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Bayesian probability theory provides a framework for data modelling. In this
framework it is possible to find models that are well-matched to the data, and
to use these models to make nearly optimal predictions. In connection to neural
networks and especially to a neural network learning the theory is interpreted as
an inference of the most probable parameters for the model and the given training
data. This article describes an application of the Bayesian probability theory to
the physical problem ”Prediction of Geomagnetic Storms”.
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1 Introduction

Neural networks continue to offer an attractive paradigm for the design and
analysis of adaptive, intelligent systems for many applications in artificial
intelligence #, ®. This is true for a number of reasons: for example, amenability
to adaptation and learning, robustness in the presence of noise, potential for
massively parallel computation.

Predictions of the hourly D4 index from the interplanetary magnetic field and
solar plasma data, based on Artificial Neural Networks (ANN), were made
and analysed by Lundstedt and Wintoft (1994) (feedforward networks) 7 and
Andrejkova et al. (1996, 1999) (recurrent networks, fuzzy neural networks)
12, Recent results have shown that it is possible to use dynamic neural
networks for GMS prediction and modelling of the solar wind-magnetosphere
coupling. In this study we are reporting preliminary results using a Bayesian
neural network model.

There has been increased interest in combining artificial neural networks with
Bayesian probability theory 3. The Bayesian probability theory have been
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proved to be very successful in a variety of applications, for example D. J.
C. MacKay (1995), 8, ®, M. I. Schlessinger and V. Hlavag, 13 and P. Miiller
and D. R. Insua, 9. The effectiveness of the models representing nonlinear
input-output relationships depends on the representation of the input-output
space.

A designed neuro-Bayesian model will predict the occurrence of geomagnetic
storms on the base of input parameters n,v,op. and B,: n ... the plasma
density of solar wind, v ... the bulk velocity of solar wind, B,,op. ... z-
component of the interplanetary magnetic field and its fluctuation.

To follow the changes of the geomagnetic field values we use the quantity D,
index. Its values are in interval £10nT during normal situation but during
the geomagnetic storm they can decrease as much as some hundreds nT in a
few hours.

In Section 2, we describe some basic definitions and properties of the Bayesian
probability theory. In Section 3, we briefly describe the neural networks as
a probabilistic models. Section 4 contains the starting point to the finding
weights of neural networks. Some interesting results for GMS prediction are
described in Section 5.

2 Bayesian probability theory

A Bayesian data-modeller’s aim is to develop probabilistic model that is
well matched to the data and makes optimal predictions using that model.
Bayesian inference satisfies the likelihood principle: Inferences depend only
on the probabilities assigned to the data that were received, not on properties
of the data which might have occured.

We will use the following notation for conditional probabilities:

e 0,0 # () - the space of elementary events;

e 1 - 0 —algebra of some nonempty subset of 2 (a model of computation),

A, B - events, P(A), P(B) - a probability of the events A, B,

(Q,H,P) - a probability space,

P(A|B,H) is pronounced ”the probability of A, given B and H” and it
explains the conditional probability;
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o the statements B and ‘H mean the conditional assumptions on which this
measure of plausibility is based;

The Bayesian approach require:

e specifying a set of prior distributions for all of weights in the network
(and variance of the error) and

e computing the posterior distributions for the weights using Bayes’ Theo-
rem.

Prior distribution is a probability distribution on the unknown parameter
vector w € () in the probability model, typically described by its density func-
tion P(w) which encapsulates the available information about the unknown
value of w. In our case, the vector of weights w has not some know prior dis-
tribution and it means the prior distribution will be replaced by a reference
prior function.

Posterior distribution is a probability distribution on the unknown param-
eter vector w € (2 in the probability model, typically described by its density
function P(w|D), conditionally on the model, encapsulates the available in-
formation about the unknown value of w, given the observed data D and the
knowledge about w, which the prior distribution P(w) might contain. It is
obtained by Bayes’ Theorem.

Bayes’ Theorem: Given data D{x(m),y(m)} generated by the probability
model {P(D|A),A € Q} and a prior distribution P(A), the posterior distri-
bution of A is P(A|D) x P(D|A) * P(A). The proportionality constant is
{J, P(D]A) x P(A)dA}~".

Two approaches have been tried in the finding of the posterior probability:

e to find the most probable parameters (weights) using methods similar
to the conventional training and then approximate the distribution over
weights using information available at this maximum.

e to use Monte Carlo method to sample from the distribution over weights.
We applied the method and we use Markov chaines.

There are two rules of probability which can be used:

e The product rule relates to joint probability of A and B, P(A, B|H) to
the conditional probability:

P(A,B|H) « P(B|H) = P(A|B,H) (1)
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e The sum rule relates the marginal probability distribution of A, P(A|H),
to the joint and conditional distributions:

P(A|H) =Y P(A,B[H) = P(A|B,H)P(B[H) (2)
B B

Having specified the joint probability of all variables as in equation, we can
use the rules of probability to evaluate how our beliefs and predictions should
change when we get new information.

3 Neural Networks as probabilistic models

A supervised neural network is a non-linear parametrized mapping from an
input x to an output ¥ = f(x, w;.4). The output is a continuous function of
the parameters w, which are called weights and A4 is an architecture of the
network.

The network is trained in the classical way using a data set D = {x("™) y(m)}
by the backpropagation algorithm. It means the following sum squared error
is minimized

1 m
Ep(w) =5 >3 (™ = fix™;w)? 3)
m (2
The weight decay is often to include to the objective function for the mini-
mization. It means
M(w) = BEp + aByw, (4)
where By = £ >, w?.

The learning process above can have the following probabilistic interpretation.
The error function is interpreted as minus the log likelihood for a noise model:

P(D|W,B,7‘[) = exp (— BEp) (5)

1
Zp(B)

parameter 3 here defines a noise level 02 = %

P(w|a,H) = Z L exp(—aEw) (6)

w(a)

2 _ 1
where oy, = =
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The function E corresponds to the deduction of parameters w according to

data D. It means

P(Dlw,a, B, H) x P(wla, H)
P(D,a,3,H)

P(w|D,a,B,H) = (7)

Bayesian inference for modelling problems may be implemented by analyti-
cal methods, by Monte Carlo sampling, or by deterministic methods using
Gaussian approximations.

4 Starting points to the application

We deal only with neural networks used for regression. Assuming a Gaussian
noise model, the conditional distribution for the output vector given the input
vector based on this mapping will be as follows:

|y - f(X,W)|2
R ) ®)

where d is the dimension of the output vector and o is the level of the noise
in the outputs.

P(ylx,w) = (2m0®)"2eap(

In the Bayesian approach to the statistical prediction, one does not use a
single "best” vector of weights, but rather integrates the prediction from all
possible weight vectors over the posterior weight distribution which combines
the data with prior computed weights.

The best prediction for the given input from the testing data xj;1 can be
expressed

Fusr = [ Ftnsa )PWI(60,31) . (Y)W Q

where d is the dimension of the weight vector.

Posterior probabilities of weight vectors are the following:

P(w)P((x1,¥y1),. -, (Xn, ¥n)|W)
P((x1,¥1),---,(%Xn,¥n))
_ PW)P(y1,..-,¥nl¥1,. .., Xn, W)
P(y1,---,¥n|X1,---,Xn, W)
P(w) [Ti_, P(yilxi, w)

= 11
P(y1,-.-,¥ynlX1,--,Xn) (11)

P(W|(X1)YI)7 te (Xnvyn)) =

(10)
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For the full formulation of Bayesian problem it is necessary to add the prior
distribution of weights. One of the possibilities is the following:

P(w) = (27w?)™ % exp (- g"’;) (12)

To compute the previous integrals it is very time consuming problem. It is
possible to use Metropolis algorithm and it is the base for Monte Carlo method
that we used in the prediction of GMS. We used the Monte Carlo method
for a construction of our models. The algorithm was applied according the
construction of R. M. Neal !,

5 Results of GMS predictions

We have to discuss various implementation issues which is necessary to do for
the real prediction.

The data are available from the NASA ”OMNI tape” and are distributed
by National Space Science Data Center and WDC-A for Rockets&Satellites.
In the period 1963 - 1999 at each hour are measured and saved the next
quantities: B,,op.,n,v and Dg.

Some data are not complete and we use liner interpolation to fill them but
only in the case if the gap has less then 30 hours. The reconstructed data
are used for a choose of the samples to the training set according to the
following criteria: if the value Dg; decreases at least 40 nT during two hours
then the training sample (the storm) is created from the measured values 36
hours before the decreasing, 2 hours of the identification of decreasing and 108
hours after the decreasing. The file of the values have to fulfill requirement
of completeness of measurements. It means 144 hours describe one event -
GMS. One storm is used for the learning of the neural network by the moving
of 8 hours window.

We have prepared the training data set two data testing sets A and B. To
prepare the A and B sets we used the data from years 1980 — 1984 and
1989 — 1999 because we had the continued values of parameters n,v, B,,0p,
and Dy . The prepared data were represented by a sequence of

t __ t .t t _t t
P = (TL , U 7BszBZ7Dst)’

where p! can be applied as time series.
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Table 1. Experimental Results

Data #Iteration #Good #Bad Average Success

Predictions Predictions Error

A 4000 49 87 2.78377 36,03 %
B 4000 84 52 1.86015 61,76 %
A 6000 62 74 1.90585 45,59 %
B 6000 101 35 0.48040 74,26 %
A 12000 76 60 1.19665 55,88 %
B 12000 113 23 0.23863 83,09 %
A 18000 86 30 0.77771 63,24 %
B 18000 109 27 0.23801 80,15 %

The software of M. Levicky described in ¢ was modified and used in the
present application. The algorithm based on the works of Neal and McKay
was written in Delphi 5.

The first computed results are in the following Table 1. The models are
just tested. We present results computed with two data sets A and B. Pre-
diction performance is measured by #Good Predictions, # Bad Predictions,
AverageError and % of Success.

Total test samples in testing sets A and B: 272, the number of input neurons in
the neural network: 32, the number of hidden neurons in the neural networks:
28, the number of output neurons: 1.

The computed results are interesting from the following points of view:

e With the higher number of iteration the average error decreases. It is
one of criteria to the evaluation of the model.

e After 18000 iterations the success grows very slowly in the case of the
testing data set A and decrease in the case B.

e Bayesian neural networks that we used in the prediction of geomagnetic
storms look like very good model. They move the weight vector to the
most probable part of the weight space.
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