∪X where X (resp., Y) is the pebbling

(resp., unpebbling) set at u. We require these properties:

(i) The challenged node at the root is the goal node i0.

(ii) At each vertex u associated with [i,X, Y], either i ∈ X or else all the

predecessors of i are contained in the currently pebbled nodes C(u).

(iii) If the pebbling set at vertex u is X, then u has |X| children, and the set

comprising the challenged nodes at these children is precisely X.

16To avoid confusing the nodes of T with those of G, we will refer to the nodes of T as ‘vertices’.

7.8. ALTERNATING TIME VERSUS DETERMINISTIC TIME 335

Remark: note that (iii) implies that the pebbling set at a leaf must be empty;
then (ii) implies that the predecessors of a challenged node at a leaf u is in C(u).

Interpretation: This tree is an abstract description of an alternating compu-
tation tree that verifies the labels of a graph G in the sense of the Hopcroft-Paul-
Valiant simulation of a deterministic time t machine M. To make this precise, we
first describe an alternating machine N that on input a labeled graph G with goal
node i0 behaves as follows: initially, N existentially guesses some expansion of node
i0 and writes this onto tape 1; tape 2 is empty. In general, N is in the following
‘inductive stage’:

Tape 1 contains the expansion e(i′) some node i
′,

Tape 2 holds some number of expansions of nodes in G.

Then N existentially deletes some expansions in tape 2 and existentially writes some
(possibly zero) new expansions in tape 3. If no expansion of node i

′ is found in tapes
2 and 3 then N tries to produce one: first N checks that all the predecessors of i

′ are
in tapes 2 and 3 (otherwise it rejects) and then simulate M from sample time t i′−1

to sample time ti′ and, as usual, assume that we now have an expansion d(i ′) of i
′.

N can now verify if the expansion e(i ′) agrees with the found or newly constructed
d(i′) (if not, N rejects). To continue, either tape 3 is empty (in which case N accepts)
or else N universally chooses to copy one of the expanded nodes from tape 3 to tape
1 and the rest onto tape 2. Now we are back to the ‘inductive stage’.

We claim that N accepts iff there is a pebbling tree T . Suppose T exists. To
show that N accepts, we describe an accepting computation tree T

′ of N that is
modeled after T : each inductive stage of N corresponds to a vertex u of T . If u

is associated with the triple [i,X, Y] then tape 1 contains the expansion of node i

and tape 2 contains the expansions of the set C(u) of pebbled nodes at u. Then the
sets Y,X corresponds (respectively) to the expansions that are deleted from tape 2
or existentially guessed in tape 3. If we choose T

′ in such a way that the guessed
expansions in tape 3 are always correct, then T

′ would be an accepting computation
tree. Conversely, if N accepts, then we can construct the pebbling tree by reversing
the above arguments. vertex of T .

With this interpretation, it is easy to understand the following definition of
complexity. The pebbling time at any vertex u is the number of nodes in the union
of the pebbling set and the unpebbling set. The pebbling time of a path of T is the
sum of the pebbling times of nodes along the path. The pebbling time of T is the
maximum pebbling time of any path in T . The pebbling space of T is the maximum
of |C(u)| over all vertices u. (Since we do not care about minimizing alternating
space in our proofs, we can assume the unpebbling set Y is empty at each vertex
u.)

Lemma 28 For any directed acyclic graph G on n nodes with indegree at most d,

there exists a pebbling tree with pebbling time of Od(n/ log n).

336 CHAPTER 7. ALTERNATING CHOICES

Proof. We show that for any graph G and any goal node i0, with indegree at most
d and m edges, there is a pebbling tree for (G, i0) whose pebbling time is at most
P (m), where P (m) = Od(m/ log m). Since m ≤ dn the lemma follows from this
bound. We may suppose m is sufficiently large. First partition the nodes V of G

into two disjoint sets, V = Va ∪ Vb such that

(i) There are no edges from Vb (‘nodes below’) to Va (‘nodes above’). (So edges of
G descend from above to below.) Let Ga, Gb be the induced subgraphs with
nodes Va, Vb, respectively.

(ii) The total indegree mb of all nodes in Vb satisfies

m

2
+

m

log m
− d ≤ mb <

m

2
+

m

log m
.

To see that such a partition exists, we offer a construction: starting with V b as the
empty set, keep putting nodes into Vb in topological order until the sum of indegrees
of the nodes in Vb satisfies the above inequalities.

Let A ⊆ Va be the set of nodes that each has at least one successor in Vb.
Consider the goal node i0.

(iii) If i0 ∈ Va then a pebbling tree for (Ga, i0) is also a pebbling tree for (G, i0).
This tree has a pebbling time at most

P (m−mb) ≤ P (
m

2
−

m

log m
+ d).

(iv) Assume i0 ∈ Vb in the remaining cases. If |A| < 2m/ log m then let the
pebbling set at the root vertex be A∪{i0}. At each child u of the root vertex we
inductively construct a pebbling tree according to two cases. If the challenged
node at u is i ∈ A, then inductively construct a pebbling tree for (G a, i) with
pebbling time P (m/2 − m/ log m + d). Otherwise the challenged node is i 0

and we inductively construct a pebbling tree for (G b, i0) with pebbling time
P (m/2 + m/ log m). It is easy to see that the result is a pebbling tree for
(G, i0) with pebbling time at most

2m

log m
+ P (

m

2
+

m

log m
).

(v) If |A| ≥ 2m/ log m we first construct a pebbling tree T for (Gb, i0). The
pebbling time for T is P (m/2 −m/log m) since there are at least 2m/ log m

edges from Va to Vb are not counted in Gb. We now convert T into a pebbling
tree for (G, i0). Let u be any leaf of T with challenged node i. The predecessors
of i in Gb are contained in C(u). Let X(i) be the predecessors in G but not
in Gb. We make X(i) the pebbling set at u and create |X(i)| ≤ d children for

7.8. ALTERNATING TIME VERSUS DETERMINISTIC TIME 337

u. Each child u
′ of u has a challenged node i

′ ∈ Va. We can attach to u
′ a

pebbling tree T
′ for (Ga, i

′). Observe that the pebbling time for T
′ is at most

P (m/2 −m/ log m + d). This completes our description of the pebbling tree
for (G, i0). The pebbling time of this tree is given by the pebbling time of T

plus the pebbling time of T
′ plus at most d. This is at most

2P (
m

2
−

m

log m
+ d) + d.

Taking the worst of these three cases, we obtain

P (m) ≤ max{P (
m

2
+

m

log m
) +

2m

log m
, 2P (

m

2
−

m

log m
+ d) + d}

We want to show that there is a constant c = c(d) ≥ 5 such that for m
′, P (m′) ≤

cm
′
/ log m

′. By making c sufficiently large, we may assume that the truth has been
established for m large enough. Inductively, we have the the following derivation:

P (
m

2
+

m

log m
) +

2m

log m
= P (αm) +

2m

log m
(where α = 1

2 + 1
log m

)

≤
cαm

log(αm)
+

2m

log m

≤
cm

log m

(

α log m

log(αm)
+

2

c

)

≤
cm

log m
.

We also obtain

2P (
m

2
−

m

log m
+ d) + d ≤

2c
(

m

2 −
m

log m
+ d

)

log
(

m

2 −
m

log m
+ d

) + d

≤
cm

(

1− 2
log m

+ 2d

m

)

log m + log
(

1
2 −

1
log m

+ d

m

) + d

≤
cm

(

1− 1.9
log m

)

log m− 1.1
+ d

≤
cm

log m

(

log m

log m− 1.1

) (

log m− 1.9

log m

)

+ d

≤
cm

log m
.

338 CHAPTER 7. ALTERNATING CHOICES

Q.E.D.

Finally, we complete the proof of the main theorem by giving an alternating
machine to simulate a deterministic M that accepts an input w in time t.

(1) Reserve tapes 1, 2 and 3 for later use. First we existentially choose the time
t (tape 4) and blocking factor B (tape 5). Then we existentially choose a
labeling of the graph G with nodes V = {0, . . . , t/B} (tape 6), and an edge
set E (tape 7). Since each label uses O(log t) space, all this (when choice is
correct) takes time O(t log t

B
).

(2) Universally choose to verify that E is correct relative to node labels, and to
verify that the label of node t/B is correct. It takes time O(t log t

B
) to verify E.

Verification of the label at node t/B is recursive as shown next.

(3) The verification of node dt/Be amounts to simulating a pebbling tree T for
(G, dt/Be) (i.e., with dt/Be as the goal node of G). We do this along the lines
given by the “Interpretation” above. As before, each ‘inductive stage’ of our
simulation of T corresponds to a vertex u of T : if [i,X, Y] is associated with
u then an expansion of the challenged node i is available on tape 1. The set
of nodes previously expanded are available on tape 2. Since the pebbling time
of T can be assumed to be t/(B log(t/B)), we may assume that tape 2 has
at most t/(B log(t/B)) nodes. Since each expansion uses O(B) space, tape 2
uses O(t/ log(t/B)) space. We existentially choose the pebbling set X at u

and also their expansions, writing down these guesses on tape 3. (As noted
before, we may assume Y is empty.) We then verify the challenged node i (it
must either appear in tapes 2 or 3 or has all its predecessors expanded so that
it can be simulated directly). This non-recursive verification of node i takes
time O(t/ log(t/B)). To get to the next inductive stage, we universally choose
to transfer one of the expanded nodes on tape 3 to tape 2, which is now the
challenged node.

We have seen that the non-recursive parts of step (3) takes alternating time
O(t/ log(t/B)). This time must be added to the total alternating time in the recur-
sive parts of the computation. The recursive part of the computation, we claim is
O(B) times the pebbling time P . This is because each unit of pebbling time P can
be associated with the guessing of an expanded node. But each expansion, when
correct, takes space O(B). It follows that the recursive part of the computation
takes time O(t/ log(t/B)) since the pebbling time for the optimal tree is at most
O(t/[B log(t/B)]) (by preceding lemma, with n = t/B). Finally, if B is chosen to be
log2

t, we get a time bound of O(t/ log t) for steps (1),(2) and (3). (We could choose
B as large as t

ε for any constant ε > 0.) This proves our main theorem. Q.E.D.

In conclusion, it should be noted the space bound just obtained is the best
possible in the sense that Ω(t/ log t) is a lower bound on the worst case pebbling
time for the class bounded in-degree graphs [19].

7.9. ALTERNATING SPACE 339

7.9 Alternating Space

We show two results from Chandra, Kozen and Stockmeyer that relate alternating
space and deterministic time.

Note that for a nondeterministic machine M, if there is an accepting path then
there is one in which no configuration is repeated. The next lemma shows an
analogous result for alternating machines.

Lemma 29

(a) Let M be any choice machine. If T is an accepting computation tree for an input

w then there is an accepting computation tree T
′ for w with the following properties:

• each computation path in T
′ is a (prefix of a) computation path in T

• if u, v ∈ T
′ are vertices such that u is a proper ancestor of v and both u and v are

labeled by the same configuration, then Val T ′(v) @ ValT ′(u) (strict ordering).

(b) If, in addition, M is an alternating machine then we can assume that v is a leaf

of T
′.

Proof. (a) The result follows if we show another accepting computation tree T
′

with fewer vertices. Let Tv denote the subtree of T rooted at v consisting of all
descendents of v. There are two cases: if Val T (u) v ValT (v) then we can form T

′

from T by replacing Tu with Tv. By monotonicity, T
′ is still accepting.

(b) This simply follows from part (a) since for alternating machines, Val T (v) @

ValT (u) implies that Val T (v) = ⊥. In that case, we might as well prune away all
proper descendents of v from T .
Q.E.D.

Theorem 30 For all complexity functions s,

ASPACE(s) ⊆ DTIME(n2 log nO(1)s).

Proof. Let M be an ordinary alternating machine accepting in space s. Later we
indicate how to modify the proof if M has the addressable-input capability. We
will construct a deterministic N that accepts L(M) in the indicated time. On an
arbitrary input w, N proceeds in stages: in the mth stage, N enumerates (in tape 1)
the set ∆m defined to be all the configurations C of M on input w where C uses at
most m space. Note that each configuration can be stored in m + log n space, and
there are nO(1)m configurations, so we use

(m + log n)nO(1)m = n log nO(1)m

space on tape 1. Then N enumerates (in tape 2) the edges of the computation tree Tm

whose nodes have labels from ∆m and where no node u ∈ Tm repeats a configuration

340 CHAPTER 7. ALTERNATING CHOICES

that lie on the path from the root to u, except when u is a leaf. Clearly this latter
property comes from the previous lemma. Using the information in tape 1, it is not
hard to do this enumeration of edges in a ‘top-down’ fashion (we leave the details
to the reader). Furthermore each edge can be produced in some constant number
of scans of tape 1, using time n log nO(1)m. Thus the overall time to produce all
nO(1)m edges is n

2 log nO(1)m. Now we can compute the least fixed point Val Tm
(u)

value at each node u ∈ Tm in a bottom-up fashion, again O(n log nO(1)m) per node
for a total time of n

2 log nO(1)m. This completes our description of the mth stage.

The previous lemma shows that if M accepts w then at some mth stage, m ≤

s(|x|), Tm is accepting. Since the time for the mth stage is n
2 log nO1(1)

m, the
overall time over all stages is

s(n)
∑

m=1

n
2 log nO1(1)

m = n
2 log nO2(1)

s(n)
.

It remains to consider the case where M has the addressable-input capability.
We first note that we never have to use more than O(log n) space to model the
address tape (if M writes more than log n bits, we ignore the tape from that point
onwards since it will lead to error when a READ is attempted). Hence the above
space bounds for storing a configuration holds. Furthermore, the time to generate
the contents of tapes 1 and 2 remains asymptotically unchanged. Similarly for
computing the least fixed point Val Tm

. This concludes the proof. Q.E.D.

Theorem 31 For all t(n) > n, DTIME(t) ⊆ ASPACE(log t).

Proof. Let M accept in deterministic time t. We describe an alternating machine N
to accept L(M) in space log t. For this simulation, N can be the ordinary variety
of alternating machine. We may assume that M is a simple Turing machine and
M never moves its tape head to the left of its initial position throughout the com-
putation. (Otherwise, we first convert M into a simple Turing machine accepting
in time t(n)2 with these properties. How?) Let x be any word accepted by M.
Let C0, C1, . . . , Cm, m = t(|x|), be the unique accepting computation path of M on
x. We assume that the final accepting configuration is repeated as many times as
needed in this path. Let each Ci be encoded as a string of length m + 2 over the
alphabet

Γ = Σ ∪ [Q× Σ] ∪ { }

where Σ is the tape alphabet of M, Q the state set of M, and [Q× Σ] is the usual
composite alphabet. Furthermore, we may assume the the first and last symbol of
the string is the blank symbol . Let αi,j denote the jth symbol in configuration Ci

(i = 0, . . . ,m; j = 1, . . . ,m + 2).

N will be calling a subroutine CHECK(i, j, b) that verifies whether α i,j = b

where b ∈ Γ. N begins its overall computation by existentially choosing the integer

7.10. FINAL REMARKS 341

m, the head position h (1 ≤ h ≤ m + 2) and a symbol b
′ = [qa, c] and then it

calls CHECK(m,h, b
′). The subroutine is thus verifying that that M is scanning the

symbol c at position h when M enters the accept state qa. All integer arguments
are in binary notation.

In general, the subroutine to verify if αi,j = b (for any i, j, b) operates as follows:
if i = 0 or j = 1 or j = m, N can directly do the checking and accept or reject
accordingly. Otherwise, it existentially chooses the symbols b−1, b0, b+1 such that
whenever b−1, b0, b+1 are consecutive symbols in some configuration of M then in
the next instant, b0 becomes b. Now N universally chooses to call

CHECK(i− 1, j − 1, b−1),CHECK(i− 1, j, b0),CHECK(i− 1, j + 1, b+1).

It is important to realize that even if b does not contain the tape head (i.e., b 6∈

[Q× Σ× I]), it is possible for b−1 or b+1 to contain the tape head. The space used
by N is O(log m).

Correctness. If M accepts then it is clear that N accepts. The converse is
not obvious. To illustrate the subtlety, suppose CHECK(i, j, b) accepts because
CHECK(i − 1, j − ε, bε) accepts for ε = −1, 0, 1. In turn, CHECK(i − 1, j − 1, b−1)
accepts because CHECK(i − 2, j − 1, b′) (among other calls) accepts for some b

′;
similarly CHECK(i− 1, j, b0) accepts because CHECK(i− 2, j− 1, b′′) (among other
calls) accepts for some b

′′. But there is no guarantee that b
′ = b

′′ since these two calls
occur on different branches of the computation tree. Another source of inconsistency
is that the existential guessing of the bj ’s may cause more than one tape head to
appear during one configuration. Nevertheless, we have a correctness proof that
goes as follows. First observe that if CHECK(i, j, b) is correct if i = 0. Moreover,
given j there is a unique b that makes CHECK(0, j, b) accept. Inductively, assume
CHECK(i, j, b) is correct for all j, b and that CHECK(i, j, b) and CHECK(i, j, b ′)
accept implies b = b

′. Then it is easy to see that CHECK(i+1, j, b) must be correct
for all j, b; moreover, because of determinism, CHECK(i + 1, j, b) and CHECK(i +
1, j, b′) accept implies b = b

′. [This is why CHECK must universally call itself three
times: for instance, if CHECK only makes two of the three calls, then the correctness
of these two calls does not imply the correctness of the parent.] So we have shown
that the symbols αi,j are uniquely determined. In particular αm,h = b

′ in the initial
guess is correct when the machine accepts. Q.E.D.

The reader should see that this proof breaks down if we attempt to simulate
nondeterministic machines instead of deterministic ones.

Combining the two theorems yields the somewhat surprising result:

Corollary 32 For s(n) ≥ log n, ASPACE(s) = DTIME(O(1)s).

7.10 Final Remarks

This chapter introduced choice machines to provide a uniform framework for most of
the choice modes of computation. It is clear that we can extend the basic framework

342 CHAPTER 7. ALTERNATING CHOICES

to other value sets S (analogous to the role of INT) provided S is equipped with
a partial order v such that limits of v -monotonic chains are in S and S has a
v -least element (such an S is called a complete partial order). The reader familiar
with Scott’s theory of semantics will see many similarities. For relevant material,
see [22].

We have a precise relationship between alternating space and determistic time:
for s(n) ≥ log n,

ASPACE(s) = DTIME(O(1)s). (7.8)

What is the precise relationship between alternating time and deterministic space?
Although we have tried to emphasize that alternating time and deterministic space
are intimately related, they are not identical. We know that

ATIME(s) ⊆ DSPACE(s) ⊆ NSPACE(s) ⊆ ATIME(s2). (7.9)

for s(n) ≥ log n. How ‘tight’ is this sequence? It is unlikely that that the first two
inclusions could be improved in the near future.

From (7.8) and (7.9), we get find new characterizations of some classes in the
canonical list:

P = ASPACE(log n)

PSPACE = ATIME(nO(1))

DEXPT = ASPACE(n)

EXPS = ATIME(O(1)n).

What is the relationship of alternating reversal with deterministic complexity?
Of course, for alternating machines, we must take care to simultaneously bound re-
versal with either time or space in order to get meaningful results. Other complexity
measures for alternating machines have been studied. Ruzzo [20] studied the size

(i.e., the number of nodes) of computation trees. In particular, he shows

A-SPACE-SIZE(s(n), z(n)) ⊆ ATIME(s(n) log z(n)).

King [13] introduced other measures on computation trees: branching (i.e., the
number of leaves), width (below), visit (the maximum number of nodes at any level).
Width is not so easy to motivate but in the special case of binary trees (which is all
we need for alternating machines), it is the minimum number of pebbles necessary
to pebble the root of the tree. Among the results, he shows (for s(n) ≥ log n),

A-SPACE-WIDTH(s(n), w(n)) = NSPACE(s(n)w(n)),

A-SPACE-VISIT(s(n), v(n)) ⊆ ATIME(s2(n)v(n)).

7.10. FINAL REMARKS 343

Exercises

[7.1] Verify the identities in section 2 on interval algebra.

[7.2] Some additional properties of the lattice INT:
(a) Show that the two orderings ≤ and v are ‘complementary’ in the
following sense: for all I and J , either I and J are ≤-comparable or they
are v -comparable.
(b) Show that I and J are both ≤ -comparable and v -comparable iff I ≈ J

where we write [x, y] ≈ [x, v] if x = u or y = v.
(c) Extend ∧ and ∨ to arbitrary sets S ⊆ INT of intervals: denote the meet
and join of S by ∧S and ∨S. Show that INT forms a complete lattice with
least element 0 and greatest element 1.

[7.3] Consider the 2-ary Boolean function inequivalence (also known as exclusive-

or) denoted 6≡. We want to extend this to a function on intervals in INT.
One way to do this is to use the equation

x 6≡ y = (x∧¬y)∨(¬x∧y)

valid for Boolean values, but now interpreting the ∧,∨ and ¬ as functions
on intervals. For instance,

[0.2, 0.5] 6≡ [0.6, 0.7] = ([0.2, 0.5]∧[0.3, 0.4])∨([0.5, 0.8]∧[0.6, 0.7])

= [0.2, 0.4]∨[0.5, 0.7] = [0.5, 0.7].

Can you find other equations for 6≡ that are valid in the Boolean case such
that the extension to intervals are not the same function?

[7.4] * (i) Consider generalized probabilistic machines in which we allow k-ary
versions of the coin-tossing function, f

k for all k ≥ 2. Show that these can
be simulated by ordinary probabilistic machines with at most a constant
factor slow-down in time.
(ii) Show the same result for stochastic machines where we now allow f

k,⊕k,⊗k

for all k.

[7.5] (Hong) Consider basis sets B that are subsets of the 16 Boolean functions
on 2 variables. As usual, we assume that the identity, 0 and 1 constant
functions are not explicitly mentioned when we display B. For two bases
B,B

′, say that B linearly simulates B
′ if for every B

′-choice machine M′,
there is a B-machine M accepting the same language such that if M ′ accepts
in time t(n) then M accepts in time OB,B′(t). Say B and B

′ are linearly

equivalent if they can linearly simulate each other.
(a) Prove that every such basis set B is linearly equivalent to one of the
following 5 bases:

B0 := ∅, B1 := {∨}, B2 := {∧}, B3 := {⊕}, B4 := {∨,∧}

344 CHAPTER 7. ALTERNATING CHOICES

where ⊕ is the exclusive-or function.
(b) By simple set inclusions, it is clear that B 0 can be linearly simulated by
the others and B4 can linearly simulate B1 and B2. Show that B4 can also
linearly simulate B3. Hint: Use the same idea as the proof for elimination of
negation.
(c)** Show that these 5 classes are distinct up to linear equivalence. (Note:
it is known that B1 is distinct from B0.)

[7.6] ** Let B = {∨, f,¬}. Can negation be eliminated from B-machines oper-
ating in polynomial time?

[7.7] Generalize choice machines by allowing values from any v -partially or-
dered set F that has a v -mimimal element ⊥ ∈ F and such that any
v -monotonic non-decreasing sequence has a least upper bound in F . In
particular, let F be the Borel sets (obtain from INT under the operation of
intersection, difference and countable unions).

[7.8] * Extend valuation theory for acceptors to transducers.

[7.9] (Paul, Praus, Reischuk) Construct a simple (i.e., one work-tape and no input
tape) alternating machine that accepts palindromes in linear time and a
constant number of alternation. Hint: Guess the positions (in binary) of
about log n equally spaced-out input symbols, writing these directly under
the corresponding symbols. The positions of all the other symbols can be
determined relative to these guessed positions.

[7.10] (Paul, Praus, Reischuk) Show that if a language can be accepted by an
alternating Turing machine in time t(n) then it can be accepted by a simple
alternating Turing machine in time O(t(n)). Hint: For a computation path
C1`C2`, . . . ,`Cm, let its trace be τ1, τ2, . . . , τm where τi contains the state,
the symbols scanned on each of the tapes (including the input tape) and the
direction of each tape head in the transition C i`Ci+1. The head directions
are undefined for τm. (Note: this definition of trace does not include head
positions, in contrast to a similar definition in chapter 2.) Begin by guessing
the trace of the paths in an accepting computation tree – you must use
universal and existential guessing corresponding to the state in τ i. To verify
correctness of the guess, the technique for the previous question is useful.

[7.11] (Paterson, Paul, Praus, Reischuk) For all t(n), if a language is accepted
by a nondeterministic simple Turing machine in time t(n) then it can be
accepted by an alternating machine in time n + t

1/2(n).

[7.12] Show the tight complexity relationships between the ordinary SAM’s and
the addressable-input version of SAM’s. More precisely, give efficient time/space/reversal
simulations of the addressable-input machines by ordinary machines.

7.10. FINAL REMARKS 345

[7.13] Rederive the various simulation of SAM’s in this chapter in the case where
the SAMs is the addressable-input model. In particular, show that ATIME(t) ⊆
DSPACE(t).

[7.14] Obtain a lower bound on the space-time product of alternating Turing ma-
chines which accepts the palindrome language Lpal.

[7.15] * Obtain the tight bound of Θ(log n) on the alternating time complexity for
the multiplication problem define as follows:

Lmult = {x#y#z# : x, y, z ∈ {0, 1}∗, x · y = z}.

Use the addressable-input model of machine.

[7.16] ** A very natural function that one would like to add to our basis sets is
the cut-off function δ 1

2
defined at the end of section 2. Note that it gives

us a model of oracle calls in which the complexity of the oracle machine is
taken into account. Of course, this is not continuous: extend the theory of
valuations to allow monotonic, piece-wise continuous functions. (A functions
is piece-wise continuous if it has a finite number of discontinuities.)

[7.17] Explore the power of choice machines: suppose the basis functions are ra-
tional, linear convex combinations of their arguments: more precisely, the
valuation functions f have the form

f(x1, . . . , xn) =
n

∑

i=1

aixi

where the ai’s are positive rational numbers depending on f and
∑

i
ai = 1.

How do these machines compare to SAMs?

[7.18] Give a sufficient condition on a family F of complexity functions such that
ATIME(F) = PrA-TIME(F) = DSPACE(F). Hint: Consider the case
F = n

O(1).

[7.19] * Can the alternating version of I. Simon simulation (section 6) be im-
proved? In particular, try to improve DREVERSAL(r) ⊆ ATIME(r 3).

[7.20] In section 7, we saw a reduction of Turing machine simulation to graph
pebbling, due to Hopcroft-Valiant-Paul. An alternative definition of the
edge set E is this: “define (j, i) to be an edge of G if j < i and there is
some block b visited in the ith time interval and last visited in the jth time
interval.” Using this definition of G, what modifications are needed in the
proof showing DTIME(t) ⊆ DSPACE(t/ log t)?

[7.21] What is the number of alternations in the proof of DTIME(t) ⊆ ATIME(t/ log t)?
Can this be improved?

346 CHAPTER 7. ALTERNATING CHOICES

[7.22] Show that if t(n) is time constructible then co-ATIME(t(n)) ⊆ ATIME(n+
t(n)). HINT: why do you need the “n+” term?
NOTE: For instance, if t(n) ≥ 2n, ATIME(n + t(n)) = ATIME(t(n)), and
so ATIME(t(n)) is closed under complementation. This is essentially the
result of Paul and Reischuk.

[7.23] * An probabilistic-alternating finite automaton (f.a.) is simply a PAM with
no work-tape. The restriction to purely alternating or to purely probabilistic
f.a. is clear. We further restrict its input tape to be one-way.
(i) (Chandra-Kozen-Stockmeyer) Prove that the alternating f.a. accepts only
regular languages.
(ii) (Starke) Show the following language (well-known to be non-regular)
L = {0m1n : m ≥ n} can be accepted by a probabilistic f.a..

[7.24] (Freivalds) Show a probabilistic finite automata to recognize the language
{0n1n : n ≥ 1} with bounded error. Hint: (B. Mishra) We are basically
trying to check that the number of 1’s and number of 0’s are equal. Show
that the following procedure works:
a. Choose a coin with probability p <<

1
2 of getting a head.

b. Toss coin for each 0 in input and each 1 in input. If we get all heads for
0’s and at least one tail for the 1’s then we say we have a 0-win. If we get
at least tail for the 0’s and all heads for the 1’s, we have a 1-win. All other
outcomes result in a tie.
c. Repeat this experiment until we have at least D 0-wins or D 1-wins. We
accept if and only if there is at least one 1-win and at least one 0-win.
(For more information, see [10].)

[7.25] (Ruzzo, King) Show the following simulations among measures for alternat-
ing computation, as stated in the concluding section: for s(n) ≥ log n,

A-SPACE-SIZE(s(n), z(n)) ⊆ ATIME(s(n) log z(n)),

A-SPACE-WIDTH(s(n), w(n)) = NSPACE(s(n)w(n)),

A-SPACE-VISIT(s(n), v(n)) ⊆ ATIME(s2(n)v(n)).

[7.26] (King) Recall the definitions of branching and width resource for alternat-
ing machines in the concluding section. Show that the branching resource
(simultaneously bounded with space) has the linear complexity reduction
property: for s(n) ≥ log n,

A-SPACE-BRANCH(s(n), b(n)) = A-SPACE-BRANCH(s(n), b(n)/2).

Show the same result for width resource: for s(n) ≥ log n,

A-SPACE-WIDTH(s(n), w(n)) = A-SPACE-WIDTH(s(n), w(n)/2).

7.10. FINAL REMARKS 347

[7.27] Show that if a graph with goal node (G, i0) has a pebbling tree with pebbling
time t then it can be pebbled with t pebbles. Is the converse true?

[7.28] (Paul, Tarjan, Celoni, Cook)
(a) A level graph is a directed acyclic graph with bounded in-degree such
that the vertices can be partitioned into ‘levels’ and edges only go from level
i to level i + 1. Show that every level graph on n vertices can be pebbled
using O(

√
n) pebbles.

(b) Show an infinite family of graphs with indegree 2 that requires Ω(
√

n)
pebbles to pebble certain vertices.

348 CHAPTER 7. ALTERNATING CHOICES

Bibliography

[1] L. Adleman and M. Loui. Space-bounded simulation of multitape Turing ma-
chines. Math. Systems Theory, 14:215–222, 1981.

[2] László Babai and Shlomo Moran. Arthur-Merlin games: a randomized proof
system, and a hierarchy of complexity classes. Journal of Computers and Sys-

tems Sciences, 36:254–276, 1988.

[3] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. J. ACM, 28:1:114–133,
1981.

[4] A. Condon and R. Ladner. Probabilistic game automata. Journal of Computers

and Systems Sciences, 36:452–489, 1988.

[5] Peter Crawley and Robert Dilworth. Algebraic theory of lattices. Prentice-Hall,
1973.

[6] P. Dymond and M. Tompa. Speedups of deterministic machines by synchronous
parallel machines. Journal of Computers and Systems Sciences, 30:149–161,
1985.

[7] J. T. Gill. Computational complexity of probabilistic Turing machines. SIAM

J. Comp., 6(4):675–695, 1977.

[8] S. Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proofs. 17th ACM Symposium STOC, pages 291–304, 1985.

[9] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in in-
teractive proof systems. 18th ACM Symposium STOC, pages 59–68, 1986.

[10] Albert G. Greenberg and Alan Weiss. A lower bound for probabilistic algo-
rithms for finite state machines. Journal of Computer and System Sciences,
33:88–105, 1986.

[11] Jia-wei Hong. Computation: Computability, Similarity and Duality. Research
notices in theoretical Computer Science. Pitman Publishing Ltd., London, 1986.
(available from John Wiley & Sons, New York).

349

350 BIBLIOGRAPHY

[12] J. E. Hopcroft, W. J. Paul, and L. G. Valiant. On time versus space. Journal

of Algorithms, 24:332–337, 1977.

[13] Kimberley N. King. Measures of parallelism in alternating computation trees.
ACM Symp. on Theory of Computing, 13:189–201, 1981.

[14] Burkhard Monien and Ivan Hal Sudborough. On eliminating nondeterminism
from Turing machines which use less than logarithm worktape space. In Lecture

Notes in Computer Science, volume 71, pages 431–445, Berlin, 1979. Springer-
Verlag. Proc. Symposium on Automata, Languages and Programming.

[15] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.

[16] Christos H. Papadimitriou. Games against nature. Journal of Computers and

Systems Sciences, 31:288–301, 1985.

[17] Michael S. Paterson. Tape bounds for time-bounded Turing machines. Journal

of Computers and Systems Sciences, 6:116–124, 1972.

[18] W. J. Paul, Ernst J. Praus, and Rüdiger Reischuk. On alternation. Acta

Informatica, 14:243–255, 1980.

[19] W. J. Paul, R. E. Tarjan, and J. R. Celoni. Space bounds for a game on graphs.
Math. Systems Theory, 11:239–251, 1977. (See corrections in Math. Systems
Theory, 11(1977)85.).

[20] Walter L. Ruzzo. Tree-size bounded alternation. ACM Symp. on Theory of

Computing, 11:352–359, 1979.

[21] Martin Tompa. An improvement on the extension of Savitch’s theorem to small
space bounds. Technical Report Technical Report No. 79-12-01, Department
of Computer Sci., Univ. of Washington, 1979.

[22] Klaus Weihrauch. Computability. Springer-Verlag, Berlin, 1987.

[23] Chee K. Yap. On combining probabilistic and alternating machines. Technical
report, Univ. of Southern California, Comp. Sci. Dept., January 1980. Technical
Report.

Contents

7 Alternating Choices 291

7.1 Introduction to computing with choice 291
7.2 Interval algebra . 293
7.3 Theory of Valuations . 298

7.3.1 Tree Valuations and Complexity 304
7.4 Basic Results . 309
7.5 Alternating Time versus Deterministic Space 315
7.6 Simulations by Alternating Time . 318
7.7 Further Generalization of Savitch’s Theorem 325
7.8 Alternating Time versus Deterministic Time 331

7.8.1 Reduction of Simulation to a Game on Graphs. 331
7.8.2 A Pebble Game. 333

7.9 Alternating Space . 339
7.10 Final Remarks . 341

351

Chapter 8

Stochastic Choices

September 29, 1998

8.1 Errors in Stochastic Computation

We continue investigating the choice-mode of computation. This chapter focuses on
the stochastic choices, viz., coin-tossing f, probabilistic-and ⊗ and probabilistic-or
⊕. For convenience, an appendix on the basic probabilistic vocabulary is included.
Two interesting new phenomena arise with stochastic choices:

• Infinite loops in stochastic computation is an essential feature, rather than
one we seek to eliminate (cf. alternation). This will be evident when we study
space-bounded computations in section 3.

• An extremely rich theory arises from quantifying the forms of computational
error. We think of error as a new computational resource.

On forms of computational error. In this chapter, we revert to the use of
intervals I ∈ INT when discussing valuations. Let M be a choice machine and
suppose ValM(w) = [b, c] where w is an input word. If M accepts w (i.e., b >

1

2
)

then both 1−b and 1−c are useful measures of error. Since 1

2
> 1−b ≥ 1−c ≥ 0,

we may call 1− b and 1− c (respectively) the pessimistic acceptance error

and optimistic acceptance error. Similarly, if M rejects w, then b and c

are (respectively) the optimistic rejection error and pessimistic rejection

error. There are two basic paradigms for classifing errors: for optimistic errors,
we say a choice machine has “zero error” if for all inputs, its optimistic error
is 0. For pessimistic errors, we say a choice machine has “bounded-error” if its
pessimistic errors are bounded away from 1

2
by a positive constant.

Stochastic computation has been studied since the early days of automata theory
[9]. One original motivation (and this line of work is still actively pursued) is the
fundamental question of synthesizing reliable components from unreliable ones [21].

351

352 CHAPTER 8. STOCHASTIC CHOICES

Stochastic computation in complexity theory started with the work of Gill [12].
Gill was in turn motivated by some surprising probabilistic algorithms for primality
testing algorithms due to Rabin [22] and Solovay-Strassen [29].

Example 1 The said primality testing algorithms have this property: every com-
putation path terminates and at each terminal configuration C,

1) if C answers YES (i.e., claims that the input is prime) then there is a “small
probability” that it made an error;

2) if C answers NO (i.e., claims that the input is composite) then it is surely correct.

The algorithm does not have YO-answers. It is not so easy to quantify the above
“small probability”. But we may rephrase this property, taking the viewpoint of the
inputs:

1′) if the input is prime then all local answers are YES;

2′) if the input is composite then the local answer is NO with “high probability”.

The reader should verify that 1′) and 2′) (the global perspective) are just refor-
mulations of 1) and 2) (the local perspective). We elaborate on this because it is
easy to become confused by a mixture of these two perspectives. The global formu-
lation is more useful because we can explicitly quantify the “high probability” in it:
it means with probability more than 3/4. We see that these primality algorithms
make no errors whenever they (globally) accept.

To remember which way the primality algorithms may have errors, it is helpful
to know this: the algorithms answers NO (i.e., claims that an input is compos-
ite) only if it finds a ‘witness’ of compositeness. Hence NO-answers are never
wrong by virtue of such witnesses. In contrast, the algorithm answers YES (i.e.,
claims an input is prime) based on its failure to find a witness – such a YES
answer could be wrong because an individual path does not exhaustively search
for witnesses. In fact the algorithm looks for witnesses by randomly picking
candidate witnesses and then checking each for the witness property. An exam-
ple of a ‘witness’ of the compositeness of a number n is a factor m (1 < m < n)
of n. It is easy to check if any proposed witness m is a factor. Unfortunately,
there may be as few as two witnesses for some composite numbers; in this case,
the method of randomly selecting candidate witnesses for testing is unreliable.
The algorithms of Rabin and of Solovay-Strassen solves this by using more so-
phisticated concepts of “witnesses” where it can be shown that each composite
number has a positive fraction of witnesses among the candidates, and a prime
number has no witness.

This example will be used again to illustrate error concepts.

We now classify Turing machines according to their error properties.

8.1. ERRORS IN STOCHASTIC COMPUTATION 353

Definition 1
(i) A non-empty interval g containing the value 1

2 is called an error gap. Thus g
has one of the forms

[a, b], (a, b], [a, b), (a, b)

where 0 ≤ a ≤ 1
2 ≤ b ≤ 1. We call a and b (respectively) the lower and upper

bounds of g. (ii) A choice machine M accepts with error gap g if for all accepted
inputs w,

ValM(w) ∩ g = ∅.

Nothing is assumed if w is rejected or undecided. Similarly, we define what it means
to reject with error gap g.
(iii) M has error gap g if for all inputs w, ValM(w) ∩ G(|w|) = ∅. (Thus M is
decisive.)
(iv) We say M accepts with bounded-error if there exists e (0 < e ≤ 1

2 such
that for all accepted inputs w, the lower bound of Val M(w) is ≥ 1

2 + e. Similarly, we
say M rejects with bounded-error if for all rejected inputs w, the upper bound
of ValM(w) is ≤ 1

2 − e. Also, M has bounded-error if it is decisive, and it accepts
and rejects with bounded-error. Say M has unbounded-error if it does not have
have bounded-error.

An error gap function G is a total function that assigns an error gap G(n) to
each natural number n. We can generalize the above definitions by replacing g by
an error gap function G(n).

Definition 2 (Continued)
(v) We say M accepts a w with zero-error if it accepts w and the upper bound
of ValM(w) is 1. We say M has zero-error acceptance if every accepted word w
is accepted with zero-error.
Similarly, M rejects a w with zero-error if it rejects w and the lower bound of
ValM(w) is 0. We say M has zero-error rejection if every rejected word w is
rejected with zero-error.1

(vi) We say M has zero-error if it is decisive, and it has zero-error acceptance and
zero-error rejection.
(vii) We combine bounded-error and zero-error: M has bounded zero-error rejec-
tion if it has bounded-error and zero-error rejection. Bounded zero-error rejection
is also called one-sided error. By symmetry, we say M has bounded zero-
error acceptance it has bounded-error and zero-error acceptance. Finally, M has
bounded zero-error if it has bounded-error and zero-error.

1We emphasize that ‘zero-error’ does not imply the absence of all errors: it only refers to the
optimistic errors. Furthermore, it seems that “errorless” would be a preferable substitute for “zero-
error” in this set of terminology, except that zero-error is quite well accepted.

354 CHAPTER 8. STOCHASTIC CHOICES

We briefly discuss the significance of these forms of error and their motivations. 2

Although our error concepts treat acceptance and rejection with an even hand,
we still favor acceptance when it comes to defining languages and complexity classes:
for any machine M, the notation

L(M)

continues to refer to the language accepted by M. So a word w 6∈ L(M) is either
rejected or undecided by M.

Bounded Errors. Note that undecided intervals in INT are error gaps. Clearly a
stochastic machine has an error gap function if and only it has the minimal error gap
[12 , 1

2], if and only if it is decisive. In this sense, bounded-error is a strengthening
of halting computation. To understand the significance of ‘bounded-error’, note
that in general, acceptance and rejection errors can get arbitrarily close to 1

2 . This
behavior is forbidden by bounded-error. The next section shows that with bounded-
error we can modify a machine to yield error gaps of the form [ε, 1−ε] for any desired
constant 0 < ε < 1

2 , at a cost of increasing the computational time by a constant
factor depending on ε. This yields a very important conclusion: assuming we can
tolerate constant factor slowdowns, bounded-error algorithms are practically as good
as deterministic algorithms.

Nondeterministic vs. probabilistic machines. Let N be a nondeterministic
machine. The valuation function Val N has values in {0, 1,⊥}. It follows that N
has zero-error and accepts with no pessimistic error. Next, let us see what happens
when N is converted into a probabilistic machine M, simply by declaring each state
a toss-state. If N does not accept an input, M also does not accept. Hence we have

L(M) ⊆ L(N).

A further modification to M yields a probabilistic machine M ′ that accepts the same
language as N: let M′ begin by tossing a coin in the start state, and on one outcome
it immediately answers YES, and with the other outcome it simulates N. So M ′ is
undecided on input w 6∈ L(N), since the lower bound of Val M′(w) is exactly 1

2 . This
shows

NTIME(t) ⊆ PrTIME (t + 1). (8.1)

See the definition of PrTIME(t) below. Also, M’ has zero-error rejection. A trivial
modification to M’ will ensure that it has zero-error acceptance as well: simply

2The word ‘error’ in the terminology ‘error gap’ and ‘bounded-error’ refers to pessimistic errors.
On the other hand, ‘error’ in ‘zero-error’ refers to optimistic errors. Thus the concepts of zero-error
and bounded-error are independent. This double use of the term ‘error’ is regrettable, but it is a
reasonably established convention. We feel justified to propagate this usage because each instance
of such error terms will be accompanied by key words such as ‘bounded’, ‘gap’ or ‘zero’ which
unambiguously indicate the form of error.

8.1. ERRORS IN STOCHASTIC COMPUTATION 355

convert all terminating configurations into looping configurations. Notice that N, M
and M′ are not decisive. If N were unequivocal in the sense of chapter 2 (§9) then
both N and M would be decisive (but what could be done to make M ′ decisive?).

Zero-error computation. The primality testing algorithms above accepts with
zero-error. The concept of zero-error is best understood in terms of stochastic
machines with no negation states: in this case acceptance with zero-error means
that if an input is accepted then no computation path leads to a NO-configuration.
Similarly, ‘rejecting with zero-error’ means that if an input is rejected, then no
computation path leads to a YES-configuration. In either case, YO-configuration
(or looping) is not precluded. Because of monotonicity properties, if a complete
computation tree TM(w) accepts with zero-error then any prefix T ′ of TM(w) also
accepts with zero-error, if T ′ accepts at all.

One-sided error. One-sided error is also motivated by the primality algorithms.
These algorithms have no pessimistic errors on prime inputs, by virtue of property
1’), and have bounded error on composite inputs, by property 2’). Thus such an
algorithm has bounded zero-error acceptance. Now with a trivial change, we can
regard the same algorithm as a recognizer of composite numbers: it answers YES
iff it finds a witness of compositeness. This new algorithm has bounded zero-error
rejection, i.e., it has one-sided error.

This begs the question as to why we define one-sided error to favor “zero-error
rejection” over “zero-error acceptance”? We suggest that the (non-mathematical)
reason has to do with our bias towards nondeterministic machines: a probabilistic
machine M with one-sided error can be regarded as a nondeterministic machine N.
Let us clarify this remark. For, if M accepts w then some terminal configuration
gives a YES-answer, and so N accepts w. Conversely, if M does not accept w, then it
rejects w. Since M has zero-error rejection, this mean there is no YES-configuration.
Hence, N does not accept w. We conclude that L(M) = L(N). This proves

PrTIME 1(t) ⊆ NTIME(t). (8.2)

The subscript ‘1’ in PrTIME 1(t) refers to one-sided error (see notation below).

One final remark. The literature often discuss errors in the context of proba-
bilistic machines that run in time t(n) for some time-constructible t (e.g., t is a nice
polynomial). Under such circumstances, we could simplify many of the concepts
here. For instance, we need not deal with intervals: if a machine does not terminate
within t steps, we simply answer NO. This avoids the value ⊥ and more important,
the pessimistic and optimistic errors coincide. Unfortunately this simplification is
not so readily available in general (for instance, in space-bounded computations).

Complexity. Since error is viewed as another computational resource, we combine
error with other resource bounds. The number of logical possibilities is large, but

356 CHAPTER 8. STOCHASTIC CHOICES

happily, only a few forms are important. For instance, we exclusively use constant
gap functions in complexity characteristics.

The following illustrates the combination of acceptance time with bounded-error
or with zero-error:

Definition 3
Let t be a complexity function.
(i) A choice machine M accepts in time t with bounded-error if there is an
error gap g = [a, b], a < 1

2 < b such that for all accepted inputs w, there is an
accepting computation tree T such that Val T (w) ∩ g = ∅ and each path in T has
length at most t(|w|).
(ii) M accepts in time t with zero-error if it accepts in time t and it has zero-
error acceptance.

In (i), the time bound and error gap are simultaneously achieved in a single
computation tree T . In general, all complexity characteristics we specify for a single
machine are assume to be simultaneous unless otherwise stated. But in some cases,
simultaneity and non-simultaneity are the same. Such is the case with (ii) above:
zero-error acceptance is a property of the complete computation tree, independent
of acceptance in time t.

We can also combine all three: time bound, bounded-error and zero-error. The
definition generalizes in the usual way to “rejection complexity” and to “running
complexity”. For rejection complexity, just replace acceptance by rejection. For
running complexity, we combine accepting complexity, rejecting complexity and
decisiveness.

There is another combination of errors that is important:

Definition 4 We say M has runs in time t with one-sided error if it runs in
time t with bounded-error and zero-error rejection.

Note that the zero-error requirement is on the rejection side. A complement
to this definition would be “running in time t with bounded-error and zero-error
acceptance. However, this does not have a special name.

We naturally extend the above definitions to other resources such as space or
reversals, including simultaneous resources.

Notation for error-restricted complexity classes. For the error-restricted
classes, for simplicity, we will always the machine is decisive and running (time,
space, etc) complexity is used. To refer to such classes, it is sufficient to augment our
previous convention for complexity classes, simply by introducing new subscripts.
Until now, we have only one kind of subscript, ‘r’, denoting running complexity. We
now introduce three new subscript z,

z ∈ {b, 0, 1},

8.1. ERRORS IN STOCHASTIC COMPUTATION 357

to indicate the following restrictions: bounded-error (z = b) or one-sided error
(z = 1) or bounded zero-error (z = 0). Note a linear hierarchy in these subscripts:
for instance,

PrTIME 0(t) ⊆ PrTIME 1(t) ⊆ PrTIME b(t) ⊆ PrTIME r(t) ⊆ PrTIME(t)

for any function t. We could replace PrTIME here by any mode-resource pair.
These notations are illustrated in the last column of the following table.

The table below lists some important time-feasible (i.e., polynomial time) com-
plexity classes, under the various choice and error modes:

Some Polynomial Time Stochastic Classes

Error Mode Choice Mode Common Symbol Standard Notation

Unbounded error { f} PP PrTIME (nO(1))

Bounded error { f} BPP PrTIME b(n
O(1))

One-sided error { f} RP (also denoted VPP or R) PrTIME 1(n
O(1))

Bounded zero-error { f} ZPP PrTIME 0(n
O(1))

Bounded error { f,∨} IP , AM IpTIME
b
(nO(1))

We note some relationships among these classes and the canonical classes such
P and NP . The following are trivial relationships.

P ⊆ ZPP ⊆ RP ⊆ BPP ⊆ PP ,

BPP ⊆ IP ∩ PP .

We also have
RP ⊆1 NP ⊆2 PP .

The inclusion (⊆2) follows from equation (8.1) while inclusion (⊆ 1) follows from
equation (8.2).

From the previous chapter (corollary 25), we have:

PP ⊆ IP ⊆ PSPACE .

However, we shall see that IP = PSPACE . Recall that Primes ∈ co-RP . We now
show the following, attributed to Rabin:

ZPP = RP ∩ co-RP .

Proof. It is clear that ZPP ⊆ RP ∩ co-RP . Conversely, suppose L is accepted
by a probabilistic machine M (respectively, N) that runs in polynomial time with
bounded zero-error acceptance (respectively, rejection). We may assume that M
and N are halting. We then construct a probabilistic machine that dovetails the

358 CHAPTER 8. STOCHASTIC CHOICES

computation of M and N in a step-for-step fashion until one of the following two
events: (a) if N answers YES, we answer YES; (b) if M answers NO, we answer NO.
If N answers NO or M answers YES, we simply continue simulation of the other
machine. If both machines halt without events (a) or (b) occurring, we loop. This
dovetail process essentially gives us a computation tree whose paths can be made
to correspond in a bijective fashion with the set of all pairs of paths (p, p ′) where p
comes from M and p′ from N. Then it is not hard to see that the simulation runs in
polynomial time with zero-error (Exercises).

Figure 8.1 summarizes the relationship of the main feasible stochastic-time classes
with the canonical classes:

IP = PSPACE

PP

BPP

ZPP

P

NP co-−NP

RP co-RP

Figure 8.1: Feasible classes in the stochastic mode

8.2 How to Amplify Error Gaps

It is said that bounded-error probabilistic algorithms are practically as good as
deterministic ones. In graphic terms, an algorithm that makes error with probability
less than 2−1000 seems eminently more reliable than many other non-mathematical
aspects3 within the whole computational process. Basically, we seek techniques to
convert a machine with error gap G into one with a strictly larger error gap G ′,
G ⊂ G′. We now describe three such techniques, depending on the form of error
and type of machine.

3Such as the reliability of hardware, not to speak of software.

8.2. HOW TO AMPLIFY ERROR GAPS 359

(I) Zero-error Rejection Machines. Let M be a probabilistic machine zero-
error rejection. Suppose M accepts4 if with error gap [0, b]. We can boost the error
gap very easily as follows. Fix some k ≥ 1. Let N be the following machine:

On any input w, simulate M on w for at most k times. If any of the
simulation answers YES, N answers YES at once. If a simulation halts
with the answers NO or YO, we go on to the next simulation. If the
answer is NO or YO for k times, N answers NO.

If w is rejected by M, then N always answer NO. If w is accepted by M, the proba-
bility of a YES-computation path of M is at least b. Hence the probability that N
accepts is at least 1− (1− b)k. So N accepts with error gap

[0, 1 − (1− b)k]

which strictly includes [0, b]. Thus, zero-error rejection implies bounded-error ac-
ceptance.

(II) Bounded-error Probabilistic Machines. The above technique will not
work when there could be pessimistic errors in rejection. For bounded-error ma-
chines, we can use the ‘majority voting’ scheme: repeat for an odd number of times
an experiment with binary outcome; we take the majority outcome (i.e., the out-
come occurring more than half the time) as output. We justify this procedure with
a lemma [26]:

Lemma 1 (a) Consider an experiment in which an event E occurs with probability

p ≥
1

2
+ e

for some 0 < e < 1
2 . Then in 2t + 1 independent trials of the experiment, the

probability that E is the majority outcome is greater than

1−
1

2
(1− 4e2)t.

(b) Similarly, if E occurs with probability

p ≤
1

2
− e

then the probability that E is the majority outcome is less than

1

2
(1− 4e2)t.

4Of course, b ≥ 1/2. But in some sense, this technique works as long as b > 0.

360 CHAPTER 8. STOCHASTIC CHOICES

Proof. (a) Let q = 1 − p and i = 0, . . . , t. Then the probability p i that E occurs
exactly i times out of 2t + 1 is given by the binomial distribution,

pi =

(

2t + 1
i

)

piq2t+1−i

=

(

2t + 1
i

)

(
1

2
+ e)i(

1

2
− e)2t+1−i

[

p
1
2 + e

]

i
[

q
1
2 − e

]2t+1−i

=

(

2t + 1
i

)

(
1

2
+ e)i(

1

2
− e)2t+1−i

[

pq

(1
2 + e)(1

2 − e)

]

i
[

q
1
2 − e

]2t+1−2i

≤

(

2t + 1
i

)

(
1

2
+ e)i(

1

2
− e)2t+1−i

≤

(

2t + 1
i

)

(
1

2
+ e)i(

1

2
− e)2t+1−i

[

1
2 + e
1
2 − e

]

t−i

=

(

2t + 1
i

)

(
1

2
+ e)t(

1

2
− e)t+1

<

(

2t + 1
i

)

(
1

4
− e2)t

1

2
.

Therefore the probability that E occurs in more than t trials is at least

1−
t
∑

i=0

pi > 1−
t
∑

i=0

(

2t + 1
i

)

(
1

4
− e2)t

1

2

= 1− 22t(
1

4
− e2)t

1

2

= 1−
1

2
(1− 4e2)t.

(b) Similarly, if p ≤ 1
2 − e then for i ≥ t + 1 we have

pi ≤

(

2t + 1
i

)

(
1

4
− e2)t

1

2

and hence the probability that E occurs in more than t trials will be at most

2t+1
∑

i=t+1

pi ≤ 22t(
1

4
− e2)t

1

2
(8.3)

=
1

2
(1− 4e2)t. (8.4)

Q.E.D.

8.2. HOW TO AMPLIFY ERROR GAPS 361

Using this, we can boost an error gap Ge = [12 − e, 1
2 + e] (0 < 1

2 < e) to
[12 − e′, 1

2 + e′] where

e′ =
1

2
(1− 4e2)t

if we do the majority vote for 2t + 1 trials. For instance, with e = 1/4 and t = 8,
we have e′ = 1

2(3/4)t < 0.051.
Let G0 be the error gap function given by

G0(n) = [2−n, 1− 2−n].

We have the following useful lemma:

Lemma 2 Each language in BPP is accepted by a probabilistic acceptor that runs
in polynomial time with error gap G0.

Proof. We may assume that the language is accepted by some M that runs in time
nd with error gap G = [1

2 − e, 1
2 + e] for some d ≥ 1 and 0 < e < 1

2 . Applying the
lemma, we want to choose t satisfying

2−n
≥

(1− 4e2)t

2

2n−1
≤

1

(1− 4e2)t

n− 1 ≤ t log

(

1

1− 4e2

)

t ≥
n− 1

log(1/(1 − 4e2))
.

The desired machine N, on each computation path, simulates M for at most 2t+1 =
O(n) times and outputs the majority outcome. Clearly N runs in time O e(n

d+1)
with error gap G0. Q.E.D.

Let us give one immediate application of this lemma:

Theorem 3 (Ko, 1982) If NP ⊆ BPP then NP = RP.

Proof. Since RP ⊆ NP , it suffices to show inclusion in the other direction. It is
easy to see that RP is closed under polynomial-time many-one reducibility, and
hence we only have to show that the NP -complete language SAT belongs to RP .
Suppose we want to check if a given CNF formula F = F (x1, . . . , xn) on n variables
is satisfiable. For any sequence of Boolean values b1, . . . , bk (k ≤ n), let Fb1b2···bk

denote the formula F with xi replaced by bi, for i = 1, . . . , k. We show how to
construct a sequence b1, . . . , bn such that if F is satisfiable then Fb1 ···bn

is true with

362 CHAPTER 8. STOCHASTIC CHOICES

very high probability. By our assumption that NP ⊆ BPP , there is a bounded-
error probabilistic machine M accepting SAT in polynomial time. Moreover, by the
preceding lemma, we may assume that M has error gap function G0 and that M
halts on every path in polynomial time.

We shall operate in n stages. At the start of stage k (k = 1, . . . , n), inductively
assume that we have computed a sequence of Boolean values b1, . . . , bk−1. It will be
shown that Fb1,...,bk−1

is probably satisfiable. In stage k, we compute bk:

1. Call M on input Fb1 ···bk−10.
2. If M answers YES, then set bk = 0 and go to DONE.
3. Else call M on input Fb1···bk−11.
4. If M answers NO again, we answer NO and return.
5. Else set bk = 1.
6. DONE: If k < n we go to stage k + 1.
7. Else answer YES if Fb1,...,bn

= 1, otherwise answer NO.

Let us analyze this procedure. It is clearly polynomial time.
If k < n, we either terminate in stage k with a NO answer, or we proceed to

stage k + 1. If k = n, we will surely terminate in stage k with answer YES or NO,
and this answer is never in error. Thus our YES answers are never wrong. So if F
is unsatisfiable, we answer NO on every path. Thus we have zero-error rejection.

Finally, let us prove that if F is satisfiable, then our procedure answer YES with
probability > 1/2. Write Fk for Fb1 ,...,bk

, assuming that b1, . . . , bk are defined. Let
the event Ak correspond to “ no mistakes up to stage k”, i.e., Fk is defined and
satisfiable. Similarly, let event Ek correspond to “first mistake at stage k”, i.e.,
Ek = Ak−1 ∩Ak.

CLAIM: Pr(Ek) ≤ 2 · 2−|F |+1).
Proof: Note that Pr(Ek) ≤ Pr(Ek|Ak−1). We will bound Pr(Ek|Ak−1). Assuming
Ak−1, we consider 2 cases: (A) CASE Fb1 ···bk−10 is not satisfiable. Then Fb1 ···bk−11 is

satisfiable. With probability ≥ (1 − 2−|F |), M will (correctly) answer NO the first
time we invoke M. Then with probability ≥ (1 − 2−|F |), M will (correctly) answer
YES the second time. So Pr(Ak|Ak−1) ≥ (1− 2−|F |)2 and

Pr(Ek|Ak−1) ≤ 1− (1 − 2−|F |)2 ≤ 2−|F |+1).

(B) CASE Fb1 ···bk−10 is satisfiable. This case is even easier, and yields Pr(E k|Ak−1) ≤

2−|F |. This proves the claim.
To conclude the theorem, the probability of making mistake at any stage is at

most
n
∑

k=1

Pr(Ek) ≤ 2n · 2−|F |
≤ 2n · 2−2n.

This is less than 1/2 for n large enough. Hence F will be accepted. Q.E.D.
See Exercise for another proof.

8.2. HOW TO AMPLIFY ERROR GAPS 363

(III) Stochastic machines. For stochastic machines, we introduce the following
probability functions:

Definition 5
(i) P (x) := x⊗x = x2 and Q(x) := x⊕x = x(2−x). (ii) A(x) := Q(P (x)) fP (Q(x)).

x x xx

⊗

⊕⊕⊗⊗

P Q

PQ PQ

A(x)

x x

f
⊕

x x

Figure 8.2: The operator A(x)

Thus,

A(x) =
x2(2− x2) + x2(2− x)2

2
= x2(3− 2x).

These operators are extended to INT in the usual way: thus, A([u, v]) = [A(u), A(v)].
The exercises show other properties of these functions. We show that A(x) has the
following ‘amplification property’:

Lemma 4 If 0 ≤ e ≤ 1
2 , then

x 6∈ [
1

2
− e,

1

2
+ e] ⇒ A(x) 6∈ [

1

2
− e′,

1

2
+ e′]

where

e′ = e(
3

2
− 2e2).

Proof. Since dA

dx
= 6x(1−x), A(x) is monotone increasing for 0 ≤ x ≤ 1. The lemma

then follows from a calculation,

A(
1

2
+ e) =

1

2
[Q(P (

1

2
+ e)) + P (Q(

1

2
+ e))]

=
1

2
+ e[

3

2
− 2e2]

A(
1

2
− e) =

1

2
− e[

3

2
− 2e2].

364 CHAPTER 8. STOCHASTIC CHOICES

Q.E.D.
Note that the error gap has an “amplification factor” α(e) = 3

2 − 2e2 which
decreases monotonically from 3/2 to 1 as e increases from 0 to 1/2. Note that

α(1/4) =
11

8
.

So if the error bound e for a value x is less than 1/4, then the error bound for A(x)
is at least 11e/8. We conclude:

Theorem 5
Let t(n) be a time-constructible function. Then

PrTIME(t) ⊆ StTIME b(O(t)).

In particular,
PP ⊆ StTIME b(n

O(1)).

Proof. Suppose M is a probabilistic machine M that accepts in time t. Since t is
time-constructible, we can modify it always halt in time O(t) and have error gap

G(n) = [
1

2
− 2−t,

1

2
+ 2−t].

Let s = t

log(11/8) . We construct a stochastic machine N that, on input w, operates

by first ‘computing the iterated function As(x)’ (the meaning should be clear) and
then simulating M on w. One checks that N has gap at least [1

4 , 3
4]. Note that N

still runs in time O(t). Q.E.D.

8.3 Average Time and Bounded Error

Notice that we have never discuss the concept of “average time” for probabilistic
machines. We can systematically develop the concept as follows (the reader may
review the appendix for probabilistic terms used here). Let M be a fixed probabilistic
machine and TM(w) denotes the usual complete computation tree on input w. We
assume TM(w) is a full binary tree, i.e., a binary tree in which every internal node
has two children. Let T any prefix of TM(w). The augmentation T ′ of T is defined
as the smallest prefix of TM(w) that is full and contains T . Alternatively, T ′ consists
of the nodes of T plus those nodes u ∈ TM(w) whose sibling is in T . Call the nodes
in T ′ − T the augmented nodes.

We construct associate with T a probability space

(ΩT ,ΣT ,PrT)

in which the sample space ΩT comprises all complete paths of T ′. A subset of ΩT is
a basic set if it is the collection of complete paths of T ′ all sharing a common initial

8.3. AVERAGE TIME AND BOUNDED ERROR 365

prefix π; denote this set5 by BT (π). In particular, ΩT is the basic set BT (ε) where
π = ε is the empty path. Any singleton set consisting of a complete path is also a
basic set. Let Σ0

T
comprise all finite union and complement of basic sets: clearly Σ 0

T

forms a field. Let ΣT be the Borel field generated by Σ0
T
. The probability measure

PrT assigns to each basic set BT (π) the probability PrT (BT (π)) = 2−|π| where |π|
is the length of the path π. E.g., PrT (ΩT) = 20 = 1, as expected. Notice that every
element of Σ0

T
is a finite union of disjoint basic sets. Extend the definition of PrT to

sets in Σ0
T

so as to preserve finite additivity of pairwise disjoint unions. One checks
that the extension does not depend on how we partition we partition sets in Σ 0

T

into a countable union of basic sets. Finally, a theorem of Carathéodory (appendix)
gives us a unique extension of PrT to all of ΣT .

We often leave the probabilistic spaces ΩT implicit – but the student should
be able to formalize probabilistic arguments uing these spaces. We introduce three
random variables for ΩT :

Definition 6 (i) The random variable TimeT for a computation tree T is defined
as follows:

TimeT (π) =











∞ if π is infinite
|π| if π is a finite path terminating in T
0 if π is a finite path terminating in T ′ − T

where π range over all complete paths in ΩT .

(ii) The average time of T is the expected value of TimeT .

(iii) We introduce two indicator functions: Accept
T
(π) = 1 iff π ends in a YES-

node in T . HaltT (π) = 1 iff π is a finite path.

(iv) If T is the complete computation tree for an input w, we write

Timew,Accept
w
,Haltw,Ωw, etc,

for TimeT , Accept
T
, etc.

(v) A machine M accepts/rejects in average time t(n) if for all accepted/rejects
inputs w of length n,

Pr{Timew ≤ t(n),Accept
w

= 1} >
1

2
.

It runs in averate time t(n) if it is decisive and accepts and also rejects in
average time t(n).

5The reason for introducint augmented trees is to ensure that BT (π) 6= BT (π′) for π 6= π′.
Otherwise our probability space for T needs to be slightly modified.

366 CHAPTER 8. STOCHASTIC CHOICES

An equivalent definition of average time is this: the average time of a computa-
tion tree T is equal to the sum over the weights of each edge in T where an edge from
level `−1 to level ` (the root is level 0) has weight 2−`. Naturally, the probability
that M halts on w is the expected value of the random variable Haltw. If M is
halting (i.e., there are no infinite computation paths) then it halts with probability
1; the converse is false. When we use running complexity for probabilistic machines,
they are sometimes designated ‘Monte Carlo algorithms’; when average complexity
is used, they are designated ‘Las Vegas algorithms’.

We first note an observation of Gill: Every recursively enumerable language can
be accepted by a probabilistic machine with constant average time.

In proof, suppose M is a deterministic Turing machine. Without loss of generality
assume that M accepts whenever it halts. We construct N to simulate M as follows:

repeat

Simulate one step of M;
if the simulated step answers YES, we answer YES;

until head = cointoss();
if head = cointoss() then answer YES else answer NO.

Here cointoss() is a random function that returns head or tail and there are two
separate invocations of this function above. We note that if the input word is not
accepted by M then N can only reject (since the probability of N saying YES is
equal to the probability of saying NO). Hence N has zero-error rejection. If an input
word is accepted by M, then we see that the probability of its acceptance by N is
more than 1

2 since each NO path can be uniquely paired with an YES path of the
same length, but there is one YES path that is not paired with any NO path. The
average time t̄ spent in the repeat-loop satisfy the inequality

t̄ ≤ 2 +
t̄

2

where the term ‘2+’ comes from simulating a step of M and tossing a coin to decide
on continuing inside the loop (it takes no time to decide to say YES if M says YES).
Thus t̄ ≤ 4. The average time of N is at most 1 + t̄ ≤ 5 (where the ‘1’ for the final
cointoss).

Gill notes that such pathological behaviour does not happen with bounded-error
machines:

Lemma 6 Let M be a probabilistic machine accepting/rejecting with bounded-error.
There is a constant c > 0 such that if M accepts/rejects in average time t̄(n) and
accepts/rejects in time t(n) then

t̄(n) ≥
t(n)

c
.

8.3. AVERAGE TIME AND BOUNDED ERROR 367

Proof. Suppose M accepts with probability at least 1
2 + e for some 0 < e < 1

2 . (The
proof if M rejects with probability at most 1

2 − e is similar.) Choose c = 2
e
. Fix any

input of length n and let t̄ = t̄(n). If t̄ = ∞ there is nothing to prove. Otherwise,
let T be the complete computation tree. Since TimeT is non-negative, Markov’s
inequality yields

Pr{TimeT ≥ ct̄} ≤
1

c
.

On the other hand,

Pr{TimeT < ct̄,Accept
T

= 1} ≥ Pr{TimeT < ct̄} − Pr{Accept
T

= 0}

≥ (1−
1

c
)− (

1

2
− e)

≥
1

2
+

e

2
.

This proves that T , truncated below ct̄, accepts with bounded error. Q.E.D.

In view of the preceding, let

AvgTIME(t(n))

denote the class of languages accepted by probabilistic machines M where M has
bounded-error and M runs in average time t(n). Note that both properties here are
independently defined for the entire computation tree. We have thus proved:

Corollary 7 For any t(n),

AvgTIME(t) ⊆ PrTIME b(O(t)). (8.5)

As further example, we provide deterministic time upper bounds for languages
accepted in average time t(n) with bounded-error.

Corollary 8 If a bounded-error probabilistic machine M accepts with average time
t̄(n) then L(M) ∈ DTIME(O(1)t̄(n)).

Proof. We can simulate M by computing the least fixed point of a computation tree
of depth O(t̄(n)). Q.E.D.

Lemma 9 Let s(n) ≥ log n be space constructible. Let M be any nondeterministic
machine that accepts in space s. Then there is a probabilistic machine N with zero-
error that accepts L(M) in space s.

Proof. Choose c > 0 such that there are at most cs(n) configurations using space at
most s(n). Fix any input of length n and let s = s(n). First we mark out exactly s
cells. The probabilistic machine N proceeds as follows:

368 CHAPTER 8. STOCHASTIC CHOICES

repeat forever

1. Initialize M to its initial configuration.
2. Simulate M for cs steps. Nondeterministic choices of M

become coin-tossing choices of N.
3. If M answers YES in this simulation then answer YES.

(Hence, if M answers NO or does not
halt in cs steps, then we go to 1.)

end

Clearly N loops if M rejects. If M accepts then the probability that N answering
YES is easily seen to be 1. Q.E.D.

This lemma implies that probabilistic space-bounds with zero-error is as powerful
as nondeterministic space:

Theorem 10 For any space-constructible s(n) ≥ log n,

NSPACE(s) = PrSPACE 0(s) = PrSPACE 1(s).

Proof. The above lemma shows that NSPACE(s) ⊆ PrSPACE 0(s). The converse is
easy since for any probabilistic machine M with zero error, when viewed as a nonde-
terministic machine N, accepts the same language with the same space bound. We
check that the same construction applied to probabilistic one-sided error machines
in place of nondeterministic machines show PrSPACE 1(s) ⊆ PrSPACE 0(s), and
hence they are equal. Q.E.D.

This result can be generalized to log-space alternating machines, but we now
have two-sided error [25].

The simulation in the above proofs can be modified so that the simulating ma-
chine N halts with probability 1. However, N is no longer zero-error. The technique
will be introduced in section 6.

Probabilistic Simulating of Alternation. Consider how a probabilistic ma-
chine can simulate an alternating machine M. Moreover, we want our probabilistic
machine to have bounded error. Suppose C is a configuration of M and C ` (A,B).
Let TC , TA, TC denote the subtree at these nodes.

Inductively, assume that our recursive construction gives us probabilistic com-
putation trees TA′ and TB′ (rooted at A′ and B′) which emulates TA and TB (re-
spectively) with error gap

g0 = [1/4, 3/4].

This means that if A accepts, then the value of A ′ is at least 3/4 and if A rejects,
the value of A′ is at most 1/4. Similarly for B and B ′. Let us see how to carry the
induction through.

8.3. AVERAGE TIME AND BOUNDED ERROR 369

f
f

∧
C0

A
′

B
′

C

A B

5/16

C1

repeat

repeat

Figure 8.3: Simulating a ∧-configuration C.

CASE: C is a ∧-configuration. Let C0 be a f-configuration such that C0 `

(A′, B′) (see figure 8.3). Then the value at C0 has an error gap of

[5/8, 3/4].

This is because, if at least one of A ′ or B′ rejects, then value of C0 is at most
(1/4) f1 = 5/8. And if both A′ and B′ accepts, the value is at least 3/4. Then, we
‘shift’ the gap so that it is centered, by averaging it with the value 5/16. This gives
us a new gap (of half the size!)

g0 = [15/32, 17/32].

We now use majority voting to boost this gap back to at least [1/4, 3/4]. We need
to take the majority of 2k + 1 votes, where k is a constant that can be computed.

CASE: C is a ∨-configuration. In this case, C0 has error gap of

[1/4, 3/8].

Now we shift this gap by averaging it with 11/16, yielding the gap g 0 above. We
again boost it back to [1/4, 3/4].

Note that if the original tree has height h and this procedure produces a tree of
height τ(h), then

τ(h) = k(τ(h− 1) + 2) ≤ (2k)h.

Of course, we need to make this recursive transformation something that can be
carried out by a suitable probabilistic machine. This is left as an exercise. We have
thus shown:

370 CHAPTER 8. STOCHASTIC CHOICES

Theorem 11

ATIME(t) ⊆ PrTIME b(2
O(t)).

8.4 Interactive Proofs

This section introduces interactive proofs [13], Arthur-Merlin games [2].

Graph Non-Isomorphism Problem. A motivating example is the graph iso-
morphism problem: given a pair of undirected graphs 〈G0, G1〉, decide if they are
isomorphic,

G0 ∼ G1. (8.6)

Let Gn denote the set of bigraphs on the vertex set {1, 2, . . . , n}. Formally define
the languages

ISO = {〈G0, G1〉 ∈ G
2
n

: n ≥ 1, G0 ∼ G1},

NONISO = {〈G0, G1〉 ∈ G
2 : n ≥ 1, G0 6∼ G1}.

These are basically complementary languages. If π is an n-permutation (i.e., a
permutation of {1, . . . , n}), let Gπ

0 denote the graph G0 when its vertices are renamed
according to π: (i, j) is an edge of G0 iff (π(i), π(j)) is an edge of Gπ

0 . Then (8.6)
holds iff there exists π such that Gπ

0 = G1. Call π a certificate for 〈G0, G1〉 in this
case. Thus 〈G0, G1〉 ∈ ISO iff 〈G0, G1〉 has a certificate. Thus ISO has two useful
properties:
• (Succinct Certificates) x ∈ ISO iff x has a polynomial-size certificate c = π.
• (Verifiable Certificates) There is a deterministic polynomial-time algorithm V

to decide if a given c is a certificate π for a given x.

These two properties characterize languages in NP . Hence, ISO ∈ NP . It easily
follows NONISO ∈ co-NP . Unfortunately, co-NP does not have a characterization
by certificates. Although certificates are not necessarily easy to find, they are easy to
verify. In this sense, they have practical utility. We now introduce a generalizaation
of certificates which shares this verifiability property. We then show that NONISO
is verifiable in this more general sense.

Concept of Interactive Proofs. We generalize notion of verifiable certificates in
two ways: first, we allows the verifying algorithm V to be probabilistic, and second,
we allow interaction between the verifying algorithm with another algorithm called
the “prover”, denoted P . Thus there are two communicating processes (sometimes
called protocols), an interactive prover P and an interactive verifier V which
are Turing machines that send each other messages,

m0,m1,m2,

8.4. INTERACTIVE PROOFS 371

Message mi is written by V if i is even, and by P if i is odd, and these are written on
a common worktape. We assume some convention for each process to indicate that
it is done writing its message (say, by entering a special state) and for some external
agent to prompt the other process to continue. The computation ends when V
answers YES or NO. The input is originally on V ’s input tape. We require V to be
a probabilistic polynomial-time machine, but P has no computational bound (it does
not even have to be computable). Intuitively, V is sceptical about what the process
P is communicating to it, and needs to be “convinced” (with high probability). For
any input w, let Pr(V, P,w) be the probability that V accept. We assume that V
always halt, regardless of P , so that we avoid discussion of probability intervals.
Languages will be defined with respect to V alone: writing

Pr(V,w) := sup
P

Pr(V, P,w),

then the language accepted by V is

L(V) := {w : Pr(V,w) > 1/2}.

Say V has bounded-error if, to the preceding requirements, it satisfies

For all input w, Pr(V,w) ≥ 2/3 or Pr(V,w) ≤ 1/3.

The class IP comprises those languages that are accepted by bounded-error verifiers.

Interactive Verifier for Graph Non-Isomorphism. We want to describe an
interactive verifer V such that L(V) = NONISO. Here is a well-known V 0 from the
literature:

Input: string w
1. Reject unless w = 〈G0, G1〉 ∈ G

2
n
, n ≥ 1.

2. Randomly generate an n-permutation π and a binary bit b.
3. Let H ← Gπ

b
(so H ∼ Gb).

4. Send message m0 = 〈H,G0, G1〉. This message
asks P whether H ∼ G0 or H ∼ G1.

5. (Pause for P to reply with message m1)
6. If b = m1 answer YES, else answer NO.

Note that V0 concludes in two message rounds (sends and receives a message).
Assume w = 〈G0, G1〉. There are two cases to consider.
• w ∈ NONISO: We claim Pr(V0, w) = 1. To see this, suppose P0 is the prover

who sends the message m1 = c such that H ∼ Gc. Since c is unique, V0 always
answer YES, so Pr(V0, P0, w) = 1.

372 CHAPTER 8. STOCHASTIC CHOICES

• w 6∈ NONISO: We wish to claim Pr(V0, w) = 1/2. Intuitively, an “honest
prover” P0 cannot distinguish whether the answer should be H ∼ G0 or H ∼
G1. It is reasonable for P0 to flip a coin and answer m1 = 0 and m1 = 1
with equal probability. This will establish our claim. But what we have a
“dishonest prover” P1 whose goal is to mislead V0 into accepting w? P1 knows
something about about π and b it may be able to mislead V0. For instance,
if P1 knows the value of b, then it will always fool V0. How can we be sure
that such information has not leaked in our definition of message m 0? This
justification is non-trivial (see [19, p. 175]) and may be based on the so-called
Principle of Deferred Decisions.

This example points out that informal descriptions of interactive proofs (with
suggestive language such as “V is convinced”, “P knows”, etc) can be tricky to
formalize. For this reason, we prefer to use the view interactive proofs as choice
computations. The idea is this: we can combine V and P into one choice machine
denoted, loosely,

M = “V + P”,

where the states of M is the disjoint union of the states of V and P (so each state
of M may be classified as a P -state or a V -state). We will let the choice function at
each V -state q be γ(q) = f. But what about P ? We need to simulate all possible
behavior for P (recall that we define Pr(V,w) as the maximization of Pr(V, P,w)).
Fortunately, this is not hard (we can essentially make all possible choices for the
message). Furthermore, we let the choice function at each P -state q be γ(q) = ∨.
Thus M is a { f,∨}-machine. Unfortunately, there are two issues.

One issue is that, although P is powerful, it seems that we do not want it to
know about the coin tosses of V . Such a verifier is said to use “private coins”.
The formulation “M = V + P” apparently use “public coins”. As noted, the use
of public coins in V0 above would be disastrous! Verifiers with private coins seems
more powerful. It turns out, for polynomial-time computations, a verifier with
private coins can be simulated by one with public coins, at the cost of of two extra
rounds [14]:

IP [k] ⊆ AM [k + 2]. (8.7)

The parameters k and k + 2 bound the number of message rounds; the full expla-
nation for this notation is given below,

The second issue is this: the 0/1-message m1 returned by the prover does not
seem to be easily modeled by f- and ∨-choices alone. The ability to pass a 0/1-
message from P to V seems more powerful than simply allowing V to ask P ques-
tion and receiving a YES/NO answer (Why?). For instance, V upon receipt of
the Boolean message m1, can trivially compute the negation of m1. But a { f,∨}-
computation cannot trivially negate the value at a node. Thus it seems we need
a { f,∨,¬}-machine (equivalently, a { f,∨,∧}-machine) to efficiently simulate an
interactive proof. But this would make the interactive prover for NONISO uninter-
esting (NONISO is trivially accepted by a ∧-machine in polynomial-time.) It turns

8.4. INTERACTIVE PROOFS 373

out ¬ can be avoided, but this is a non-trivial result. We will next avoid these
complications of interactive proofs by using the Arthur-Merlin formulation of Babai
and Moran. The advantage, besides its simplicity, is the direct connection to choice
computation (which, as the previous chapter shows, has clean semantics).

Arthur-Merlin Games. Let M be an { f,∨}-machine, and π = (C0, C1, . . . , Cm)
be a computation path of M. A subpath

π′ = (Ci, Ci+1, . . . , Cj), (1 ≤ i ≤ j ≤ m)

is called a f-round (or Arthur round) if it contains at least one f-configuration
but no ∨-configurations. Notice that π ′ could contain deterministic configurations.
Similarly, π ′ is called a ∨-round (or Merlin round) if we interchange f and ∨.
We say π has k rounds if π can be divided into k subpaths,

π = π1;π2; · · · ;πk (k ≥ 1)

where “;’ denotes concatenation of subpaths such that πi is an Arthur round iff
πi+1 is a Merlin round. Note that k is uniquely determined by π. The definition
generalizes in a natural way to k = 0 and k =∞. We say M is a k-round Arthur-
Merlin game if

• M has bounded error and runs in polynomial time

• every computation path of M has at most k rounds in which the first round
(if any) is an Arthur round

A k-round Merlin-Arthur game is similarly defined, with the roles of Arthur
and Merlin interchanged. Let

AM [k] = {L(M) : M is an Arthur-Merlin game with at most k rounds}

The class MA[k] is similarly defined using Merlin-Arthur games instead. Of course,
we can generalize this to AM [t(n)] and MA[t(n)] where t(n) is a complexity function.

We can identify6 Arthur with the verifier V , and Merlin with the prover P , of
interactive proofs. We can similar define the classes IP [k] and IP [t(n)] accepted by
interactive proofs in k or t(n) rounds. This is the notation used in (8.7).

Arthur-Merlin Game for Graph Non-Isomorphism. The new idea for check-
ing non-isomorphism is as follows: let G 0, G1 ∈ Gn. For simplicity, first assume that
Gi (i = 0, 1) has only the trivial automorphism (i.e., Gπ

i
= Gi iff π is the identity

permutation). Consider the set

′
LIKE(G0, G1) = {H : H ∼ G0 or H ∼ G1}.

6Here, as in the legend of King Arthur, the magician Merlin is more powerful than Arthur.

374 CHAPTER 8. STOCHASTIC CHOICES

Then |LIKE′(G0, G1)| is either n! or 2n!, depending on whether G0 ∼ G1 or not.
If we randomly pick H ∈ Gn, then there is some constant c such that Pr[H ∈

LIKE′(G0, G1)] is c or 2c, depending on whether G0 ∼ G1 or not. This probabilistic
may be the basis for recognizing NONISO. However, the constant c is exponentially

small in n since |Gn| = 2(
n

2) n!. We need to modify this gap so that the constant c
does ot depend on n. The idea is to map Gn into a smaller set of size Θ(n!). The
following technical lemma will be useful. To avoid interrupting the flow, we leave
the proof to an exercise.

Lemma 12 (Boppana) Let B be a n×m Boolean matrix, and let

hB : {0, 1}m → {0, 1}n

be defined by hB(x) = B · x where all arithmetic is modulo 2. A random linear
function hB is obtained randomly and independently selecting the entries of B. Let
C ⊆ {0, 1}m and hB(C) = {hB(x) : x ∈ C}. If c = |C|/2m ≤ 1 and z is randomly
chosen from {0, 1}n, then

Pr[z ∈ h(C)] ≥ c−
c2

2
.

The next idea is to get rid of the assumption that G i has only the trivial automor-
phism. We now define LIKE(G0, G1) by tagging each member H of LIKE′(G0, G1)
with an automorphism:

LIKE(G0, G1) = {〈H,π〉 : π is an automorphism of H,H ∼ G0 or H ∼ G1}.

Using some elementary facts of group theory, we may verify (Exercise) that |LIKE(G 0, G1)| =
n! or 2n!.

We are now ready for the proof of the following result:

Theorem 13 NONISO ∈ AM [2].

Proof. Let us assume each element of Gn is given by a string in {0, 1}(
n

2). Let
p(n) = dlg(n!)e+2, z be a random element of {0, 1}p(n) and B be a random

(

n

2

)

×p(n)
Boolean matrix. If G0 6∼ G1, then by lemma 12,

Pr[z ∈ hB(LIKE(G0, G1))] ≥ c(1−
1

2
)

where c = 2n!/2p(n). Since 1
4 < c ≤ 1

2 , we conclude that

Pr[z ∈ hB(LIKE(G0, G1))] ≥ 3c/4.

However, if G0 ∼ G1, then |hB(LIKE(G0, G1))| ≤ n! and

Pr[z ∈ hB(LIKE(G0, G1))] ≤
n!

2p(n)
= c/2.

This gives rise to the following AM [2]-game:

8.5. MARKOV CHAINS AND SPACE-BOUNDED COMPUTATION 375

Input: 〈G0, G1〉 ∈ G
2
n
.

1. Randomly choose B and z, as above.
2. Existentially choose a bit b, H ∈ Gn and two n-permutations π, σ.
3. Answer YES iff Hπ = H and Hσ = Gb.

This game has probability gap [c/2, 3c/4]. We have to modify the game so that this
gap into one that is an error gap, i.e., centered about 1

2 . Note that for each n, we
can determine a suitable value e = e(n) (0 < e < 1) such that [c/2 fe, 3c/4 fe] is
an error gap. By majority vote, we can boost this error gap to [1/3, 2/3]. We leave
the details to an exercise. Q.E.D.

Note that using (8.7) and the original interactive verifier V 0, we can infer that
NONISO ∈ AM [4]. Hence this proof yields a stronger result. A survey on interactive
proofs may be found in [23].

8.5 Markov Chains and Space-bounded Computation

We want to study computations by space-bounded probabilistic machines. The
behavior of such computations can be analyzed in terms of finite7 Markov chains.
We develop the needed results on Markov chains (see also the appendix in this
chapter). For further reference on Markov chains, see [16, 10].

The main result of this section is

Theorem 14 For all s(n) ≥ log n,

PrSPACE(s) ⊆ DSPACE(s2)

Notice that this result is yet another strengthening of Savitch’s theorem! We fol-
low the proof of Borodin, Cook and Pippenger [5]; Jung [15] independently obtained
the same result using different techniques8. This result improves earlier simulations
by Gill [12] (which uses exponential space) and by J. Simon [27] (which uses s(n) 6

space).
A sequence of non-negative real numbers (p1, p2, . . . , pi, . . .) is stochastic if the

sum
∑

i≥1 pi = 1; it is substochastic if
∑

i≥1 pi ≤ 1. A matrix is stochastic (resp., sub-
stochastic) if each row is stochastic (substochatic). In general, stochastic sequences
and stochastic matrices may be denumerably infinite although we will only consider
finite matrices. An n-state Markov process (or Markov chain) is characterized by
an n × n stochastic matrix A = (pi,j)

n

i,j=1. Call A the transition matrix. The
states of A will be called Markov states, as distinguished from machine states. We
interpret this chain as an n-state finite automaton where p i,j is the probability of

7i.e., discrete time, homogeneous Markov processes, with finitely many states.
8Borodin, Cook and Pippenger uses redundant arithmetic techniques while Jung uses modular

arithmetic techniques. Borodin, Cook and Pippenger states the result in a stronger form (in terms
of circuit depth, see chapter 10), but it has essentially the proof to be presented here.

376 CHAPTER 8. STOCHASTIC CHOICES

going from state i to state j. For any integer k ≥ 0, the kth power Ak = (p
(k)
i,j

)n
i,j

of

A is defined inductively: A0 is the identity matrix and Ak+1 = A ·Ak. It is easy to
check the product of stochastic matrices is stochastic; hence each Ak is stochastic.

Clearly p
(k)
i,j

denotes the probability of a transition from state i to state j in exactly
k steps.

Markov states admit a straight forward combinatorial classification. From the
transition matrix A = (pi,j)

n

i,j=1 of the Markov chain, construct the Boolean matrix
B = (bi,j)

n

i,j=1 where bi,j = 1 iff pi,j > 0. We view B as the adjacency matrix of a
directed graph GA, called the underlying graph of the matrix A. We may form the
transitive closure B∗ = (b∗

i,j
)n
i,j=1 of B (see chapter 2, section 6). As usual, define

states i and j to be strongly connected if

b∗
i,j

= b∗
j,i

= 1.

This is easily seen to be an equivalence relationship and the equivalence classes form
the (strongly connected) components of GA. These strongly connected components
in turn are related by the reachability relation: if C and C ′ are components, we say
C can reach C ′ if there are states i ∈ C and j ∈ C ′ such that b∗

i,j
= 1. It is easy

to see that this definition does not depend on the choice of i and j. Furthermore,
if C can reach C ′ and C ′ can reach C then C = C ′. Thus the reachability relation
induces an acyclic graph F on the components where F has an edge from C to C ′

iff C can reach C ′. Those components C that cannot reach any other components
are called essential components and the states in them known as essential states.
The other components are called inessential components and their members known
as inessential states.9 We say state i is absorbing if pi,i = 1. Such a state is clearly
essential and forms a component by itself. A Markov chain is absorbing if all essential
states are absorbing.

The above classification depends only on the underlying graph GA. Let us now
classify states by their stochastic properties. These notions properly belong to a
subarea of probability theory called renewal theory. We introduce an important

concept in renewal theory: let f
(n)
i,j

denote the probability that, starting from state

i, we enter state j for the first time after n steps. We call these f
(n)
i,j

the first entrance

probabilities. Write f
(n)
i

for f
(n)
i,i

. It is not hard to see that for n = 1, 2, . . .,

f
(n)
i,j

= p
(n)
i,j
−

n−1
∑

k=1

f
(k)
i,j

p
(n−k)
j,j

9The reader should be aware that the classification of Markov states are not all consistent in
the literature. The essential/inessential distinction is due to Chung [7]. His terminology is justified
in the sense that every chain has at least one essential component; but it also seems to reflect
an attitude in probabilistic theory that the most interesting phenomena occur in the essential
components. This is unfortunate because we will see that the inessential components are more
interesting for us!

8.5. MARKOV CHAINS AND SPACE-BOUNDED COMPUTATION 377

or,

p
(n)
i,j

=
n
∑

k=0

f
(k)
i,j

p
(n−k)
j,j

(8.8)

where we conventionally take

f
(0)
i,j

= 0, p
(0)
i,j

= δi,j .

Here δi,j is Kronecker’s delta function that assumes a value of 1 or 0 depending on
whether i = j or not. The sum

f∗
i,j

=
∞
∑

n=1

f
(n)
i,j

clearly denotes the probability of ever reaching state j from i. Let f ∗
i

abbreviate
f∗

i,i
. We now define a state to be recurrent if f ∗

i
= 1 and nonrecurrent if f ∗

i
< 1.

Lemma 15 An inessential state is nonrecurrent.

Proof. By definition, if state i is inessential, there is a finite path from i to some
state outside the component of i. Then f ∗

i
≤ 1− c where c > 0 is the probability of

taking this path.
Q.E.D.

The converse does not hold in general (Appendix and Exercise). But in the
case of finite Markov chains, essential states are recurrent. To show this result, we

proceed as follows: let g
(n)
i,j

denote the probability of the event G
(n)
i,j

that starting

from state i we will visit state j at least n times. Note that G
(n+1)
i,j

⊆ G
(n)
i,j

and so
we may define the limit

gi,j := lim
n→∞

g
(n)
i,j

= Pr(
∞
⋂

n=0

G
(n)
i,j

).

It is not hard to see that gi,j is the probability that starting from state i we visit
state j infinitely often. Again, let g i,i be abbreviated to gi.

Lemma 16
(i) gi = 1 or 0 according as i is recurrent or not.
(ii) In a finite Markov chain, essential states are recurrent.

Proof. (i) Note that

g
(n+1)
i

= f∗
i
g
(n)
i

.

Since g
(1)
i

= f∗
i
, we get inductively

g
(n+1)
i

= (f∗
i
)n.

378 CHAPTER 8. STOCHASTIC CHOICES

Taking limits as n→∞, we see that gi = 1 if f ∗
i

= 1 and gi = 0 if f ∗
i

< 1.

(ii) Let E
(n)
i

be the event that starting from state i, there are no returns to state i
after n steps. Clearly

E
(1)
i
⊆ E

(2)
i
⊆ · · ·

and Ei :=
⋃

n≥0 E
(n)
i

is the event that there are only finitely many returns. But

Pr(E
(n)
i

) ≤ 1− e

where e > 0 is the minimum probability that any state in the component of i can
get to state i. (To see this,

Pr(E
(n)
i

) =
∑

j

p
(n)
i,j

(1− f∗
j,i

) ≤ (1− e)
∑

j

p
(n)
i,j

which is at most 1 − e.) Hence Pr(Ei) ≤ 1 − e < 1. But gi = 1 − Pr(Ei). Hence
gi > 0 and by part (i), gi = 1. This means state i is recurrent. Q.E.D.

We now see that for finite Markov chains, the combinatorial classification of es-
sential/inessential states coincides with the stochastic classification of recurrent/nonrecurrent
states. The appendix describe some refined classifications.

The stochastic completion of A = (pi,j)
n

i,j=1 is the matrix A∗ = (p∗
i,j

)n
i,j=1 where

p∗
i,j

=
∞
∑

k=0

p
(k)
i,j

with the understanding that the sum is ∞ when it diverges. The completion oper-
ation is defined even if A is not a stochastic matrix.10

The entries of A∗ has this natural interpretation:

Lemma 17
(i) p∗

i,j
is the expected number of steps that the automaton spends in state j if it

started out in state i.
(ii) Furthermore, if j cannot return to itself in one or more steps then p∗

i,j
is the

probability that the automaton ever enters state j.

Proof. Interpretation (i) follows when we note p
(n)
i,j

is the expected fraction of time
that the automaton spends in state j during nth unit time period, assuming that it
started out in state i. For (ii), under the stated assumptions on state j, we see that

p
(n)
i,j

= f
(n)
i,j

and hence p∗
i,j

= f∗
i,j

. Q.E.D.

10The terminology is from in [5]. The notation p∗

i,j is not to be confused with the limiting value

of p
(k)
i,j

as k → ∞. Unfortunately, a stochastic completion is no longer a stochastic matrix. This is

obvious from the interpretation of p∗

i,j as the expected number of steps in state j.

8.5. MARKOV CHAINS AND SPACE-BOUNDED COMPUTATION 379

Let us introduce the following generating functions (see appendix) for state i:

Fi(s) :=
∞
∑

n=0

f
(n)
i

sn

Gi(s) :=
∞
∑

n=0

p
(n)
i

sn

Using the relation (8.8), we see that

Gi(s)− 1 = Fi(s)Gi(s)

or,

Gi(s) =
1

1− Fi(s)

Now if we take the limit as s→ 1−, the left hand side approaches p∗
j,j

and the right

hand side approaches 1
1−f

∗

j

. This proves

Lemma 18

p∗
j,j

<∞ ⇐⇒ f∗
j

< 1.

To relate this to other values of p∗
i,j

, we have

Lemma 19

p∗
i,j

= δi,j + f∗
i,j

p∗
j,j

.

Proof.

p∗
i,j

=
∞
∑

n=0

p
(n)
i,j

= δi,j +
∞
∑

n=1

n
∑

k=1

f
(k)
i,j

p
(n−k)
j,j

= δi,j +
∞
∑

k=1

f
(k)
i,j

∞
∑

n=k

p
(n−k)
j,j

= δi,j +
∞
∑

k=1

f
(k)
i,j

∞
∑

n=0

p
(n)
j,j

= δi,j + f∗
i,j

p∗
j,j

Q.E.D.

380 CHAPTER 8. STOCHASTIC CHOICES

Corollary 20 For all i, j, if f ∗
i,j

> 0 then

p∗
i,j

<∞ ⇐⇒ p∗
j,j

<∞.

We need one more basic fact [16].

Lemma 21 Let A be a square matrix such that An → 0 as n→ 0, i.e., each entry
of the nth power of A approaches zero as n approaches infinity. Then the matrix
I − A is nonsingular where I is the square matrix with the same dimensions as A.
Moreover the infinite sum

∞
∑

n=0

An

converges, and this sum is given by

(I −A)−1 =
∞
∑

n=0

An.

Proof. We begin with the identity

(I −A)(I + A + A2 + · · ·+ An) = I −An+1.

Now the right hand side approaches I for large n. So for sufficiently large n, det(I−
An+1) 6= 0. This means det(I − A) det(I + A + · · · + An) 6= 0. Thus I − A is
nonsingular, as asserted. So we may multiply both sides of the identity on the left
with (I −A)−1, giving a new identity

(I + A + A2 + · · ·+ An) = (I −A)−1(I −An+1).

Now as n → ∞, the left hand side approaches the infinite sum of the lemma and
the right hand side approaches (I − A)−1. Since the right hand side approaches a
definite limit, so the left hand side approaches the same limit. Q.E.D.

For any transition matrix A, let B be obtained by deleting the rows and columns
of A corresponding to essential states. Following Kemeny and Snell, we call B the
fundamental part of A. Note that B is a substochastic matrix. Then after permuting
the rows and columns of A, we have

A =

(

B T
0 C

)

where ‘0’ denotes a matrix of zeroes of the appropriate dimensions. Moreover, the
nth power of A is

An =

(

Bn Tn

0 Cn

)

8.5. MARKOV CHAINS AND SPACE-BOUNDED COMPUTATION 381

where Bn, Cn are the nth powers of B,C (respectively) and Tn is some matrix whose
form need not concern us. Hence, the stochastic completion

A∗ =

(

B∗ T∗

0 C∗

)

where B∗, C∗ are the stochastic completions of B,C (respectively). In our applica-
tions, we only need B∗. Note that the entries in C ∗, T∗ are 0 or∞, by what we have
proved.

From the above development, the entries p
(n)
i,j

in Bn satisfy the property
∑∞

n=0 p
(n)
i,j

<

∞. This means p
(n)
i,j
→ 0 as n → ∞. Hence Bn → 0 as n → ∞ and the preceding

lemma shows that B∗ converges to (B − I)−1. Hence computing B∗ is reduced to
the following:

Theorem 22 Let A be the transition matrix of an absorbing chain. The stochastic
completion of the fundamental part B of A can be computed in deterministic space
log2 n where B is n by n and each entry of B are rational numbers represented by a
pair of n-bit binary number.

The proof of this theorem requires several preparatory results that are interesting
in their own right. Therefore we defer it to the next section. We are now ready
to prove the main result (theorem 14) of this section. Although we only compute
the fundamental part B∗, with a bit more work, one can compute all the remaining
entries of the stochastic closure in the same complexity bounds (see [5]).

Proof of main result (theorem 14). Basically the proof amounts to reducing a
space-bounded probabilistic computation to computing the stochastic closure of the
fundamental part of an absorbing Markov chain.

Let M be a probabilistic machine accepting in space s(n). We analyze the
probability of M accepting an input w by considering the Markov chain whose
(Markov) states correspond to those configurations of M on w using space at most
s(|w|). We introduce an extra Markov state. Number these Markov states from
1 to r, where we may assume that Markov state 1 is the initial configuration on
input w, and r is the extra Markov state (viewed as a NO-configuration of M). The
corresponding transition matrix is A = (p i,j)

r

i,j=1 where

pi,j =















































1
2 if configuration i non-uniquely derives configuration j

(i.e., i ` (j, k) for some k 6= j)

1 if either configuration i uniquely derives j, i.e., i ` (j, j)
or if i = j and i is terminal

0 else.

382 CHAPTER 8. STOCHASTIC CHOICES

This is not quite all: how shall we treat state i if i ` (j, k) where j and/or k
uses more than s(|w|) space? Now assign for such an i, pi,r = 1

2 or 1, depending on
whether one or both of j, k use more than s(|w|) space.

We derive from A an absorbing Markov chain with transition matrix B as follows:
say a Markov state in A is useful if it is has a path to a YES-state. Clearly useful
states are inessential, but some inessential states may not be useful. In B, we retain
all the useful states of A and also their transition probabilities among themselves.
We renumber the useful Markov states from 1 to some m− 1 (m < r). In addition
to the m−1 useful states inherited from A, B has two essential states, m and m+1.
Basically, we collapse all essential YES-states into m and the remaining states in A
(essential or not) are collapsed into m + 1. States m and m + 1 are both absorbing.
More precisely, for each useful state i = 1, . . . ,m − 1, if the sum of the transition
probabilities into the YES-states is p then we set the (i,m+1)th entry [B] i,m := p. If
the sum of the transition probabilities from i to the non-YES and non-useful states
is q then we make [B]i,m+1 = q. Also, we have

[B]m,m = [B]m+1,m+1 = 1

We do one more small transformation: let now C be the matrix that is identical to
B except that

[C]m,m = 0, [C]m,m+1 = 1.

So state m is now a transient state. For future reference, call C the reduced transition
matrix (for input w). If D is the fundamental part of C (obtained by deleting the
last row and last column of C) then by theorem 22, we can compute the stochastic
completion D∗ in O(log2 m) space. Now m is O(1)s(|w|) and hence O(log2 m) = O(s2)
space suffices.

Our ‘interpretation’ (lemma 17) of the entries of a stochastic completion suggests
that the entry [D∗]1,m is the probability that starting out in state 1 we reach m (since
state m cannot return to itself in 1 or more steps, by construction). It is instructive
to carry out the proof that [D∗]1,m is indeed the least fixed point value Val ∆(w)
where ∆ is the set {1, . . . , r} of configurations that uses space at most s(|w|). A
valuation V on ∆ amounts to an r-vector V = (v1, . . . , vr) where vi is the value of
configuration i. (We may assume here that the values vi are real numbers in [0, 1]
rather than intervals.) The valuation operator τ∆ is the linear transformation given
by the transition matrix A, and τ∆(V) is equal to A · V T (V T is the column vector
obtained by transposing V). Let V0 = τ∆(V⊥) be the row vector that assigns a 1
to the YES state and a zero to the NO state. (Note that V0 is not stochastic in
general.) The valuation τ n

∆(V0) is given by Vn = An · V T

0 . We conclude: Val∆(w)
is the limiting value of the first component of An · V T

0 , as n → ∞. Alternatively,
if the set of YES-configurations are S ⊆ ∆, then Val ∆(w) is the limiting value of
∑

i∈S
[An]1,i.

It is not hard to see that our transformation of A to B does no harm and we
have a slightly simpler picture: Val ∆(w) is given by the limiting value of [B n]1,m

8.6. EFFICIENT CIRCUITS FOR RING OPERATIONS 383

(Exercises).
The transformation from B to C is less obvious. Let us compare their nth

powers, Bn and Cn, for each n ≥ 0. The first m − 1 columns of both powers are
seen to be identical. We claim that the first m− 1 entries in the mth column of B n

is equal to the corresponding entry in the sum
∑

n

i=1 Ci: for each j = 1, . . . ,m− 1,
and for all n ≥ 0, [Bn]j,m =

∑

n

`=1[C
`]j,m. In proof, this is clearly true for n = 1.

For n ≥ 1, we have

[Bn+1]j,m =
m
∑

k=1

[Bn]j,k[B]k,m

= [Bn]j,m[B]m,m +
m−1
∑

k=1

[Bn]j,k[B]k,m

= [Bn]j,m +
m−1
∑

k=1

[Cn]j,k[C]k,m

= [Bn]j,m + [Cn+1]j,m

=
n+1
∑

`=1

[C`]j,m

This essentially gives us the theorem.
There are several other details that we must defer to the next section: in par-

ticular we cannot afford to explicitly store the matrices A or C. Instead, they
are represented ‘procedurally’ in the sense that each entry of such matrices can be
obtained by invoking suitable subroutines. For instance, this means that our ‘ap-
plication’ of theorem 22 is really not in the form as stated. We need to show that
the techniques implicit in that theorem can be modified to accomodate the implicit
representation of C. Another clarification is needed: to form matrix C, we need to
determine the useful states in A (one efficient way to detect such states uses the the
original Savitch’s theorem technique). Modulo these details, we are done with the
proof. Q.E.D.

8.6 Efficient Circuits for Ring Operations

By an algebraic structure we means a set A together with a finite set of partial
functions fi (i = 1, . . . , k) of the form

fi : Aα(i)
→ A

where α(i) ≥ 0 are integers called the arity of fi. We call fi a constant if α(i) = 0
and in this case, fi is identified with an element of A. We write (A; f1, . . . , fk)
for the algebraic structure. This is abbreviated to ‘A’ when the functions f i are
understood. In general, by an operation f over an algebraic structure A we mean a
partial function f : Am → A for some m ≥ 0, where m is called the arity of f .

384 CHAPTER 8. STOCHASTIC CHOICES

Example 2 a) Of course, for any set A, there is the trivial algebraic structure on
A which no functions at all.
b) The integers Z = {0,±1,±2, . . .} with the usual operations (+, −, × and 0, 1) is
an algebraic structure. It is, in fact, a unitary commutative ring (see below).
c) The rational numbers Q, with the operations of Z but also including the division
÷ operation, is an algebraic structure called a commutative field. Here division is a
partial function since division by zero is not defined.
d) The set of all n-square matrices with entries from Q forms a matrix ring with the
usual matrix operations of +, − and ×.
e) Consider the Boolean algebra on two elements ({0, 1};∨,∧,¬, 0, 1) where ∨,∧,¬
are interpreted as the usual Boolean operations.
f) A class of finite rings is Z n = {0, 1, . . . , n − 1} with usual arithmetic operations
modulo n. In case n is a prime, Z n is a field, also called GF (p). The case GF (2)
has special interest.

We are mainly interested in computing over various unitary commutative rings
R, henceforth simply called ‘rings’11. Our goal is to show how operations in common
rings can be implemented efficiently. A computational model that is appropriate for
algebraic structures is circuits.

The following definitions gather most of our notations and terminology related
to circuits in one place. It will serve as reference beyond just the immediate concern
of this section.

Definition 7 Let (A; f1, . . . , fk) be an algebraic structure.

(i) Any set Ω of operations over A obtained by functional composition from f1, . . . , fk

is called a basis of A. In general Ω may have infinite cardinality.

(ii) A circuit C for A over the basis Ω a finite directed acyclic graph (called the
underlying graph of C) with the following properties: A node with indegree 0
is called an input node, and if there are n input nodes, we label each with a
distinct integer between 1 and n. The remaining nodes are called gates and
are each labeled by a basis function f ∈ Ω. If a gate is labeled by f , we say its
type is f or, equivalently, it is called an f -gate. Each f -gate u has indegree
exactly equal to the arity α(f) of f . Furthermore the incoming edges to u are

11Commutative rings are simply algebraic structures satisfying certain axioms. The student
unfamiliar with rings simply need remember two main examples of such structures given above:
the integers Z and the set of n-square matrices with rational number entries. So a ring comes
with the five total operation +,−,×, 0, 1 with the usual properties (inverse relation between plus
and minus, associativity, commutativity, distributivity, and properties of 0 and 1) are satisfied. If
one writes down these properties, they would constitute an axiomatization of unitary commutative
rings (it is a good exercise to try this and compare your results with a standard algebra book).
Here ‘unitary’ serves to to warn that, in general, rings are defined without assuming the existence
of element 1.

8.6. EFFICIENT CIRCUITS FOR RING OPERATIONS 385

labeled with distinct integers between 1 and α(f). So we may speak of the jth
incoming edge of u for j = 1, . . . , α(f).

(iii) Each node u of a circuit C is said to compute the function

ResultC(u) : An
→ A

defined as follows: an input node u labeled by i computes the projection func-
tion ResultC(u)(x1, . . . , xn) = xi. An f -gate u computes the function

ResultC(u)(x) = f(ResultC(u1)(x), . . . ,ResultC(um)(x))

where x = (x1, . . . , xn) and the ith incoming edge of u leads from node uj

(j = 1, . . . ,m), m is the arity of f .

(iv) A circuit family (over the basis Ω) is an infinite sequence of circuits C =
(Cn)∞

n=0 such that each Cn is an n-input circuit over Ω.

(v) A problem instance of size n (over A) is a set Pn of functions g : An → A
(so each g ∈ Pn has arity n). An aggregate problem P = (Pn)∞

n=0 over A
is an infinite sequence of problem instances Pn, each Pn of size n. When no
confusion arises, we may omit the qualification ‘aggregate’. Often, Pn = {fn}

is a singleton set, in which case we simply write P = (fn)n≥0.

(vi) Let Pn be a problem instance of size n over A. A circuit C over A is said to
solve or realize Pn if if C has n inputs and for each g ∈ Pn, there is a node
u ∈ C such that ResultC(u) = g. A circuit family C = (Cn)∞

n=0 is said to
solve a problem P = (Pn)∞

n=0 if Cn solves Pn for each n.

(vii) The size of a circuit C is the number of gates in the circuit12. The size of a
circuit family C = (Cn)∞

n=0 is the function SIZE
C

where SIZE
C
(n) is the size

of Cn.

(viii) Two other complexity measures for circuits are as follows: the depth of C is
the length of the longest path in C. The width of C is the maximum cardinality
of an edge anti-chain13 in C. As for the size-measure, we let DEPTH

C
(n)

and WIDTH
C
(n) denote the depth and width of Cn, where C = (Cn)n≥0.

(ix) For any problem instance Pn, let SIZE (Pn) denote the smallest sized circuit
that realizes Pn. If P = (Pn)n≥0 is an aggregate problem, the size function
SIZEP is the function given by SIZEP (n) = SIZE(Pn). Similarly for

DEPTH (Pn),WIDTH (Pn),DEPTH P ,WIDTH P .

12It is unfortunate that we have to use the word ‘size’ for problem instances as well as for circuits,
both of which appear in the same context. Since the usage is well accepted and there seems to be
no better alternative, we will continue this usage. But for emphasis, we could say ‘circuit size’ or
‘problem size’.

13An edge anti-chain in a directed acyclic graph is a set of edges such that no two edge in the set
belongs to a common path. Of course, one can define node anti-chain as well.

386 CHAPTER 8. STOCHASTIC CHOICES

(x) For any complexity function f(n), let SIZE (f) denote the family of aggregate
problems {P : ∀n,SIZEP (n) ≤ f(n)}. Similarly for DEPTH (f),WIDTH (f).
We can extend this to simultaneous measures, for instance SIZE −DEPTH −
width(f1, f2, f3).

(xi) For any non-negative integer k, a circuit family C is said to be NC k if SIZE
C
(n) =

nO(1) and DEPTH
C
(n) = O(logk n). An aggregate problem is said to be NC k

if it can be realized by an NC k circuit family.

Remark: We are often interested in problems for which there is really no prob-
lem instances of size n for certain values of n (e.g., multiplying square Boolean
matrices only has interesting input sizes of the form 2n2). In these cases, we ar-
tificially create the trivial problem instance of size n, such as the identically zero
function of arity n. Also, the above definition of circuits do not allow constant values
as inputs. The definition can trivially be changed to accommodate this.

We are mainly interested in circuits for two types of algebraic structures: (a)
where A is a ring and (b) where A = {0, 1} is the Boolean algebra in the above
example. We call a circuit for A an arithmetic circuit or a Boolean circuit in cases
(a) or (b), respectively.

8.6.1 The Parallel Prefix Problem.

We begin with a basic but important technique from Ladner and Fischer [18] for the
so-called parallel prefix problem. In this problem, we assume that we are given an
algebraic structure (A; ◦) where the only operation ◦ is a binary associative operation
(which we will call ‘multiplication’ or ‘product’). As is usual with multiplicative
notations, when convenient, we may write xy and

∏

n

i=1 xi (respectively) instead of
x ◦ y and x1 ◦ x2 ◦ · · · ◦ xn. We call a circuit over such an A a product circuit. The
parallel prefix problem instance (of size n ≥ 0) amounts to computing the set of n
functions

fi(x1, . . . , xn) := x1 ◦ x2 ◦ · · · ◦ xi, for each i = 1, . . . , n.

We may call these fi’s the set ‘iterative-◦ functions’ (on n variables). We shall apply
this in two cases: where ◦ is addition and where ◦ is multiplication in a ring. Then,
we call parallel prefix the iterative addition and iterative multiplication problems,
respectively.

Lemma 23 There is a recursive construction of a family of product circuits (Cn)∞
n=0

of linear size and logarithmic depth that solves the parallel prefix problem.

Proof. We may assume that n is a power of 2. C1 is trivial, consisting of just an input
node for x1. So let n > 1. The following figures shows the recursive construction of
Cn from Cn/2:

8.6. EFFICIENT CIRCUITS FOR RING OPERATIONS 387

· · ·

1 2 3 4 5 6 n−2 n−1 n· · ·

s s s s s@@ @@ @@ HHH
HHH

s s s@@ @@ @@
HHH

Cn/2

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

· · ·

· · ·

Figure 8.1 Construction of Cn (‘•’ indicates a gate)

In this figure, the edges of the circuit are implicitly directed downwards. It is
easy to see that the size s(n) of a circuit Cn satisfies the relation s(1) = 1 and
s(n) = s(n/2) + n − 1. The solution is s(n) = 2n − log n − 2. The depth of Cn is
also easily seen to be 2 log n. Q.E.D.

8.6.2 Detecting Useless Markov States.

Recall in the previous section, in the context of a Markov chain whose nodes are
machine configurations, we define a Markov state to be useless if it cannot reach
a YES-configuration. To detect such useless states, we can formulate the following
general problem: given the adjacency matrix of a digraph G, we want to deter-
mine its “useless nodes”, defined to mean that those nodes that cannot reach a
distinguished node in G.

Lemma 24 There is an NC 2 Boolean circuit family which computes, on any input
n by n matrix An which represents the adjacency matrix of directed graph, the set
of 0/1-functions {fi : i = 1, . . . , n} where fi(An) = 1 iff i cannot reach node n.

Proof. This is rather straight forward: we can compute the products of Boolean
matrices in NC 1. The transitive closure of An is given by (An)m for any m ≥ n.
By the usual doubling method, the transitive closure is obtained by log n matrix
multiplications, hence by NC 2 circuits. Finally a node i can reach node n if and
only if A∗(i, n) = 1. Q.E.D.

388 CHAPTER 8. STOCHASTIC CHOICES

8.6.3 Computing the characteristic polynomial.

The determinant of an n× n matrix A = (ai,j) can be expanded by its ith row (for
any i) in the standard fashion:

det(A) = ai,1Di,1 + ai,2Di,2 + · · ·+ ai,nDi,n

where (−1)i+jDi,j is the determinant14 of the (n − 1)-square matrix obtained by
deleting the ith row and the jth column of A. Di,j is called the (i, j)-cofactor (or
(i, j)-complement) of A. Let the adjoint adj(A) of A be the n × n matrix whose
(i, j)th element [adj(A)]i,j is the (j, i)-cofactor of A (notice the transposition of
subscripts i and j). It is not hard to see that15 that the following is valid for all A:

A · adj(A) = adj(A) ·A = det(A) · I

(We only have to see that the off-diagonal elements of A · adj(A) are of the form

ai,1Dj,1 + ai,2Dj,2 + · · ·+ ai,nDj,n

where i 6= j. But this sum is also seen to be zero since it is the determinant of
the singular matrix obtained by replacing the jth row of A with the ith row. On
the other hand, the diagonal entries are equal to det(A), which may be zero if A is
singular.) The characteristic polynomial PA(x) of A is the determinant

PA(x) := det(xIn −A)

= xn + λ1x
n−1 + · · ·+ λn−1x + λn

where In is the n × n identity matrix. (We will omit the subscript in I n when
convenient.) A fundamental identity is the Cayley-Hamilton theorem (Exercises)
that states that A is a root of the polynomial PA(x)

PA(A) = An + λ1A
n−1 + · · · + λn−1A + λnI = 0.

Our goal is to develop a space-efficient algorithm for computing the characteristic
polynomial. To compute the characteristic polynomial of A means to determine the
above coefficients λ1, . . . , λn. Note that this computation is a generalization of the
problem of computing determinant since the constant term in PA is (up to sign)
equal to det(A). We present an efficient parallel implementation of Samuelson’s
method16 by Berkowitz [3]. For this, we use the notation red(A) (‘reduction’ of A)
which is the (n − 1)-square matrix obtained from A by deleting the first row and

14This determinant is called the (i, j)-minor of A
15See [11] for most basic results on matrices.
16The importance of this method (as opposed to an earlier method of Csanky that has comparable

complexity) is that it uses no divisions, so it is applicable to any unitary commutative ring.

8.6. EFFICIENT CIRCUITS FOR RING OPERATIONS 389

first column. Define the column (n−1)-vector col(A) and row (n−1)-vector row(A)
so that

A =







a1,1 row(A)

col(A) red(A)







Lemma 25 The characteristic polynomial of A is related to the matrix red(A) as
follows:

PA(x) = (x−a1,1) det(xIn−1−red(A))−row(A) ·adj(xIn−1−red(A)) ·col(A). (8.9)

Proof.

PA(x) = det(xIn −A)

= (x− a1,1) det(xIn−1 −A) +
n
∑

j=2

a1,jD1,j

where D1,j is the (1, j)-cofactor of xIn −A. Write

D[i1, i2, . . . ; j1, j2, . . .]

for the determinant of the square matrix obtained by deleting rows i1, i2, . . . and
columns j1, j2, The lemma follows from the following identity

n
∑

j=2

a1,jD1,j =
n
∑

j=2

a1,j(−1)1+jD[1; j]

=
n
∑

j=2

a1,j(−1)1+j

n
∑

i=2

ai,1(−1)iD[1, i; 1, j]

= −

n
∑

j=2

n
∑

i=2

a1,jai,1(−1)i+jD[1, i; 1, j]

= −

n
∑

j=2

n
∑

i=2

a1,jai,1D
′
i,j

where D′
i,j

is the (i− 1, j− 1)-cofactor of red(xIn−A) = xIn−1− red(A). Since D′
i,j

is the (j − 1, i− 1)th entry of adj(xIn−1 − red(A)), the lemma follows. Q.E.D.
The adjoint of xI −A can be expressed with the help of the the next lemma.

Lemma 26

adj(xI −A) =
n−1
∑

i=0

Bix
n−1−i (8.10)

where
Bi = Ai + λ1A

i−1 + · · ·+ λi−1A + λiI

390 CHAPTER 8. STOCHASTIC CHOICES

and λi are the coefficients of the characteristic polynomial

PA(x) = xn + λ1x
n−1 + · · ·+ λn−1x + λn.

Proof. We observe that B0 = In and for i = 1, . . . , n,

Bi = ABi−1 + λiI.

Hence

det(xI −A) · I

= [xn + λ1x
n−1 + · · ·+ λn−1x + λn] · I

= [xn−1B0](xI −A) + xn−1AB0 + [λ1x
n−1 + λ2x

n−2 + · · · + λn−1x + λn] · I

= [xn−1B0 + xn−2B1](xI −A) + xn−2AB1 + [λ2x
n−2 + λ3x

n−3 + · · ·+ λn] · I

= · · ·

=

[

n−1
∑

i=0

xn−1−iBi

]

(xI −A) + x0ABn−1 + λnI

=

[

n−1
∑

i=0

xn−1−iBi

]

(xI −A)

where the last equality follows from

x0ABn−1 + λnI = Bn = PA(A) = 0

by the Cayley-Hamilton theorem. On the other hand det(xI − A) · I can also be
expressed as

det(xI −A) · I = adj(xI −A) · (xI −A).

Since xI −A is nonsingular (x is a indeterminate), we can cancel xI −A as a factor
from the two expressions for det(xI − A) · I, giving the desired equality for the
lemma. Q.E.D.

The last two lemmas show that the characteristic polynomial PA(x) of A can
be computed from the characteristic polynomial Pred(A)(x) of red(A) and the ma-

trix products red(A)i (for i = 1, . . . , n − 1). Let us derive this precisely. Let the
coefficients of Pred(A)(x) be given by µi (i = 0, . . . , n − 1) where Pred(A)(x) =
∑

n−1
i=0 µn−1−ix

i. Then we see that

PA(x) = (x− a1,1)Pred(A)(x)− row(A) ·

(

n−1
∑

i=0

Bix
n−1−i

)

· col(A)

= (x− a1,1)
n−1
∑

i=0

µix
n−1−i +

n−1
∑

i=0

xn−1−irow(A) ·





i
∑

j=0

(red(A))jµi−j



 · col(A)

8.6. EFFICIENT CIRCUITS FOR RING OPERATIONS 391

=
n−1
∑

i=0

µix
n−i +

n−1
∑

i=0

xn−1−i



−a1,1µi +
i
∑

j=0

βjµi−j





(where βj = row · (A)(red(A))j · col(A))

=
n
∑

j=0

λn−jx
j

where

λj =















µ0 if j = 0

µj − a1,1µj−1 +
∑j−1

k=0 βkµj−1−k if j = 1, . . . , n− 1

−a1,1µn−1 +
∑

n−1
k=0 βkµn−1−k if j = n

We can write this in matrix form. Let C0 be the following (n + 1)× n matrix:

C0 :=































1
β0 − a1,1 1

β1 β0 − a1,1 1
β2 β1 β0 − a1,1
...

. . .

βn−2 · · · β0 − a1,1 1
βn−1 βn−2 · · · β0 − a1,1 1

0 βn−1 βn−2 · · · β1 β0 − a1,1































Then we have
(λ0, . . . , λn−1, λn)T = C0 · (µ0, . . . , µn−1)

T

where (· · ·)T indicates matrix transpose. We repeat this procedure to express the
µi’s in terms of the characteristic polynomial of red(red(A)) = red2(A), etc. In
general, let Ci be the (n + 1 − i) × (n − i) matrix that reduces the characteristic
polynomial of redi(A) to that of redi+1(A). The entries17 of Ci consists of 0, 1, the
diagonal elements ai+1,i+1 of the matrix A, and elements that can be constructed
from

row(redi(A)) · redi+1(A) · col(redi(A)).

Putting these together, we get

(λ0, . . . , λn)T = C0C1 · · ·Cn−1

Lemma 27 Given an n × n matrix A we can construct in deterministic log-space
an arithmetic circuit C of depth O(log2 n) and size nO(1) such that C computes (the
coefficients of) PA(x).

17In fact Ci has the property that each (j, k)th entry is equal to the (j+1, k+1)th entry provided,
of course, that the (j + 1, k + 1)th entry is defined. This property is the defining characteristic of
Toeplitz matrices and it is known that the multiplication of Toeplitz matrices can be done more
efficiently than we care to exploit here (Exercises).

392 CHAPTER 8. STOCHASTIC CHOICES

Proof. We proceed as follows:

1. We first construct a circuit to compute the set of polynomials

{(redi(A))j : i = 1, . . . , n− 1 and j = 1, . . . , i}.

Note that to compute a matrix means to compute each of its entries and to
compute a polynomial means to compute each of its coefficients. It suffices to
show that for each i, we can compute {(redi(A))j : j = 1, . . . , i} with a circuit
of polynomial size and depth O(log2 n). But this amounts to the parallel prefix
computation on i copies of the matrix redi(A). Parallel prefix, we saw, uses
an O(log n) depth product circuit. Each gate of the product circuit is replaced
by an arithmetic circuit of depth O(log n) since we can multiply two n × n
matrices in this depth (straightforward). Hence the overall depth is O(log 2 n).

2. Next, we compute the elements

{row(redi−1(A) · (redi(A))j
· col(redi−1(A) : i = 1, . . . , n− 1 and j = 1, . . . , i}.

This takes O(log n) depth. We have now essentially computed the entries of
the matrices C0, . . . , Cn−1.

3. We can compute the product
∏

n−1
i=0 Ci using a balanced binary tree of depth

O(log n) to organize the computation. Each level of this binary tree corre-
sponds to the multiplication (in parallel) of pairs of matrices. Since each ma-
trix can be multiplied in O(log n) depth, the overall circuit depth is O(log 2 n).

One can easily verify that the circuit is polynomial in size. Q.E.D.

8.6.4 Computing the Matrix Inverse

We want to compute the inverse of a matrix A. As before, let

PA(x) = xn + λ1x
n−1 + · · ·+ λn−1x + λn

be the characteristic polynomial. Since PA(x) = det(xI −A) we see that

λn = PA(0) = det(−A) = (−1)n det(A).

Next, by lemma 26, we have that

adj(−A) = Bn−1

= An−1 + λ1A
n−2 + · · ·+ λn−2A + λn−1.

Note that adj(−A) = (−1)n−1adj(A). Putting these together, we get

8.6. EFFICIENT CIRCUITS FOR RING OPERATIONS 393

A−1 =
1

det(A)
adj(A)

= −
1

λn

(An−1 + λ1A
n−2 + · · ·+ λn−2A + λn−1).

It should now be easy to deduce:

Lemma 28 We can detect if an n-square matrix A is nonsingular using an NC 2

arithmetic circuit. Moreover, in case A is nonsingular, we can compute its inverse
A−1 with another NC 2 arithmetic circuit.

8.6.5 Balanced p-ary Notations

In applying the preceding results, we will use matrices A whose entries are ratio-
nal numbers. Assuming the usual binary representation of integers, if the integers
involved in the computation are k-bits long, then an O(log 2 n) depth arithmetic
circuits translate into Boolean circuits of depth Ω(log 2 n log k), at least (and in our
applications k = Ω(n)). To obtain a depth of O(log 2 n) on Boolean circuits for
computing characteristic polynomials, we need one new idea: by a suitable choice
of representing integers, we can implement the operations of addition with constant
depth (i.e., NC 0) circuits. This in turn yields an improved depth for several other
problems. Circuits in this subsection shall mean Boolean circuits unless otherwise
stated.

Definition 8
(i) A representation r of a algebraic structure A is an onto function

r : {0, 1}∗ → A.

We say u ∈ {0, 1}∗ is an r-representative of r(u).
(ii) We say an operation f : An → A is in NC k with respect to r if there is an NC k

Boolean circuit family C = (Cm)m≥0 such that for each m, Cm computes f in the
sense that for all u1, . . . , un ∈ {0, 1}

m,

r(Cm(u1, . . . , un)) = f(r(u1), . . . , r(un))

We usually like to ensure that each element can be represented by arbitrarily
large binary strings. For instance, as in the binary representation of numbers, we
may have the property r(0u) = r(u) for all u ∈ {0, 1}∗. In other words, we can left
pad an representation by 0’s. In practice, ring elements have some natural notion
of “size” and we may insist that the representation r ‘respect’ this size function

394 CHAPTER 8. STOCHASTIC CHOICES

within some bounds (e.g., |r(x)| ≥ size(x)). We shall not concern ourselves with
such considerations but the interested reader may consult [5].

Our goal is to find a representation of integers so that addition and negation is
in NC 0, multiplication and iterated addition is in NC 1 and iterated multiplication
is in NC 2. We resort to the balanced p-ary representation of integers of Avizienis
[1]. Here p ≥ 2 is an integer and a balanced p-ary number is a finite string

u1u2 · · · un

where ui is an integer with |ui| ≤ p−1. This string represents the integer (u1, . . . , un)p
given by

(u1, . . . , un)p :=
n−1
∑

i=0

ui+1p
i.

So u1 is the least significant digit. Clearly, the usual p-ary representation of a
number is a balanced p-ary representation of the same number. This representation
is redundant in a rather strong sense. We will implicitly assume that strings such
as u1, . . . , un are ultimately encoded as binary strings, so that they fit our formal
definition of representations.

Lemma 29 With respect to the balanced p-ary representation of integers, for any
p ≥ 3:
(i) Addition and negation of integers are in NC 0.
(ii) Iterated addition and multiplication of integers are in NC 1.
(iii) Iterated multiplication is in NC 2.

Proof. (i) Suppose we want to add (u1, . . . , un)p to (v1, . . . , vn)p. Note that for each
i = 1, . . . , n, we can express the sum ui + vi as

ui + vi = pxi + yi

with |xi| ≤ 1 and |yi| ≤ p − 2. To see this, note that |ui + vi| ≤ 2p − 2 and if
|ui + vi| ≤ p− 2 or |ui + vi| ≥ p then it is clear that the desired xi, yi can be found.
The remaining possibility is |u i + vi| = p − 1. In that case we could let xi = 1
and yi = ±1, but note that this is possible only because p ≥ 3 (we would violate
the constraint |yi| ≤ p − 2 if p = 2). Now the sum of the two numbers is given by
(w1, . . . , wnwn+1)p where

wi = xi−1 + yi

for i = 1, . . . , n + 1 (taking x0 = yn+1 = 0). Clearly this can be implemented by an
NC 0 circuit.
(ii) To show iterated addition is in NC 1 we simply use part (i) and the technique
for parallel prefix.

8.6. EFFICIENT CIRCUITS FOR RING OPERATIONS 395

Now consider multiplication of integers. Suppose we want to form the product
of the numbers (u1, . . . , un)p and (v1, . . . , vn)p. For each i, j = 1, . . . , n, we form the
product uivj and we can express this in the form

uivj = pxi,j + yi,j

where |xi,j | ≤ p− 1 and |yi,j| ≤ p− 1 (since |uivj| ≤ (p− 1)2 ≤ p(p− 1) + (p− 1)).
For each i = 1, . . . , n, form the number

Xi = (00 · · · 00xi,1xi,2 · · · xi,n−1xi,n)p

where Xi has a prefix of i zeroes. Similarly, form the number

Yi = (00 · · · 00yi,1yi,2 · · · yi,n−1yi,n)p

where Yi has a prefix of i− 1 zeroes. It is then easy to see that the product is given
by the sum

n
∑

i=1

(Xi + Yi).

But each summand has at most 2n digits and there are 2n summands. We can form
a balanced binary tree T on 2n leaves to organize this summation process: each
leaf is labeled with one of these summands and each interior node is labeled with
the sum of the labels at the leaves below. Clearly the root of T has the desired
product. This tree converts into a Boolean circuit of depth O(log n). This shows
multiplication is in NC 1.
(iii) We leave this as exercise. Q.E.D.

Next we extend the lemma to matrix rings. By the balanced p-ary representation
of matrices with integer entries we mean that each entry is encoded by balanced p-
ary notation, and matrices are stored (to be specific) in row-major order.

Lemma 30 With respect to the balanced p-ary representation (p ≥ 3) of integer
matrices:
(i) Addition and negation are in NC 0.
(ii) Multiplication is in NC 1.
(iii) Interated multiplication is in NC 2.

Proof. It is clear addition and negation of integer matrices can be implemented
efficiently by the previous lemma. For multiplication, suppose we want to compute
the product of two n×n matrices A and B, and each entry has at most n bits. We
note that each entry of AB is the sum of at most n products of pairs of entries.
These individual products can be viewed at the sum of at most 2n numbers of n
bits, as revealed in the proof of the previous lemma. So for each entry, we need

396 CHAPTER 8. STOCHASTIC CHOICES

to sum O(n2) numbers, each of n bits. Again, we can arrange these as a balanced
binary tree of depth O(log n). This gives us the efficient NC 1 circuit we seek.

To get an NC 2 circuit family for iterated multiplication of integer matrices we
simply apply parallel prefix to the previous part. Q.E.D.

Finally we consider matrices whose entries are rational numbers. A rational
number is represented by a pair of balanced p-ary representation, extended to ma-
trices as before. Unfortunately, we no longer know how to do addition of rational
numbers in NC 0. Nevertheless, we have the following:

Lemma 31 With respect to the balanced p-ary (p ≥ 3) representation of matrices
with rational number entries:
(i) Iterated multiplication is in NC 2.
(ii) Characteristic polynomial computation is in NC 2.

Proof. (i) Suppose we want to compute the iterated product

A1, A1A2, . . . , A1A2 · · ·An

where each Ai is a n × n matrix with rational number entries, and each entry is
represented by pairs of n-bit integers. We first convert each A i to integer matrices
Bi and compute an integer Di such that Ai = 1

Di
Bi. To do this, first form the

product Di,j of the denominators in the jth row of Ai; then multiply each entry in
the jth row of Ai by Di,j. Doing this for all rows, we get Bi; of course Di is just
the product of all the Di,j’s. It is clear that we can obtain each of the Di,j and Di

by iterated multiplication in NC 2. Notice that Di,j and Di are O(n3)-bit integers
and so we can compute Bi from Ai and Di,j ’s in NC 1.

Next, we compute the iterated integer products {D1, D1D2, . . . , D1D2 · · ·Dn} in
NC 2. Similarly, we compute the iterated matrix product {B1, B1B2, . . . , B1B2 · · ·Bn}

in NC 2. It is clear that

A1A2 · · ·Ai =
1

D1D2 · · ·Di

B1B2 · · ·Bi

for each i = 1, . . . , n. This can be computed in NC 1 since each of the integer
involved in polynomial in size.
(ii) We imitate the proof of lemma 27. Details are left as exercise. Q.E.D.

One more computational problem: we need to be able to check the sign of a
balanced p-ary number. (In our application, we want to compare such a number
with 1

2 , which is easily reduced to checking if a number is positive.) But after the
preceding development, the reader should have no trouble devising an NC 1 solution
(Exercises).

Putting it all together. We must tidy up the loose bits in the proof of the
main theorem in the last section. In particular, we must address the issue of how to
implicitly construct and represent the reduced transition matrices C described in the

8.7. COMPLEMENT OF PROBABILISTIC SPACE 397

last section. Let A be the transition matrix from which we derive C. Since we want
to do all this using O(s2) space, we cannot afford to write A or C explicitly. Then
we must see how the techniques given in this section can be adapted to some implicit
representation. All this is tedious but it is crucial that the reader understands how
this can be done. So let us assume a given probabilistic machine M accepting in space
s(n), and w is an input. Let us begin by constructing matrix C: the proof of lemma
24 shows a transitive closure circuit of depth O(log 2 n) applied to the underlying
graph GA of the transition matrix A to determine the inessential states. But note
that the transitive closure circuit is relatively systematic that we can assume some
numbering of its gates such that given any gate number g, we can determine the
gates at the other end of incoming as well as outgoing edges at g, and given g, we
also know the Boolean function labeling g. The gate numbers can be stored in O(s)
space and we can determine these information also in O(s) space. It is now not hard
to see that we can determine the output of any gate in O(s) space, given that we
know the input graph GA. This is not hard to do (we basically store one Boolean
value at each gate along the path from the output gate to the current position –
a similar proof using this technique is shown in chapter 10.) In this way, in O(s)
space, we can determine if any given i is inessential.

The basis of the preceding argument is the observation that the transitive closure
circuit is quite systematic and hence in space O(s) we can answer basic questions
such as connections between gates, etc. Similarly for all the other circuits in this
section. The student should carefully work out some other cases. With this, we
conclude.

Remark: In chapter 10, we will study the property stated above, that all the
circuits in this section are ‘systematically constructed’ so that we can essentially
determine gates and their interconnections in circuits efficiently. (These are called
uniformity conditions.) For this reason we are contented with a somewhat sketchy
outline here.

8.7 Complement of Probabilistic Space

This section proves that probabilistic space is closed under complementation. We
begin with a useful result:

Lemma 32 Let B be the fundamental part of the transition matrix of a Markov
chain. If B is m×m and the entries of B are taken from {0, 1

2 , 1}, then the stochastic
closure B∗ has the property that dB∗ is an integer matrix for some integer d < m!2m.

Proof. We know that B∗ = (I −B)−1. Thus B∗ = 1
det(I−B)adj(I −B). Clearly each

entry of 2m−1adj(I −B) is an integer. Also, c

det(I−B) is an integer for some c ≤ m!.
The result follows. Q.E.D.

398 CHAPTER 8. STOCHASTIC CHOICES

Theorem 33 Let M be any probabilistic machine that accepts in space s(n) ≥ log n.
Then there is a c > 0 such that every accepted input of length n is accepted with
probability more than

1

2
+ 2−c

s(n)
.

Proof. At the end of section 3, we showed that the probability of accepting any input
is given by a suitable entry of D∗, where D is the fundamental part of a reduced
transition matrix C. D is m ×m with m = nO(1)s(n) = O(1)s(n). We then apply
the previous lemma. Q.E.D.

Lemma 34 Let s(n) ≥ log n. For any probabilistic machine that runs in space
s(n), there is a probabilistic machine N accepting L(M) and runs in space s with

error gap (0, 1
2]. Morever, N halts with probability 1 and has average time 22O(s)

.

Proof. Let c = max{c1, c2} where c1 is chosen so that there are at most cs

1 config-
urations using space at most s, and c2 is chosen so that (by the previous theorem)

if M accepts an input w then M accepts with probability greater than 1
2 + 2−c

s(|w|)
2 .

Now N is obtained by modifying the proof of lemma 9 in the last section:

repeat forever

1. Simulate M for another cs steps. Nondeterministic choices of M
become coin-tossing choices of N.

2. If M answers YES then we answer YES.
If M answers NO, we rewind our tapes to prepare
for a restarted simulation.

3. Toss 2cs coins and answer NO if all tosses turn up heads.
end

(Notice that unlike in lemma 9, each iteration of the loop continues the simulation
from where the last iteration left off, provided the last iteration did not halt.) Now
we see that N halts with probability 1. The average time t̄ is seen to satisfy the
bound

t̄ ≤ 3cs + (1− 2−2c
s

)t̄

which gives us t̄ = 22O(s)
as desired.

If M rejects then clearly N rejects. So assume that M acccepts. Let us call a
configuration C of M live if there is a computation path starting from C into a YES
configuration. Similarly, a configuration C of N is live if there is a computation path
from C into one in which the simulated M answers YES. If a configuration is not
alive, we say it is dead.

For k ≥ 1, define the following events for the probabilistic spaces ΩN
w

and ΩM
w

:

8.7. COMPLEMENT OF PROBABILISTIC SPACE 399

RN
k

= {N answers NO in the kth iteration}
DN

k
= {N became dead during the kth iteration}

DM
k

= {M became dead between the (k − 1)csth and the kcsth step}
AN

k
= {N is alive at the end of the kth iteration}

AM
k

= {M is alive at the end of the kcs step}

Then the rejection event of N corresponds to

⋃

k≥1

{RN
k
} =

⋃

k≥1



{RN
k
, AN

k
} ∪

k
⋃

j=1

{RN
k
, DN

j
}





= (
⋃

k≥1

{RN
k
, AN

k
}) ∪ (

⋃

j≥1

⋃

k≥j

{RN
k
, DN

j
})

Clearly the probability that M remains alive after c s steps is at most 1− e where

e := 2−c
s

.

Since the probability of getting 2cs heads in a row is e2, the probability that N
remains alive through one iteration is at most (1− e)(1− e2). We claim that

Pr{RN
k
, AN

k
} = (1− e)k(1− e2)k−1e2.

(In this proof, it is instructive to set up the connection between the probabilistic
spaces ΩN

w
and ΩM

w
for input w.) Hence

Pr(
⋃

k≥1

{RN
k
, AN

k
}) =

∑

k≥1

Pr{RN
k
, AN

k
}

≤ e2
∑

k≥1

(1− e)k(1− e2)k−1

< e2
∑

k≥1

(1− e)k−1

= e.

Next,

Pr(
⋃

j≥1

⋃

k≥j

{RN
k
, DN

j
}) ≤ Pr(

⋃

j≥1

{DN
j
})

=
∑

j≥1

Pr{DN
j
}

≤
∑

j≥1

Pr{DM
j
}

= Pr{M rejects}

≤
1

2
− e

400 CHAPTER 8. STOCHASTIC CHOICES

by our choice of the constant c ≥ c2. Above we have used the inequality Pr{DN
j
} ≤ reject??

Pr{DM
j
} relating across two different probability spaces. Hence the probability that

N rejects is less than the sum of e + (1
2 − e). We conclude that N accepts with

probability greater than 1
2 . Q.E.D.

The technique in this lemma can be viewed as using m = c s coin tosses to con-
trol a loop so that the expected number of iterations is 2m. Since we need only
log m space to control this loop, we are able to probabilistically achieve a number
of iterations that is double exponential in the space used. This technique, due to
Gill, demonstrates one of the fundamental capabilities of coin-tossing that distin-
guishes space-bounded probabilism from, say, space-bounded alternating computa-
tions. The expected number of iterations is achieved in the worst case: if M is a
machine that does not halt, then N has expected time 22Ω(s(n))

.
We are ready to show that probabilistic space is closed under complementation.

Theorem 35 If s(n) ≥ log n is space-constructible then

PrSPACE(s) = co-PrSPACE(s).

This result was shown by Simon [28]; the proof here is essentially from [25]. This
result is almost an immediate consequence of lemma 34.

Proof. Given any probabilistic machine accepting in space s(n), lemma 34 gives
us another probabilistic machine accepting the same language in the same space
bound with error gap (0, 1

2]; moreover, M halts with probability 1. Then let N be
the complement of M: i.e., N answers YES iff M answers NO. For any input w, the
probability that N accepts w plus the probability that M accepts w is equal to the
probability of halting, i.e., 1. Hence, N has the error gap [1

2 , 1). It follows that N
accepts if and only if M rejects. Q.E.D.

8.8 Stochastic Time and Space

In this section, we give upper bounds on the complexity of time and space-bounded
stochastic computations. Stochastic space is especially interesting in view of the
tremendous computational power that seems inherent in it. Also, instead of Markov
chains we now turn to the study of discrete time dynamical systems.

Theorem 36 For all t, StA-TIME(t) ⊆ ATIME(t3).

The basic idea for this result is the bit-counting technique that was used quite
effectively for simulating probabilistic alternating machines (chapter 7, section 6).
It turns out that several new technical problems arises.

Let M be a stochastic alternating machine that accepts in time t(n). We con-
struct an alternating machine N to simulate M. For the rest of this proof, we fix
an input w that is accepted by M and let t = t(|w|). We may assume that N has

8.8. STOCHASTIC TIME AND SPACE 401

guessed t correctly and let T0 be the accepting computation tree of M on w obtained
by truncating the complete computation tree TM(w) at levels below t (as usual, root
is level 0). To demonstrate the essential ideas, we assume that M has f- and ⊗-
states only. As in chapter 7 we ‘normalize’ the least fixed point values Val T0(C) for
each configuration in T0:

VAL0(C) := 22t−`

ValT0(C)

where ` = level(C). Thus T0 is accepting if and only if VAL0(C0) > 22t−1 where
C0 is the root of T0. It is easy to see that VAL0(C) is an integer between 0 and
22t

. We shall think of VAL0(C) as a 2t digit number in the balanced 4-ary notation.
Although the balanced 4-ary notation is highly redundant, we will want to refer
to the ‘ith digit of VAL0(C)’ in an unambiguous manner. We will show how to
uniquely choose a balanced 4-ary representation for each VAL0(C).

Let us note that in fact VAL0(C) can be explicitly defined as follows: if ` =
level(C) and C ` (CL, CR) (provided C is not a leaf) then

VAL0(C) =



















0 if C is a non-YES leaf

22t−`

if C is a YES leaf

22t−`−1−1(VAL0(CL) + VAL0(CR)) if C is an f-configuration
VAL0(CL) · VAL0(CR) if C is an ⊗-configuration

It follows that each VAL0(C) has at most 2t−` digits of significance.
The alternating simulation of N effectively constructs a tree T 1 that is an ‘ex-

pansion’ of T0. To describe T1, we need to define a certain product of trees:

Definition 9 Let T, T ′ be any two trees. For nodes i, j ∈ T , write i → j to mean
that i is the parent of j. Their product T × T ′ consists of nodes (i, i′) where i ∈ T
and i′ ∈ T ′ such that (i, i′)→ (j, j′) if and only if either
(a) i = j and i′ → j′, or
(b) i→ j, i′ is the root of T ′ and j′ is a leaf of T ′.

Clearly,

T × T ′ = T ′
× T ⇐⇒ T = T ′,

SIZE(T × T ′) = SIZE(T ′
× T) = SIZE (T) · SIZE(T ′),

and

DEPTH (T × T ′) = DEPTH (T ′
× T) = DEPTH (T) + DEPTH (T ′).

Define tree T1 to be T0 × T t where T t is defined as the binary tree in which
every internal node has 2 children and every path from the root to a leaf has length
exactly t + 1. Hence T t has exactly 2t+1 leaves. Let us assume the nodes in T t are

402 CHAPTER 8. STOCHASTIC CHOICES

strings s ∈ {L,R}∗ such that the root of T t is the empty string ε, and each internal
node s ∈ T t has two children, sL and sR.

We want an assignment function VAL1 on T1 in analogy to VAL0. Write
VAL1(C, s) (instead of VAL1((C, s)), which is correct but pedantic) for the value
assigned to the node (C, s) ∈ T1, C ∈ T0, s ∈ T t. Instead of integers, VAL1(C, s) is
a balanced 4-ary number.

First, we need one more definition: recall that in section 5, we compute the
product of two balanced p-ary numbers u = u1 · · · un, v = v1 · · · vn as the sum of
2n balanced p-ary numbers Xi, Yi (i = 1, . . . , n). Let us call Xi and Yi the ith and
(n+ i)th summand of the product of u and v. Clearly the summands depend on the
particular representation of the numbers (u)p and (v)p. These 2n summands can
be regarded as 2n digits numbers although they each have at most 2n− 1 digits of
significance.

Suppose C is a leaf in T0, level(C) = `. Then for any s ∈ T t, VAL1(C, s) is
defined to be the (ordinary) 4-ary representation of

22t−`

or 0

depending on whether C is YES or not. Next assume C ` (CL, CR). There are two
cases:

(1) C is a ⊗-configuration.

(1.1) If s is a leaf of T t. Then s is a string in {L,R}∗ of length t+1. Then VAL1(C, s)
is the sth summand of the product of VAL1(CL, ε) and VAL1(CR, ε). Here s is
interpreted as the 2-adic number (see chapter 1, section 4.2) where the symbols
L,R in s are (respectively) interpreted as 1,2. Note that s ranges from 0 to
2t+1 and by definition the 0th summand is 0.

(1.2) If s is not a leaf of T t then VAL1(C, s) = VAL1(C, sL) + VAL1(C, sR).

(2) C is a f-configuration.

(2.1) If s is a leaf of T t then let

VAL1(C, s) = 22t−`−1−1[VAL1(CL, ε) + VAL1(CR, ε)].

Note that we are multiplying by a power of 2 and this is relatively trivial
in balanced 4-ary notation. Basically we must reexpress each balanced 4-ary
digit as a pair of balanced 2-ary digit, shift these to the right by 2 t−`−1 − 1
positions. Then we recombine into balanced 4-ary digits.

(2.2) If s is not a leaf then VAL1(C, s) = VAL1(C, sL)(= VAL1(C, sR)).

8.8. STOCHASTIC TIME AND SPACE 403

It is not hard to show that for all C ∈ T0,

VAL0(C) = VAL1(C, ε).

We note that VAL1 is uniquely defined since the balanced p-ary representation at
the leaves are uniquely specified, and this propagates to all other nodes using the
above rules.

Now it should be easy for the reader to use the technique of chapter 7 to provide
an alternating machine that guesses the tree T1 in order to determine the predicate

DIGIT(C, s, i, b)

that is true if the ith digit of VAL1(C, s) is equal to b, for |b| ≤ 3 and i = 1, . . . , 2t.
To invoke this procedure, we may assume the work tapes of N contains the following
information:

1. i in binary

2. C

3. s

4. level(C) in unary

5. t− level(C) + |s| in unary

Note that each of these uses O(t) space. Moreover, from the above information, we
can generate the arguments for the recursive calls in O(t) steps. So the total work
spend along any path in T1 is O(t3) since T1 has O(t2) levels. It is now clear that
DIGIT can be solved in O(t2) alternating time.

The final work to be done is to compare VAL1(C0, ε) to 1
2 where C0 is the root

of T0. Basically, our goal is to convert the balanced 4-ary number

VAL1(C0, ε) = u1u2 · · · um (m = 2t)

to an ordinary 4-ary number

v1v2 · · · vm.

We begin with a simple remark: since each of the digits v i must be non-negative,
if ui is negative, we must borrow one unit from the next digit u i+1. Let bi = 1 or
0 depending on whether we need to borrow from ui+1 or not in order to make vi

non-negative. Of course, we must also take into account the borrow b i−1 from ui.
This gives us the equation

bi =

{

1 if ui − bi−1 < 0
0 if ui − bi−1 ≥ 0

.

404 CHAPTER 8. STOCHASTIC CHOICES

We set b0 = 0. Note that this method is correct because we know that apriori that
the number (u1 · · · um)4 is non-negative: so the most significant non-zero digit is
positive. It is not hard to reduce the above to: bi = 1 iff for some j (1 ≤ j ≤ i),
uj < 0 and for all k = j + 1, . . . , i, uk = 0. Hence we can in O(t2) alternating time
check the value of any bi for i = 1, . . . , 2t: we simply guess j and then universally
check that uj < 0 and uk = 0 for k = j + 1, . . . , i. Of course, checking if uk = b
is nothing but the subroutine DIGIT(C0, ε, k, b) which can be determined in O(t2)
time.

Since we can check for the value of borrow bits bi, we can check the digits vi in
the 4-ary representation of VAL1(C0, ε) via vi = ui − bi−1 + 4bi. Now it is easy to
determine if VAL1(C0, ε) is greater than 22t−1.

We must address one more detail. The above construction did not consider
the other basis functions of a stochastic alternating machine: ⊕,∧,∨. However,
it should be evident that since we know how to add and to multiply, we can also
compute the value

VAL0(C) = 22t−`−1−1(VAL0(CL) + VAL0(CR))−VAL0(CL)VAL0(CR)

where ` = level(C), C is a ⊕-configuration and C ` (CL, CR). The remaining MIN-
and MAX-configurations are also easy. This completes our proof of theorem 36.

Space-bounded Stochastic computation. We consider an s(n) space-bounded
stochastic machine M. In analogy with Markov chains, we set up a finite number
of dynamical states, each corresponding to a configuration of the machine M using
space at most s. If the set of states is taken to be {1, . . . , n}, a valuation V can be
viewed as an n-vector

V = (v1, . . . , vn) ∈ [0, 1]n.

Let V0 denote the vector of zero elements. We have the usual operator τ = τ∆ where
∆ = {1, . . . , n}. Thus

τ(V) = (τ1(V), τ2(V), . . . , τn(V))

where τi(V) = 0, 1 or vj ◦ vk for some j, k depending on i, ◦ ∈ { f,⊗,⊕}. In chapter
7, we showed that the limit of the sequence

τ(V0), τ
2(V0), τ

3(V0), . . .

is the least fixed point of our system. Let

V ∗
τ

= (v∗1 , . . . , v
∗
n
)

denote this limit. Clearly any fixed point V = (v 1, . . . , vn) of τ satisfies the following
set of equations: each i = 1, . . . , n,

vi = fi(vj(i), vk(i)) (8.11)

8.8. STOCHASTIC TIME AND SPACE 405

where fi(x, y) is one of the stochastic functions 0, 1, x fy, x ⊗ y, x ⊕ y. Let Σ(V)
denote the set of equations (8.11). We can then characterize the least fixed point
property V ∗

τ
as follows:

LFP (V ∗
τ
) ≡ Σ(V ∗

τ
) ∧ (∀V)[Σ(V).⇒ .V ∗

τ
≤ V].

We are now ready to prove the following, by appeal to some recent results on
the complexity of real closed fields (cf. Renegar [24]).

Theorem 37 For all s(n),

StSPACE(s) ⊆ DTIME(22O(s)
).

Proof. Suppose M is a stochastic machine that accepts in space s(n). We show
how to decide if M accepts any input w in space s(|w|). As usual, we can assume
s = s(|w|) is known, and let there be n configurations of M that uses space at most
s. Without loss of generality, let these configurations be identified with the integers
1, 2, . . . , n and 1 denotes the initial configuration on input w. Let τ be the operator
corresponding of these configurations. Hence we want to accept iff the least fixed
point V ∗

τ
of τ has the property that its first component [V ∗

τ
]1 greater than 1

2 . This
amounts to checking the validity of the following sentence:

(∃V ∗
τ
)(∀V)[Σ(V ∗

τ
) ∧ [V ∗

τ
]1 >

1

2
∧ (Σ(V).⇒ .V ∗

τ
≤ V)].

This sentence can be decided in time 2O(n4) = 22O(s)
, using the results of Renegar

[24]. Q.E.D.

406 CHAPTER 8. STOCHASTIC CHOICES

EXERCISES

[8.1] Consider an alternative approach that distinguishes YO-answers from loop-
ing: assign the value 1

2 to YO-configurations. (Thus, basis sets B for choice
machines are required to the new constant function, 1

2 in addition to the oth-
ers. Also, the function 1

2 adds nothing new if the toss-function f is already
in B.) In the standard treatment of YO-configurations, it is not hard to see
that a {⊗,⊕}-machine amounts to an alternating machine. In what sense
does the alternative treatment of YO-configurations apparently increase the
power of such machines? Is this apparent increase real?

[8.2] Suppose a stochastic machine does not have an error gap (i.e., is not deci-
sive). Prove that if it accepts in time bound t(n) where t is time-constructible,
then we can convert it into one accepting in time O(t) with the minimal error
gap [12 , 1

2]. Prove the same for space bounded acceptance.

[8.3] State all known inclusions among P , NP , RP , BPP , PP . Justify any inclu-
sions claimed.

[8.4] Let M be a machine with error gap G = (0, b]. We construct the following
machine N to boost the error gap G:

1. Simulate M on input from beginning until it halts.
(If M loops then we loop)

2. If M answers YES then answer YES; else toss a coin.
3. If coin-toss is heads then answer NO; else go to 1.

(i) Show that N has error gap G′ = (0, b′] where b′ = 2b

1+b
.

(ii) For any ε > 0, show how to modify step 3 so that 1− b ′ ≤ ε.

[8.5] Give another proof of Ko’s theorem that NP ⊆ BPP implies NP = RP in
§2. Recall the notation Ak in the first proof.
(i) Show that Pr(An) ≥ (1− 2−2n)2n.
(ii) Show that (1 − 2−n)n ≥ 1

2 for large enough n. HINT: you may use the
following facts:

• et ≥ 1 + t for all t ∈ R with equality iff t = 0.

•
(

1 + t

n

)n
≥ et

(

1− t
2

n

)

for all t, n ∈ R, n ≥ 1 and |t| ≤ n.

[8.6] Let g = [1/3− e, 1/3 + e] for some 0 < e < 1/3. Give an analog of majority
voting to amplify this gap.

8.8. STOCHASTIC TIME AND SPACE 407

[8.7] Let t(n) be time-constructible. Determine the smallest function t ′(n) as a
function of t(n) such that

co-NTIME(t(n)) ⊆ PrTIME b(t
′(n)).

HINT: simulate each step of a universal machine, but at each step, ensure
bounded-error by using majority votes.

[8.8] Let M be a probabilistic machine that runs in time t(n) and which uses
≤ log t(n) coin tosses along each computation path. Give an upper bound
for the function t′(n) such that L(M) ∈ PrTIME b(t

′(n)).

[8.9] Let P (x) and Q(x) be as defined in section 2. For all n = 0, 1, 2, . . ., let

Pn(x) :=











x if n = 0
P (Pn−1(x)) if n = odd
Q(Pn−1(x)) if n = even

Qn(x) :=











x if n = 0
Q(Qn−1(x)) if n = odd
P (Qn−1(x)) if n = even

For example, P2(x) = Q(P (x)) = x2(2−x2), and Q2(x) = P (Q(x)) = x2(2−
x)2. The function Q2(x) was used by Valiant to give a non-constructive proof
that the majority function for Boolean functions has a monotone formula of
size O(n log n). The amplification function in the text is simply A(x) =
P2(x) fQ2(x). Now write p+

n
(e) for Pn(1

2 + e), p−
n
(e) for Pn(1

2 − e), and
similarly for q+

n
(e), q−

n
(e) relative to Qn. For example,

p+
1 (e) =

1

4
+ e + e2

q+
1 (e) =

3

4
+ e− e2

p−1 (e) =
1

4
− e + e2

q−1 (e) =
3

4
− e− e2

p+
2 (e) =

7

16
+

3e

2
+

e2

2
− 2e3

− e4

q+
2 (e) =

9

16
+

3e

2
−

e2

2
− 2e3 + e4

p−2 (e) =
7

16
−

3e

2
+

e2

2
+ 2e3

− e4

408 CHAPTER 8. STOCHASTIC CHOICES

q−2 (e) =
9

16
−

3e

2
−

e2

2
+ 2e3 + e4

p+
3 (e) =

49

256
+

21e

16
+

43e2

16
−

e3

4
−

53e4

8
− 5e5 + 3e6 + 4e7 + e8

q+
3 (e) =

207

256
+

21e

16
−

43e2

16
−

e3

4
+

53e4

8
− 5e5

− 3e6 + 4e7
− e8

Show
(i) p+

n
(e) + q−

n
(e) = 1

(ii) p−
n
(e) + q+

n
(e) = 1

(iii) p+
n
(e)− p−

n
(e) = q+

n
(e)− q−

n
(e)

(iv) x = 1
2 is a fixed point of An(x) = Pn(x) fQn(x), i.e., An(1

2) = 1
2 . Are

there other fixed points?
(v) The exact relationships between the coefficients of p+

n
(e), q+

n
(e), p−

n
(e)

and q−
n

(e).

[8.10] Are there reasons to believe that co-NP ⊆ AM [2], based on the result about
NONISO?

[8.11] Fill in some details in the proof that NONISO ∈ AM [2].
(i) Prove Boppana’s lemma on random linear functions hB . HINT: By the
inclusion-exclusion principle, infer

Pr[z ∈ hB(C)] ≥
∑

x∈C

Pr[z = h(x)] −
∑

x,y∈C,x6=y

Pr[z = h(x) = h(y)].

(ii) Let aut(G) denote the automorphism group of G ∈ Gn. Show that
aut(G) is a subgroup of symmetric group Sn (comprising all n-permutations)
(this is a basic fact about groups). Show that LIKE(G0, G1) = aut(G0) ×
LIKE′(G0, G1) in case G0 ∼ G1. What if G0 6∼ G1?
(iii) Conclude that |LIKE(G0, G1)| = n! or 2n! depending on whether G0 ∼

G1 or not.
(iv) Carry out the details for converting [c/2, 3c/4] into an error gap.

[8.12] If L ∈ AM [k] then L is accepted by an Arthur-Merlin game in k +1 rounds
with zero-error acceptance.

[8.13] Show how to amplify error gaps for languages in AM [k].

[8.14] (1-dimensional random walk) Analyze the 1-dimensional random walk with
parameter 0 < p < 1.

(i) Show that the generating functions G(s) for the probability p
(n)
0,0 (n =

0, 1, . . .) of returning to the origin in n steps is given by G(s) = (1−4pqs 2)1/2

where q = 1− p.
(ii) Conclude that each Markov state is recurrent if and only if p = 1

2 .

8.8. STOCHASTIC TIME AND SPACE 409

(iii) In case p = 1
2 , show that the mean recurrence time is infinite. Hint: Use

the relation that the generating function F (s) for first re-entrance probability

f
(n)
0,0 is related to G(s) by G(s)−1 = F (s)G(s) and the mean recurrence time

is given by lims→1−1
dF (s)

ds
.

[8.15] (Erdös, Feller, Pollard) Let (f0, f1, . . .) be a stochastic vector with f0 = 0
and period is equal to 1. (The period is the largest d such that fn > 0
implies d divides n.) Now define p0 = 1 and pn =

∑

n

k=0 fkpn−k. Prove that
limn→∞ pn = 1

µ
where µ =

∑∞
n=0 nfn. Hint: Note that the relation between

pair of sequences {fn} and {pn} is identical with the relation between the

first entrance probabilities f
(n)
i

and n-step transition probabilities p
(n)
i,i

for a
fixed state i in section 3.

[8.16] Define a transition matrix A = (pi,j)i,j≥0 to be doubly stochastic if the row
sums as well as column sums are equal to 1. Show that each space-bounded
computation of a reversible probabilistic Turing machine gives rise to such
a matrix. Study the properties of such machines.

[8.17] Show that RP = NP iff some NP -complete language is in RP . Here RP is
the class one-sided bounded-error probabilistic polynomial time languages.

[8.18] Let t(n) be any complexity function and K1 = PrTIME 1(t(n)). Also let
K2 be the class of languages accepted by probabilistic choice machines with
bounded error and zero-error acceptance, running in time t(n). Under what
conditions on t would we obtain K1 = co-K2?

[8.19] Complete the proof in section 1 showing ZPP = RP ∩ co-RP .

[8.20] (Gill)
(i) Show that PP and BPP are closed under complementation.
(ii) Show that BPP and RP are closed under union and intersection.

[8.21] (Gill) We consider probabilistic transducers. For any probabilistic trans-
ducer M and input w, we may talk of the probability that M on w produces x
as output. Let this (least fixed point) probability be denoted Pr{M(w) = x}.
Let tM be the partial transformation such that for all w, tM(w) = x if
Pr{M(w) = x} > 1/2; and tM(w) ↑ if there is no such x. Clearly tM is
uniquely determined by M and is called the transformation computed by M.
Show that if M is s(n)-space bounded then x = tM(w) implies |x| ≤ f(s(|w|))
where f(n) is the number of configurations of M using space at most n.

[8.22]
(i) (Generalized Bezout’s theorem) Let

F (x) = F0x
m + F1x

m−1 + · · ·+ Fm (F0 6= 0)

410 CHAPTER 8. STOCHASTIC CHOICES

be a matrix polynomial where each Fi is an n × n matrix. The right value
of F (x) at an n× n matrix A is given by

F (A) = F0A
m + F1A

m−1 + · · ·+ Fm.

(The left value F̂ (A) is similarly obtained except that A is multiplied from
the left.) Show that if F (x) is divided by xI−A from the left, the remainder
is the right value F (A). Hint: the proof is a direct long division of F (x).
(ii) Let B(x) be the adjoint of xI−A. Conclude that (xI−A)B(x) = PA(x)I.
(iii) Infer the Cayley-Hamilton theorem from the Generalized Bezout’s the-
orem.

[8.23] (Fisher-Ladner) Improve the 2 log n depth for the parallel prefix circuit C n in
the text. Hint: consider a recursive construction of a circuit C ′

n
as illustrated

in the following figure where, with the proper wires added, we have

DEPTH (C ′
n
) = 1 + max{DEPTH (Cn/2),DEPTH (C ′

n/2)}.

Cn/2

· · ·

· · ·

1 2 n

2

C ′
n/2

· · ·

· · ·

1 + n

2
2 + n

2

n

s s s

Figure 8.2 Construction of C ′
n

(the connections between C ′
n/2 and Cn/2

not shown)

Note that the original Cn is used in this construction.
(a) Give exact expressions for the size and depth of C ′

n
. (Hint: the exact

size of C ′
n

involves the Fibonacci numbers.)
(b) Compare the fan-out degree of Cn and C ′

n
.

[8.24] (Balanced p-ary representation)
(a) Suppose we have a fixed finite state automaton M that reads an input
sequence of symbols a1 · · · an in real time. Let qi be the state of M after
reading ai, starting from the start state q0. Show an NC 1 Boolean circuit

8.8. STOCHASTIC TIME AND SPACE 411

for the problem of computing {q1, . . . , qn} for any input sequence a1 · · · an.
Hint: Apply parallel prefix.
(b) Apply the above to determine the sign of a balanced p-ary number in
NC 1 (p ≥ 3).
(c) Show how to convert a balanced p-ary number to a p-ary number in NC 1

(assume part (b)).

[8.25] (A general representation)
Let us fix b ≥ 1, p ≥ 0, q ≥ 1. We say a word u ∈ {−p,−p + 1, . . . , q− 1, q}?
represents the integer

n
∑

i=0

uib
i (8.12)

in the (b, p, q)-notation. Note that b-ary notations are (b, 0, b− 1)-notations;
b-adic notations are simply (b, 1, b)-notations; balanced p-ary numbers are
(p,−p, p)-notations. Show that for (3, 0, 3)-notations, addition and multi-
plication of natural numbers (since we cannot represent negative numbers)
is in NC 0 and NC 1, respectively. For what values of (b, p, q)-notations are
these results true?

[8.26] (open) Does ZPP , RP or BPP have complete languages under reasonable
reducibilities? (This seems unlikely)

[8.27] * Construct a complexity function t(n) that the class DTIME(t) does not
have complete languages (under log-space reducibility).

[8.28] Instead of the usual acceptance rule for choice machines (i.e., lower bound
of ValM(w) is greater than 1

2), we could have generalized nondeterminism to
the following computational mode:

Positive Acceptance Rule. An input w is declared to be ac-
cepted by M if the lower bound of Val M(w) is positive.

Show that if a language is accepted by the positive acceptance rule then it
can be accepted by the usual acceptance rule with just one additional coin
toss. Can a conversion in the other direction be effected?

[8.29] Recall the error gap G0(n) = [2−n, 1− 2−n]. Suppose we convert a machine
with this error gap into one with bounded-error. What is the increase in
time complexity?

[8.30] This simple exercise (from Emily Chapman) tests your basic understanding
of probabilistic computation. To determine if a binary number n is odd, the
obvious algorithm is, of course, to determine the predicate LSB(n)=“the
least significant bit of n is 1”. Consider the following (unusual) algorithm:

412 CHAPTER 8. STOCHASTIC CHOICES

LOOP:
Toss a coin. If head, then output LSB(n). If tail, let n ← n + 2
and go back to LOOP.

(i) Let T be the complete computation tree on input n. Determine the least
fixed-point valuation Val T .
(ii) Does this algorithm have bounded-error? zero-error?
(iii) Determine the running time t(m) of this algorithm on inputs of length
m. assuming LSB(n) takes lg n steps to compute.
(iv) Determine the average running time t(m) of this algorithm.

[8.31]
(i) Under what conditions on t(n) can we assert the following equality?

PrTIME b(O(t)) = AvgTIME(O(t)).

NOTE: we cannot replace O(t) by t here because our definition of probabilis-
tic machines does not permit a linear speedup theorem even if we assume
that t(n) grows fast enough.
(ii) Show that

BPP = AvgTIME(nO(1)).

[8.32] Assume the underlying ring R has nth roots of unity.
(i) Show that Toeplitz matrices can be multiplied with arithmetic circuits
of size O(n log n) and depth O(log n). Hint: Use Fast Fourier Transform
techniques.
(ii) (Open) Can one do better than O(n2) size circuits for general rings?

[8.33] (Berkowitz) Suppose the multiplication of two n by n matrices can be done
in O(nα) arithmetic operations, for some α ≥ 2. Currently, it is known that
α < 2.496 [8].
(i) Show that there is an arithmetic circuit of size O(n 1+α) and depth
O(log2 n) to compute the characteristic polynomial over arbitrary rings.
(ii) (Conjecture) The size can be improved to O(nα).

[8.34] Say a representation for a ring R is efficient for isomorphism if for all n ≥ 1,
there is an NC 1 circuit In to recognize isomorphic representations in {0, 1}n.
Show that the balanced p-ary representation is efficient for isomorphism.

[8.35] Recall the construction of the probability space of a computation tree T .
Carry out the proofs of the various properties asserted in the text. In particu-
lar, show that average time is well-defined and is equivalent to the alternative
definition given.

[8.36] Is there a method to drop simultaneity requirement for probabilistic space
with bounded error gaps?

8.8. STOCHASTIC TIME AND SPACE 413

[8.37] Imitate the proof that nondeterministic space is in probabilistic space with
zero-error to show that we can ensure that the computation halts with prob-
ability 1 but with bounded error. Hint: Introduce a ’exit control’ variable
which is tossed many times and which allows the algorithm to halt (and
answer NO immediately) only when all cointosses are heads. Thus there is
a very small probability to exit.

[8.38] Carry out the proof of complement of probabilistic classes for bounded error
and for 1-sided error.

414 CHAPTER 8. STOCHASTIC CHOICES

Appendix A

Probabilistic Background

Basic Vocabulary. The original axiomatic treatment of probability theory due to
Kolmogorov [17] is still an excellent rapid introduction to the subject. We refer to
[4, 30] for additional reading of techniques useful for complexity applications. This
appendix is a miscellany of quick reviews and useful facts.

A Borel field (or sigma-field) is a set system (Ω,Σ) where Ω is a set and Σ is
a collection of subsets of Ω with three properties (i) Ω ∈ Σ, (ii) E ∈ Σ implies
Ω−E ∈ Σ and (iii) {Ei}i≥0 is a countable collection of sets in Σ then the countable
union ∪i≥0Ei is in Σ. If (iii) is replaced by the weaker condition that E 1, E2 ∈ Σ
imples E1∪E2 ∈ Σ then we get a field. For any collection S of subsets of Ω, there is
a unique smallest Borel field that contains S, called the Borel field generated by S.
The most important example is the Euclidean Borel field (R1, B1) where R1 is the
real line and B1 is the Borel field generated by the collection of intervals (−∞, c]
for each real c, −∞ < c < +∞. Members in B1 are called Euclidean Borel sets.

A probability measure on (Ω,Σ) is a function Pr : Σ → [0, 1] such that (a)
Pr(Ω) = 1, (b) if {Ei} is a countable collection of pairwise disjoint sets in Σ then
Pr(∪i≥0Ei) =

∑

i≥0 Pr(Ei). A probability space is a triple (Ω,Σ,Pr) where (Ω,Σ) is
a Borel field and Pr is a probability measure on (Ω,Σ).

The elements in Ω are often called elementary events or sample points. Elements
of Σ are called events or measurable sets. Thus Ω and Σ are called (respectively) the
event space and sample space. Pr(E) is the probability or measure of the event E.
A simple example of probabilistic space is the case Ω = {H,T} with two elements
and Σ consists of all subsets of Ω (there are only 4 subsets), and Pr is defined by
Pr({H}) = p for some 0 ≤ p ≤ 1.

A random variable (abbreviation: r.v.) X of a probability space (Ω,Σ,Pr) is a
real (possibly taking on the values ±∞) function with domain Ω such that for each
real number c, the set

X−1((−∞, c]) = {ω ∈ Ω : X(ω) ≤ c}

415

416 APPENDIX A. PROBABILISTIC BACKGROUND

belongs to Σ. We may simply write

{X ≤ c}

for this event. In general, we write1

{. . . X . . .}

for the event {ω : . . . X(ω) . . .}. It is also convenient to write Pr{X ∈ S} instead of
Pr({X ∈ S}). The intersection of several events is denoted by writing the defining
conditions in any order, separated by commas: {X1 ∈ S1, X2 ∈ S2, . . .}. If f(x) is
a “reasonably nice” real function, then f(X) is a new random variable defined by
f(X)(ω) := f(X(ω)). In particular, the following are random variables:

max(X,Y), min(X,Y), X + Y, X − Y, XY, XY , X/Y

where X,Y are random variables. (The last case assumes Y is non-vanishing.)
Similarly, if Xi’s are random variables, then so are

inf
i

Xi, sup
i

Xi, lim inf
i

Xi, lim sup
i

Xi.

Each X induces a probability measure PrX on the Euclidean Borel field deter-
mined uniquely by the condition PrX((∞, c]) = Pr{X ≤ c}. We call PrX the prob-
ability measure of X. The distribution function of X is the real function given by
FX(c) := PrX((−∞, c]). Note that FX(−∞) = 0, FX (∞) = 1, FX is non-decreasing
and right continuous. Conversely given any such function F , we can define a random
variable whose distribution function is F . A set of random variables is identically
distributed if all members have a common distribution function. A finite set of ran-
dom variables {Xi : i = 1, . . . , n} is independent if for any Euclidean Borel sets B i

(i = 1, . . . , n),

Pr(∩n

i=1{Xi ∈ Bi}) =
n
∏

i=1

Pr{Xi ∈ Bi}.

An infinite set of random variables is independent if every finite subset is indepen-
dent. A very important setting for probabilistic studies is a set of independent and
identically distributed random variables, abbreviated as i.i.d..

Let (Ω,Σ) be a field, and we are given m : Σ→ [0, 1] such that for any countable
collection of pairwise disjoint sets {E i ∈ Σ : i ∈ I},

E = ∪i∈IEi ∈ Σ implies m(E) =
∑

i∈I

m(Ei).

Then a standard theorem of Carathéodory says that m can be uniquely extended
to a probability measure on (Ω,Σ∗), the Borel field generated Σ.

1This ‘{· · ·}’ notation for events reflects the habit of probabilists to keep the event space implicit.
Notice that while probability measures are defined on Σ, random variables are defined on Ω.

417

It is a basic construction to show that for any countable set of probability mea-
sures {mi : i ≥ 0} on the Euclidean Borel field, we can construct a probability space
(Ω,Σ,Pr) and a collection of random variables {X i : i ≥ 0} such that for each i,
mi is the probability measure of Xi. Sketch: We let Ω be the product of countably
many copies of the real line R1, so a sample point is (w0, w1, . . .) where wi ∈ R1. A
basic set of Ω is the product of countably many Euclidean Borel sets

∏

i≥0 Ei where
all but a finite number of these Ei are equal to R1. Let Σ0 consists of finite unions
of basic sets and then our desired Borel field Σ is the smallest Borel field containing
Σ0. It remains to define Pr. For each basic set, define Pr(

∏

i≥0 Ei) :=
∏

i≥0 Pr(Ei)
where only a finite number of the factors Pr(Ei) are not equal to 1. We then extend
this measure to Σ0 since each member of Σ0 is a finite union of disjoint basic sets.
This measure can be shown to be a probability measure on Σ0. Then the said theo-
rem of Carathéodory tells us that it can be uniquely extended to Σ. This concludes
our sketch.

The random variable is discrete if it takes on a countable set of distinct values.
In this case, we may define its expectation of X to be E[X] :=

∑

i
ai Pr{X = ai}

where i range over all the distinct values a i assumed by X. Note that E[X] may
not be finite. The variance of X is defined to be V ar[X] := E[(X −E[X])2]. This
is seen to give V ar[X] = E[X 2]− (E[X])2.

A fundamental fact is that E[X + Y] = E[X] + E[Y] where X,Y are arbitrary
random variables. Using this fact, one often derive unexpected elementary conse-
quences. In contrast, V ar[X + Y] = V ar[X] + V ar[Y] and E[XY] = E[X]E[Y] are
valid provided X,Y are independent random variables.

A random variable X that is 0/1-valued is called a Bernoulli random variable.
The distribution function of such an X is denoted B(1, p) if Pr{X = 1} is p. If
X1, . . . , Xn is a set of i.i.d. random variables with common distribution B(1, p) then
the random variable X = X1 + · · · + Xn has the binomial distribution denoted by
B(n, p). It is straightforward to calculate that E[X] = np and V ar[X] = np(1− p)
if X has distribution B(n, p). Note that Bernoulli random variables is just another
way of specifying events, and when used in this manner, we call the random variable
the indicator function of the event in question. Furthermore, the probability of an
event is just the expectation of its indicator function.

Estimations. Estimating probabilities is a fine art. There are some tools and
inequalities that the student must become familiar with.
(a) One of these, Stirling’s formula in the form due to Robbins (1955), should be
committed to memory:

n! =

(

n

e

)

n

eαn

√
2πn

where
1

12n + 1
< αn <

1

12n
.

Sometimes, the alternative bound αn > (12n)−1 − (360n3)−1 is useful [10]. Using

418 APPENDIX A. PROBABILISTIC BACKGROUND

these bounds, it is not hard to show [20] that for 0 < p < 1 and q = 1− p,

G(p, n)e
− 1

12pn
− 1

12qn <

(

n
pn

)

< G(p, n) (A.1)

where

G(p, n) =
1

√
2πpqn

p−pnq−qn.

(b) The ‘tail of the binomial distribution’ is the following sum

n
∑

i=λn

(

n
i

)

P iQn−i.

We have the following upper bound [10]:

n
∑

i=λn

(

n
i

)

P iQn−i <
λQ

λ− P

(

n
λn

)

P λnQ(1−λ)n

where λ > P and Q = 1− P . This specializes to

n
∑

i=λn

(

n
i

)

<
λ

2λ− 1

(

n
λn

)

2−n

where λ > P = Q = 1/2.
(c) A useful fact is this: for all real x,

e−x
≥ 1− x

with equality only if x = 0. If x ≥ 1 then this is trivial. Otherwise, by the usual
series for the exponential function, we have that for all real x

e−x =
∞
∑

i=0

(−x)i

i!
= (1− x) +

x2

2!
(1−

x

3
) +

x4

4!
(1−

x

5
) + · · · .

The desired bound follows since x < 1.
(d) Jensen’s inequality. Let f(x) be a convex real function. Recall that ‘convexity’
means f(

∑

i
pixi) ≤

∑

i
pf(xi) where

∑

i
pi = 1, pi ≥ 0 for all i where i range over a

finite set. If X and f(X) are random variables then f(E(X) ≤ E(f(X)). We prove
this for the case X has takes on finitely many values x i with probability pi. Then
E(X) =

∑

i
pixi and

f(E(X)) = f(
∑

i

pixi) ≤
∑

i

pif(xi) = E(f(X)).

For instance, if r > 1 then E(|X|r) ≥ (E(|X|))r .

419

(e) Markov’s inequality. Let X be a non-negative random variable, e > 0. Then
we have the trivial inequality H(X − e) ≤ X

e
where H(x) (the Heaviside function)

is the 0-1 function given by H(x) = 1 if and only if x > 0. Taking expections on
both sides, we get

Pr{X > e} ≤
E(X)

e
.

(f) Chebyshev’s inequality. Let X be a discrete random variable, Pr{X = a i} =
pi for all i ≥ 1, with finite second moment and e > 0. Then

Pr{|X| ≥ e} ≤
E(X2)

e2
.

We say this gives an upper bound on tail probability of X. In proof,

E(X2) =
∑

i≥1

pia
2
i

≥ e2
∑

|ai|≥e

pi

= e2 Pr{|X| ≥ e}

Another form of this inequality is

Pr{|X −E(X)| > e} ≤
V ar(X)

e2

where |X − E(X)| measures the deviation from the mean. We could prove this as
for Markov’s inequality, by taking expectations on both sides of the inequality

H(|X −E(X)| − e) ≤

(

X −E(X)

e

)2

.

(g) Chernoff’s bound [6] is concerned a set of i.i.d. random variables X1, . . . , Xn.
Let X = X1 + · · · + Xn and assume E[X] is finite. Define

M(t) := E[etX1]

and

m(a) = inf
t

E[et(X1−a)] = inf
t

e−atM(t).

Then Chernoff showed that

E[X] ≥ a⇒ Pr{X ≤ na} ≤ [m(a)]n

and

E[X] ≤ a⇒ Pr{X ≥ na} ≤ [m(a)]n.

420 APPENDIX A. PROBABILISTIC BACKGROUND

In particular, if X has distribution B(n, p) then it is not hard to compute that

m(a) =

(

p

a

)

a
(

1− p

1− a

)1−a

.

Since it is well-known that E[X] = np, we obtain for 0 < e < 1:

Pr{X ≤ (1− e)np} ≤

(

1

1− e

)(1−e)np
(

1− p

1− (1− e)p

)

n−(1+e)np

.

Markov Chains. We continue the discussion of Markov chains from section 3.
The period of a state i in a chain A is defined in a combinatorial way: it is the largest
positive integer d such that every cycle in the underlying graph GA that contains i
has length divisible by d. A state is periodic or aperiodic depending on whether its
period is greater than 1 or not. It is left as an exercise to show that the period is a
property of a component.

Recall that state i is recurrent if f ∗
i

= 1. In this case, there is certainty in
returning to state i, and under this condition, we may speak of the mean recurrence
time for state i µi, defined as follows:

µi =
∞
∑

n=0

nf
(n)
i

Using the mean recurrence time, we may introduce new classification of states: state
i is null if µi =∞, and non-null otherwise.

To illustrate the classification of states, we consider the (1-dimensional) random
walk with parameter p0 (0 < p0 < 1): this is the Markov chain whose states are the
integers, and the transition probability is given by p i,i+1 = p0 and pi,i−1 = 1−p0, for
all i. It is clear that every state is essential. It can be shown that each Markov state
if recurrent or transient depending on whether p0 = 1

2 or not (Exercises). So state
0 is recurrent iff p = 1

2 . Thus p0 6=
1
2 provide examples of essential but transient

states. In the recurrent situation, the mean recurrence time is infinite (Exercises).
So this illustrates recurrent but null states.

Generating functions. A (real) formal power series is an infinite expression
G(s) =

∑∞
n=0 ansn in some indeterminate s, where a0, a1, . . . are given real numbers.

We say that G(s) is the (ordinary) generating function for the seqence a0, a1, We
can manipulate G(s) algebraically: we may add, multiply or (formally) differentiate
power series in the obvious way. One should think of G(s) as a convenient way to
simultanueously manipulate all the elements of a sequence; hence the terms s n are
just ‘place-holders’. These operations reflect various combinatorial operations on the
original series. Using well-known identities we can deduce many properties of such
series rather transparently. Although we have emphasized that the manipulations
are purely formal, we occasionally try to sum the series for actual values of s;
then one must be more careful with the analytic properties of these series. Most

421

elementary identities involving infinite series reduces (via the above manipulations)
to the following most fundamental identity (1 − x)−1 =

∑

i≥1 xi. For example, the
student observes that all the results from sections 3 and 4 involving limits is basically
an exploitation of this identity.

Rate of Convergence of Substochastic matrices. In section 3, we showed
that the entries of the nth power of the fundamental matrix of an absorbing chain
approaches 0. We now give a more precise bound on the rate of convergence. For
any matrix B, let δ∗(B) and δ∗(B) denote the smallest and largest entries in B. Let
δ(B) = δ∗(B)− δ∗(B). We have the following simple lemma (cf. [16]):

Lemma 38 Let A = (ai,j) be a stochastic matrix each of whose entries are at least
e for some 0 < e < 1. For any n×m non-negative matrix B = (bi,j), we have

δ(AB) ≤ (1− 2e)δ(B).

Proof. Consider the (i, j)th entry
∑

n

k=1 ai,kbk,j of AB. Without loss of generality,
assume that ai,1 ≤ ai,2.

To obtain a lower bound on the (i, j)th entry, assume wlog that δ ∗(B) =
max{b1,j , b2,j}. Then

n
∑

k=1

ai,kbk,j ≥ ai,1b1,j + ai,2b2,j + (
n
∑

k=3

ai,k)δ∗(B)

≥ ai,1δ
∗(B) + ai,2δ∗(B) + (

n
∑

k=3

ai,k)δ∗(B)

where the last inequality must be justified in two separate cases (in one case, we use
the simple fact that a ≥ b and a′ ≥ b′ implies aa′ + bb′ ≥ b′ + a′b). Thus

n
∑

k=1

ai,kbk,j ≥ ai,1δ
∗(B) + (

n
∑

k=2

ai,k)δ∗(B)

= eδ∗(B) + (
n
∑

k=2

ai,k)δ∗(B) + (ai,1 − e)δ∗(B)

≥ eδ∗(B) + (1− e)δ∗(B)

To obtain an upper bound on the (i, j)th entry, Assuming wlog that δ∗(B) =
min{b1,j, b2,j}, we have

n
∑

k=1

ai,kbk,j ≤ ai,1b1,j + ai,2b2,j + (
n
∑

k=3

ai,k)δ
∗(B)

≤ ai,1δ∗(B) + ai,2δ
∗(B) + (

n
∑

k=3

ai,k)δ
∗(B)

422 APPENDIX A. PROBABILISTIC BACKGROUND

≤ ai,1δ∗(B) + (
n
∑

k=2

ai,k)δ
∗(B)

= eδ∗(B) + (
n
∑

k=2

ai,k)δ
∗(B) + (ai,1 − e)δ∗(B)

≤ eδ∗(B) + (1− e)δ∗(B).

The lemma follows since the difference between the largest and smallest entry of
AB is at most

(eδ∗(B) + (1− e)δ∗(B))− (eδ∗(B) + (1− e)δ∗(B)) ≤ (1− 2e)δ(B).

Q.E.D.

In the exercises, we show how to extend this to substochastic matrix B, i.e.,
each row sum in B is at most 1.

Exercises

[1.1] Show the following inequalities ((i)-(iv) from [Kazarinoff]):
(i) (1 + 1

n
)n < (1 + 1

n+1)n+1.

(ii) (1 + 1
n
)n <

∑

n

k=0
1
k! < (1 + 1

n
)n+1.

(iii) n! < (n+1
2)n for n = 2, 3,

(iv) (
∑

n

i=1 xi)(
∑

n

i=1
1
xi

) ≥ n2 where xi’s are positive. Moreover equality
holds only if the xi’s are all equal.

(v) n! <
(

12n

12n−1

)

(2πn)1/2e−nnn. (Use Robbin’s form of Stirling’s formula.)

[1.2]
(i) (Hölder’s Inequality) If X and Y are random variables, and 1 < p <∞,
1
p

+ 1
q

= 1 then

E[XY] ≤ E[|XY |] ≤ E[|X|p]1/pE[|Y |q]1/q.

When p = 2, this is the Cauchy-Schwartz inequality. (In case Y ≡ 1 we have
E[|X|] ≤ E[|X|p]1/p, which implies the Liapounov inequality: E[|X| r]1/r ≤

E[|X|s]1/s for 1 < r < s <∞.)
(ii) (Minkowski’s Inequality)

E[|X + Y |p]1/p
≤ E[|X|p]1/p + E[|Y |p]1/p.

(iii) (Jensen’s inequality) If f is a convex real function, and suppose X and
f(X) are integrable random variables. Then f(E(X)) ≤ E(f(X)). (Note
that convexity means that if

∑

n

i=1 ci = 1, ci > 0, then f(
∑

i = 1ncixi) ≤
∑

n

i=1 cif(xi).)

423

[1.3] Construct the probability space implicitly associated with a Markov chain.

[1.4] For any positive integer k, construct a finite Markov chain with states
0, 1, . . . , n such that states 0 has the value k ≤ p∗

0,0 < k +1. Try to minimize
n = n(k).

[1.5] In this exercise, we do not assume the Markov chain is finite. Show that the
following are properties, though defined for individual states, are character-
istics of components:
(i) Period of a Markov state.
(ii) Nullity of a Markov state.

[1.6] Show that gi,j = f∗
i,j

gj,j. (From this we conclude that gi,j > 0 if and only
if gi,j = f∗

i,j
.) Hint: Write gi,j =

∑∞
n=0 Pr(AnBnCn|D) where D is the

event that the state at time 0 is i, An is the event that the states at times
1, . . . , n − 1 are not equal to j, Bn is the event that the state at time n is
equal to j, Cn is the event that the state at time s is equal to j for infinitely
many s > n. Then Pr(AnBnCn|D) = Pr(Cn|AnBnD) Pr(AnBn|D) But the
Markov property implies Pr(Cn|AnBnD) = Pr(Cn|D).

[1.7] In the appendix, we proved a bound on the rate of convergence of stochastic
matrices. Extend it to substochastic matrices.

[1.8] (a) Prove equation (A.1) in the appendix. (b) Say f(n) ∼ g(n) if f(n)/g(n)
approaches 1 as n → ∞. Conclude that for k = 1, . . . , n/2, p = k/n and
q = 1 − p, then as k →∞ and n− k →∞:

(

n
k

)

∼
1

√
2πpqn(ppqq)n

(c) Let 0 < p < 1 and q = 1 − p. Show that the probability that a Bernoulli
random variable with mean p attains k successes in n trials is

(

n
k

)

pkqn−k
∼

1
√

2πpqn

[1.9] (J. Schmidt) Show
(a)

(

1− p

1− δp

)1−δp

≤ eδ−1

for 0 < δ < 2.
(b)

(

1

1 + e

)1+e

≤ e−e−(e2
/3)

424 APPENDIX A. PROBABILISTIC BACKGROUND

for 0 < e ≤ 1.
(c)

(

1

1− e

)1−e

≤ ee−(e2
/2)

for 0 < e ≤ 1.
(d) Conclude that in the binomial case of Chernoff’s inequality (see ap-
pendix),

Pr{X ≥ (1 + e)np} ≤ e−(e2
/3)np

and
Pr{X ≤ (1− e)np} ≤ e−(e2

/2)np.

[1.10] Deduce from Chernoff’s bound the following estimate on the tail of binomial
distribution:

t
∑

i=bt/2c

(

t
i

)

piqt−i
≤ (4pq)t/2.

Bibliography

[1] A. Avizienis. Signed-digit number representation for fast parallel arithmetic.
Inst. Radio Engr. Trans. Electron. Comput., 10:389–400, 1961.

[2] László Babai and Shlomo Moran. Arthur-Merlin games: a randomized proof
system, and a hierarchy of complexity classes. Journal of Computers and Sys-
tems Science, 36:254–276, 1988.

[3] S. Berkowitz. On computing the determinant in small parallel time using a
small number of processors. Information Processing Letters, 18:147–150, 1984.

[4] Béla Bollobás. Random Graphs. Academic Press, 1985.

[5] A. Borodin, S. Cook, and N. Pippenger. Parallel computation for well-endowed
rings and space-bounded probabilistic machines. Information and Computation,
58:113–136, 1983.

[6] Herman Chernoff. A measure of asymptotic efficiency for tests of hypothesis
based on sum of observations. Ann. of Math. Stat., 23:493–507, 1952.

[7] Kai Lai Chung. Markov Chains with stationary transition probabilities.
Springer-Verlag, Berlin, 1960.

[8] Don Coppersmith and Samuel Winograd. On the asymptotic complexity of
matrix multiplication. Proc. 22nd FOCS, pages 82–90, 1981.

[9] K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro. Computability by
probabilistic machines. Automata Studies. Princeton, New Jersey, 1956.

[10] William Feller. An introduction to Probability Theory and its Applications.
Wiley, New York, 2nd edition edition, 1957. (Volumes 1 and 2).

[11] F. R. Gantmacher. The Theory of Matrices. Chelsea Pub. Co., New York, 1959.
Volumes 1 and 2.

[12] J. T. Gill. Computational complexity of probabilistic Turing machines. SIAM
J. Comp., 6(4):675–695, 1977.

425

426 BIBLIOGRAPHY

[13] S. Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proofs. 17th ACM Symposium STOC, pages 291–304, 1985.

[14] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in in-
teractive proof systems. 18th ACM Symposium STOC, pages 59–68, 1986.

[15] H. Jung. Relationships between probabilistic and deterministic tape complexity.
10th Sympos. om Mathematical Foundations of Comp. Sci., pages 339–346,
1981.

[16] J. G. Kemeny and J. L. Snell. Finite Markov chains. D. Van Nostrand, Prince-
ton, N.J., 1960.

[17] A. N. Kolmogorov. Foundations of the theory of probability. Chelsea Publishing
Co., New York, 1956. Second English Edition.

[18] R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal of the
ACM, 27(4):831–838, 1980.

[19] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[20] W. Wesley Peterson and Jr. E. J. Weldon. Error-Correcting Codes. MIT Press,
1975. 2nd Edition.

[21] Nicholas Pippenger. Developments in “The synthesis of reliable organisms from
unreliable components”. manuscript, University of British Columbia, 1988.

[22] Michael O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms
and Complexity: New Directions and Recent Results, pages 21–39. Academic
Press, New York, 1976.

[23] Jaikumar Radhakrishnan and Sanjeev Saluja. Lecture notes: Interactive proof
systems. Research Report MPI-I-95-1-007, Max-Planck-Institut für Informatik,
Im Stadtwald, D-66123 Saarbrücken, Germany, March 1995. This is a full
TECHREPORT entry.

[24] James Renegar. On the computational complexity and geometry of the first-
order theory of the reals: Parts I, II, III. Technical Report 853, 854, 856, School
of Operations Research and Industrial Engineering, Cornell University, 1989.

[25] W. L. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies and proba-
bilistic computations. Journal of Computers and Systems Science, 28:216–230,
1984.

[26] Uwe Schöning. Complexity and Structure, volume 211 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1986.

BIBLIOGRAPHY 427

[27] J. Simon. On tape bounded probabilistic Turing machine acceptors. Theoretical
Computer Science, 16:75–91, 1981.

[28] Janos Simon. Space-bounded probabilistic turing machine complexity are closed
under complement. 13th Proc. ACM Symp. Theory of Comp. Sci., pages 158–
167, 1981.

[29] R. Solovay and V. Strassen. A fast monte-carlo test for primality. SIAM J.
Computing, 6:84–85, 1977.

[30] Joel Spencer. Ten Lectures on the Probalistic Method. CBMS-NSF Regional
Conference Series in Applied Mathematics. Society for Industrial and Applied
Mathematics, Philadelphia, 1987.

428 BIBLIOGRAPHY

Contents

8 Stochastic Choices 351
8.1 Errors in Stochastic Computation . 351
8.2 How to Amplify Error Gaps . 358
8.3 Average Time and Bounded Error 364
8.4 Interactive Proofs . 370
8.5 Markov Chains and Space-bounded Computation 375
8.6 Efficient Circuits for Ring Operations 383

8.6.1 The Parallel Prefix Problem. 386
8.6.2 Detecting Useless Markov States. 387
8.6.3 Computing the characteristic polynomial. 388
8.6.4 Computing the Matrix Inverse 392
8.6.5 Balanced p-ary Notations . 393

8.7 Complement of Probabilistic Space 397
8.8 Stochastic Time and Space . 400

A Probabilistic Background 415

429

	0.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf

