
Spring Cloud 
Contract

Consumer-Driven Contracts Architecutre

@RoboNovotny
Decejber 12nd, 2018



Stabilize 
Chaotic
& Fragile 

Data 
Flows



Consumer-Driven
Contract



Spring Cloud Contract

1. Define contract in YAML | Groovy
2. Make sure server and client adhere

to the contract



request:
method: POST
url: /check
body:

text: bacardi, martel, hennessy...
headers:

Content-Type: application/json;charset=UTF-8
response:

status: 200
body:

match: 100
headers:

Content-Type: application/json;charset=UTF-8



Supported
Technologies

§ Spring Boot
§ HTTP

§ Spring Integration

§ Spring Cloud Stream

§ Camel

§ RabbitMQ/AMQP



Server side: HTTP

§ Write down the contract
§ Release as an artifact



Client Side: HTTP

§ Code client-side
§ Verify contract via integration test



Client Side: 
Integration Tests

@AutoConfigureStubRunner(ids = {
"sk.eastcode:scc-producer:+:stubs:6565“

})



Client Side: 
Integration Tests

§ Stub Runner: 
• download contracts from repo
• parse contract

§ WireMock
• mimic a HTTP server

§ RestTemplate: 
• Spring client with mock client



Server Side: HTTP

§ Implement server-side
§ Verify contract via integration test



Server Side: 
Integration Tests

§ Maven/Gradle Plugin : 
• autogenerate tests according to 

contract

§ Spring MockMVC + RestAssured
• run tests against HTTP endpoint

implementation



Contract Changes?

§ release!
a new contract artifact to repo

§ break‘em
client tests and server-side tests
will possibly break!

§ fix‘em!



Thanks!
@RoboNovotny


