
Search
for: within

 Use + - () " " Search help

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks > Java technology

A JSTL primer, Part 4: Accessing SQL and XML
content

Contents:
The xml library

The sql library

A word of caution

Summary

Resources

About the author

Rate this article

Related content:
Building Web-based
applications with JDBC

Take control of your JSP
pages with custom tags

JSP taglibs: Better usability
by design

Subscribe to the
developerWorks newsletter

developerWorks Toolbox
subscription

Also in the Java zone:
Tutorials

Tools and products

Code and components

Articles

Custom tag libraries for exchanging XML and database content in JSP pages

Level: Intermediate

Mark A. Kolb (mak@taglib.com)
Software Engineer
May 20, 2003

A hallmark of Web-based applications is the integration of multiple
subsystems. Two of the most common mechanisms for exchanging data
between such subsystems are SQL and XML. In this article, Mark Kolb
concludes his coverage of JSTL with an introduction to the sql and xml
libraries for accessing database and XML content in JSP pages.

The stereotypical architecture for a Web-based application calls for three tiers: a
Web server for handling requests, an application server for implementing
business logic, and a database for managing persistent data. The linkage between
the application and database tiers typically takes the form of SQL calls into a
relational database. When the business logic is written in the Java language,
JDBC is used to implement these calls.

If the application calls for integration with additional servers (either local or
remote), further mechanisms for exchanging data between the various subsystems
will be required. An increasingly common approach to communicating data both
within and between Web applications is the exchange of XML documents.

So far in our tour of JSTL, we've examined the JSTL expression language (EL)
and both the core and fmt tag libraries. In this final installment, we'll consider
the sql and xml libraries that -- as their names suggest -- provide custom tags
for accessing and manipulating data retrieved from SQL databases and XML
documents.

Don't miss the rest
of this series
Part 1, "The
expression language"
(February 2003)

Part 2, "Getting down
to the core" (March
2003)

Part 3, "Presentation
is everything" (April

The xml library
By design, XML provides a flexible means for
representing structured data that is at the same time
readily amenable to validation. As a result, it is
particularly well suited for exchanging data between
loosely coupled systems. This in turn makes it an
attractive integration technology for Web-based
applications.

The first step in interacting with data represented as
XML is to retrieve it as an XML document and parse it
to yield a data structure for accessing the contents of the
document. After the document has been parsed you can
then optionally transform it to yield a new XML

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/
ftp://www6.software.ibm.com/software/developer/library/j-jstl0520.jar
javascript:void newWindow()
http://www-106.ibm.com/developerworks/java/edu/j-dw-jdbcweb-i.html
http://www-106.ibm.com/developerworks/java/edu/j-dw-jdbcweb-i.html
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/toolbox/
http://www-106.ibm.com/developerworks/toolbox/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tools.jsp
http://www-106.ibm.com/developerworks/views/java/code.jsp
http://www-106.ibm.com/developerworks/views/java/articles.jsp
mailto:mak@taglib.com
http://www-106.ibm.com/developerworks/java/library/j-jstl0211/
http://www-106.ibm.com/developerworks/java/library/j-jstl0318/
http://www-106.ibm.com/developerworks/java/library/j-jstl0415/
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0318/
http://www-106.ibm.com/developerworks/java/library/j-jstl0318/
http://www-106.ibm.com/developerworks/java/library/j-jstl0415/
http://www-106.ibm.com/developerworks/java/library/j-jstl0415/

2003)document, to which the same operations can again be
applied. Finally, the data from the document can be
extracted and then displayed or used as input for performing additional operations.

These steps are mirrored in the JSTL tags used for manipulating XML. XML documents are retrieved using the
<c:import> tag from the core library, as we discussed in Part 2, Getting down to the core. The
<x:parse> tag is then used to parse the document, with support for standard XML parsing technologies such
as the Document Object Model (DOM) and Simple API for XML (SAX). The <x:transform> tag is
available for transforming XML documents and relies on the standard technology for transforming XML data:
the Extensible Stylesheet Language (XSL). Finally, several tags are provided for accessing and manipulating
parsed XML data, all of which rely on yet another standard, the XML Path Language (XPath), for referencing
the contents of parsed XML documents.

Parsing XML
The <x:parse> tag actually takes several forms, depending upon the type of parsing desired. The most basic
form of this action uses the following syntax:

<x:parse xml="expression" var="name" scope="scope"
 filter="expression" systemId="expression"/>

Of these five attributes, only the xml attribute is required, and its value should be either a String containing
the XML document to be parsed or an instance of java.io.Reader through which the document to be
parsed can be read. Alternatively, you can specify the document to be parsed as the body content of the
<x:parse> tag, using this syntax:

<x:parse var="name" scope="scope"
 filter="expression" systemId="expression">
 body content
</x:parse>

The var and scope attributes specify a scoped variable for storing the parsed document. This variable can
then be used by the other tags in the xml library to perform additional operations. Note that when the var and
scope attributes are present, the type of data structure used by JSTL to represent the parsed document is
implementation-specific, allowing for vendor optimization.

If your application needs to perform operations on the parsed document that is provided by JSTL, then an
alternate form of <x:parse> can be used, which requires that the parsed document adhere to a standard
interface. In this case the syntax for the tag is as follows:

<x:parse xml="expression" varDom="name" scopeDom="scope"
 filter="expression" systemId="expression"/>

When you use this version of <x:parse>, the object representing the parsed XML document must implement
the org.w3c.dom.Document interface. You can also use the varDom and scopeDom attributes in place
of var and scope when the XML document is specified as the body content of <x:parse>, as follows:

<x:parse varDom="name" scopeDom="scope"
 filter="expression" systemId="expression">
 body content
</x:parse>

The remaining two attributes, filter and systemId, enable more fine-grained control of the parsing. The

http://www-106.ibm.com/developerworks/java/library/j-jstl0318/

Learning about RSS
RDF Site Summary (RSS) is
an XML document format
published by many
news-oriented sites, which
lists their current headlines
and provides URLs for linking
to the corresponding articles.
As such, it provides a simple
mechanism for syndicating
news items over the Web. For
further details on RSS, see
Resources.

filter attribute specifies an instance of the org.xml.sax.XMLFilter
class for filtering the document prior to parsing. This attribute is particularly
useful if the document to be parsed is very large, but only a small subset is of
interest for the task at hand. The systemId attribute indicates the URI for
the document being parsed and resolves any relative paths present in the
document. This attribute is required if the XML being parsed uses relative
URLs to refer to other documents or resources that need to be accessed during
the parsing process.

Listing 1 demonstrates the use of the <x:parse> tag, including its
interaction with <c:import>. Here, the <c:import> tag is used to
retrieve the RDF Site Summary (RSS) feed for the well-known Slashdot Web
site. The XML document representing the RSS feed is then parsed by
<x:parse>, and an implementation-specific data structure representing the
parsed document is stored in a variable named rss with page scope.

Listing 1. Interaction of the <x:parse> and <c:import> actions

<c:import var="rssFeed" url="http://slashdot.org/slashdot.rdf"/>
<x:parse var="rss" xml="${rssFeed}"/>

Transforming XML
XML is transformed by means of XSL stylesheets. JSTL supports this operation through use of the
<x:transform> tag. As was the case for <x:parse>, the <x:transform> tag supports several
different forms. The syntax for the most basic form of <x:transform> is:

<x:transform xml="expression" xslt="expression"
 var="name" scope="scope"
 xmlSystemId="expression" xsltSystemId="expression">
 <x:param name="expression" value="expression"/>
 ...
</x:transform>

Here, the xml attribute specifies the document to be transformed, and the xslt attribute specifies the
stylesheet defining that transformation. These two attributes are required; the others are optional.

Like the xml attribute of <x:parse>, the value of the xml attribute of <x:transform> can be either a
String containing an XML document or a Reader for accessing such a document. In addition, however, it
can also take the form of an instance of either the org.w3c.dom.Document class or the
javax.xml.transform.Source class. Finally, it can also be the value of a variable assigned using either
the var or varDom attribute of the <x:parse> action.

Alternatively, you can include the XML document to be transformed as the body content of the
<x:transform> action. In this case, the syntax for <x:transform> is:

<x:transform xslt="expression"
 var="name" scope="scope"
 xmlSystemId="expression" xsltSystemId="expression">
 body content
 <x:param name="expression" value="expression"/>
 ...
</x:transform>

In both cases, the xslt attribute specifying the XSL stylesheet should be either a String, a Reader, or an
instance of javax.xml.transform.Source.

If the var attribute is present, the transformed XML document will be assigned to the corresponding scoped
variable as an instance of the org.w3c.dom.Document class. As usual, the scope attribute specifies the
scope for this variable assignment.

The <x:transform> tag also supports storing the result of the transformation in an instance of the
javax.xml.transform.Result class, rather than as an instance of org.w3c.dom.Document. If the
var and scope attributes are omitted and a Result object is specified as the value of the result attribute,
the <x:transform> tag will use that object to hold the results of applying the stylesheet. The two syntax
variations for using the result attribute of <x:transform> appear in Listing 2:

Listing 2. Syntax variations for the <x:transform> action when using the result attribute to supply a
javax.xml.transform.Result instance

<x:transform xml="expression" xslt="expression"
 result="expression"
 xmlSystemId="expression" xsltSystemId="expression">
 <x:param name="expression" value="expression"/>
 ...
</x:transform>

<x:transform xslt="expression"
 result="expression"
 xmlSystemId="expression" xsltSystemId="expression">
 body content
 <x:param name="expression" value="expression"/>
 ...
</x:transform>

When you employ either of these two forms of <x:transform>, the javax.xml.transform.Result
object must be created independently from the custom tag. The object itself is supplied as the value of the
result attribute.

If neither the var attribute nor the result attribute is present, then the results of the transformation will
simply be inserted into the JSP page as a result of processing the <x:transform> action. This is particularly
useful when a stylesheet is being used to transform data from XML into HTML, as illustrated in Listing 3:

Listing 3. Directly displaying transformed XML data in a JSP page

<c:import var="rssFeed" url="http://slashdot.org/slashdot.rdf"/>
<c:import var="rssToHtml" url="/WEB-INF/xslt/rss2html.xsl"/>
<x:transform xml="${rssFeed}" xslt="${rssToHtml}"/>

In this example, both the RSS feed and an appropriate stylesheet are read in using the <c:import> tag. The
output of the stylesheet is HTML, which is directly displayed by omitting both the var and result attributes
of <x:transform>. Figure 1 shows a sample result:

Figure 1. Output of Listing 3

Like the systemId attribute of <x:parse>, the xmlSystemId and xsltSystemId attributes of
<x:transform> are used to resolve relative paths within XML documents. In this case, the xmlSystemId
attribute applies to the document provided as the value of the tag's xml attribute, while the xsltSystemId
attribute is used to resolve relative paths within the stylesheet specified by the tag's xslt attribute.

If the stylesheet driving the document transformation takes parameters, they are specified using the
<x:param> tag. When present, these tags must appear inside the body of the <x:transform> tag. If the
XML document being transformed is also specified as body content, then it must precede any <x:param>
tags.

The <x:param> tag has two required attributes -- name and value -- just like the <c:param> and
<fmt:param> tags discussed in Part 2 and Part 3 of this series.

Working with XML content
Parsing and transformation act upon XML documents in their entirety. After you've massaged the document
into a usable form, however, often only certain elements of the data contained in the document will be of
interest to a particular application. For this reason, the xml library includes several tags for accessing and
manipulating individual pieces of content from XML documents.

If you've read Part 2 of this series (Getting down to the core) then the names of these xml tags will be familiar.
They are based on corresponding tags from the JSTL core library. Whereas these core library tags access
data from the JSP container through their value attributes using EL expressions, their counterparts in the xml
library access data from XML documents through select attributes using XPath expressions.

XPath is a standardized notation for referencing the elements of XML documents and their attributes and body
content. As its name suggests, this notation resembles file system paths in the sense that the components of an
XPath statement are delimited by slashes. These components map to the nodes of an XML document, with
successive components matching nested elements. In addition, asterisks can be used as wildcards to match
multiple nodes, and bracketed expressions can be used to match attribute values and specify indices. There are
several online references describing XPath and its use (see Resources).

To display an element of data from an XML document, then, use the <x:out> action, which is the XML
analog to the core library's <c:out> tag. Whereas <c:out> has attributes named value and
escapeXml, however, the attributes of <x:out> are select and escapeXml:

<x:out select="XPathExpression" escapeXml="boolean"/>

http://www-106.ibm.com/developerworks/java/library/j-jstl0318/
http://www-106.ibm.com/developerworks/java/library/j-jstl0415/
http://www-106.ibm.com/developerworks/java/library/j-jstl0318/

The difference, of course, is that the value of the select attribute must be an XPath expression, while the
value attribute of <c:out> must be an EL expression. The meaning of the escapeXml attribute is the
same for both tags.

Listing 4 demonstrates use of the <x:out> action. Note that the XPath expression specified for the select
attribute is prefaced by an EL expression for a scoped variable, specifically $rss. This EL expression
identifies the parsed XML document against which the XPath statement is to be evaluated. The statement here
searches the document for elements named title whose parent nodes are named channel, selecting the
first such element it finds (as specified by the [1] index at the end of the expression). The <x:out> action
causes the body content of this element to be displayed, with XML character escaping turned off.

Listing 4. Using the <x:out> action to display the body content of an XML element

<c:import var="rssFeed" url="http://slashdot.org/slashdot.rdf"/>
<x:parse var="rss" xml="${rssFeed}"/>

<x:out select="$rss//*[name()='channel']/*[name()='title'][1]"
 escapeXml="false"/>

In addition to <x:out>, the JSTL xml library includes the following tags for manipulating XML data:

<x:set> for assigning the value of an XPath expression to a JSTL scoped variable●

<x:if> for conditionalizing content based on the boolean value of an XPath expression●

<x:choose>, <x:when>, and <x:otherwise> for implementing mutually exclusive
conditionalization based on XPath expressions

●

<x:forEach> for iterating over multiple elements matched by an XPath expression●

Each of these tags behaves similarly to the corresponding tag from the core library. Use of <x:forEach>,
for example, is illustrated in Listing 5, in which the <x:forEach> action is used to iterate over all of the
elements named item in an XML document representing an RSS feed. Note that the XPath expressions in the
two <x:out> actions nested in the body content of <x:forEach> are relative to the nodes over which the
<x:forEach> tag is iterating. They are used to retrieve the link and title child nodes of each item
element.

Listing 5. Using the <x:out> and <x:forEach> actions to select and display XML data

<c:import var="rssFeed" url="http://slashdot.org/slashdot.rdf"/>
<x:parse var="rss" xml="${rssFeed}"/>

<a href="<x:out select="$rss//*[name()='channel']/*[name()='link'][1]"/>"
 ><x:out select="$rss//*[name()='channel']/*[name()='title'][1]"
 escapeXml="false"/>

<x:forEach select="$rss//*[name()='item']">
 <a href="<x:out select="./*[name()='link']"/>"
 ><x:out select="./*[name()='title']" escapeXml="false"/>
</x:forEach>

The output resulting from the JSP code in Listing 5 is identical to that of Listing 3, which appears in Figure 1.
The xml library's XPath-oriented tags thus provide an alternative to stylesheets for transforming XML content,
particularly in cases where the final output is HTML.

The sql library
The fourth and final set of JSTL actions is the sql custom tag library. As its name suggests, this library
provides tags for interacting with relational databases. More specifically, the sql library defines tags for

specifying datasources, issuing queries and updates, and grouping queries and updates into transactions.

Datasources
Datasources are factories for obtaining database connections. They often implement some form of connection
pooling to minimize the overhead associated with the creating and initializing connections. Java 2 Enterprise
Edition (J2EE) application servers typically provide built-in support for datasources, which are made available
to J2EE applications through the Java Naming and Directory Interface (JNDI).

JSTL's sql tags rely on datasources for obtaining connections. Several, in fact, include an optional
dataSource attribute for explicitly specifying their connection factory, either as an instance of the
javax.sql.DataSource interface or as a JNDI name.

You can obtain instances of javax.sql.DataSource using the <sql:setDataSource> tag, which
takes the two following forms:

<sql:setDataSource dataSource="expression"
 var="name" scope="scope"/>

<sql:setDataSource url="expression" driver="expression"
 user="expression" password="expression"
 var="name" scope="scope"/>

For the first form, only the dataSource attribute is required. For the second, only the url attribute is
required.

Use the first form to access a datasource associated with a JNDI name, by providing that name as the value of
the dataSource attribute. The second form causes a new datasource to be created, using the JDBC URL
provided as the value of the url attribute. The optional driver attribute specifies the name of the class
implementing the database driver, while the user and password attributes provide login credentials for
accessing the database, if needed.

For either of the two forms of <sql:setDataSource>, the optional var and scope attributes assign the
specified datasource to a scoped variable. If the var attribute is not present, however, then the
<sql:setDataSource> action has the effect of setting the default datasource for use by sql tags that
don't specify an explicit datasource.

You can also use the javax.servlet.jsp.jstl.sql.dataSource context parameter to configure the
sql library's default datasource. In practice, placing an entry such as the one in Listing 6 in your application's
web.xml file is the most convenient way to specify a default datasource. Using <sql:setDataSource> to
do so requires the use of a JSP page to initialize the application, and therefore some way to run that page
automatically.

Listing 6. Using a JNDI name to set JSTL's default datasource in the web.xml deployment descriptor

<context-param>
 <param-name>javax.servlet.jsp.jstl.sql.dataSource</param-name>
 <param-value>jdbc/blog</param-value>
</context-param>

Submitting queries and updates
After access to a datasource is established, you can use the <sql:query> action to execute queries, while
database updates are performed using the <sql:update> action. Queries and updates are specified as SQL
statements, which may be parameterized using an approach based on JDBC's
java.sql.PreparedStatement interface. Parameter values are specified using nested <sql:param>
and <sql:dateParam> tags.

Three variations of the <sql:query> action are supported, as follows:

<sql:query sql="expression" dataSource="expression"
 var="name" scope="scope"
 maxRows="expression" startRow="expression"/>

<sql:query sql="expression" dataSource="expression"
 var="name" scope="scope"
 maxRows="expression" startRow="expression">
 <sql:param value="expression"/>
 ...
</sql:query>

<sql:query dataSource="expression"
 var="name" scope="scope"
 maxRows="expression" startRow="expression">
 SQL statement
 <sql:param value="expression"/>
 ...
</sql:query>

For the first two forms, only the sql and var attributes are required. For the third, only var is required.

The var and scope attributes specify a scoped variable for storing the results of the query. The maxRows
attribute can be used to limit the number of rows returned by the query, while the startRow attribute allows
some initial number of rows to be ignored (such as being skipped over when the result set is being constructed
by the database).

After you execute the query, the result set is assigned to the scoped variable as an instance of the
javax.servlet.jsp.jstl.sql.Result interface. This object provides properties for accessing the
rows, column names, and size of the query's result set, as summarized in Table 1:

Table 1. Properties defined by the javax.servlet.jsp.jstl.sql.Result interface

Property Description

rows
An array of SortedMap objects, each of which maps column names to a single row in
the result set

rowsByIndex An array of arrays, each corresponding to a single row in the result set

columnNames
An array of strings naming the columns in the result set, in the same order as used for
the rowsByIndex property

rowCount The total number of rows in the query result

limitedByMaxRows True if the query was limited by the value of the maxRows attribute

Of these properties, rows is particularly convenient, because you can use it to iterate through the result set and
access the column data by name. This is demonstrated in Listing 7, where a query's results are assigned to a
scoped variable named queryResults, the rows of which are then iterated over using the core library's
<c:forEach> tag. Nested <c:out> tags take advantage of the EL's built-in support for Map collections to
look up row data corresponding to column names. (Recall from Part 1 that ${row.title} and
${row["title"]} are equivalent expressions.)

Listing 7 also demonstrates the use of <sql:setDataSource> to associate a datasource with a scoped
variable, which is subsequently accessed by the <sql:query> action through its dataSource attribute.

http://www-106.ibm.com/developerworks/java/library/j-jstl0211/

Listing 7. Using <sql:query> to query a database, and using <c:forEach> to iterate through the result set

<sql:setDataSource var="dataSrc"
 url="jdbc:mysql:///taglib" driver="org.gjt.mm.mysql.Driver"
 user="admin" password="secret"/>
 <sql:query var="queryResults" dataSource="${dataSrc}">
 select * from blog group by created desc limit ?
 <sql:param value="${6}"/></sql:query>

<table border="1">
 <tr>
 <th>ID</th>
 <th>Created</th>
 <th>Title</th>
 <th>Author</th>
 </tr>
<c:forEach var="row" items="${queryResults.rows}">
 <tr>
 <td><c:out value="${row.id}"/></td>
 <td><c:out value="${row.created}"/></td>
 <td><c:out value="${row.title}"/></td>
 <td><c:out value="${row.author}"/></td>
 </tr>
</c:forEach>
</table>

Figure 2 shows sample page output corresponding to the JSTL code in Listing 7. Note also that the SQL
statement appearing in the body of the <sql:query> action in Listing 7 is parameterized.

Figure 2. Output of Listing 7

Within an <sql:query> action, SQL statements specified either as body content or through the sql
attribute can be parameterized using the ? character. For each such parameter in the SQL statement, there
should be a corresponding <sql:param> or <sql:dateParam> action nested in the body of the
<sql:query> tag. The <sql:param> tag takes a single attribute -- value -- for specifying the parameter
value. Alternatively, when the value for the parameter should be a character string, you can omit the value

attribute and provide the parameter value as the body content of the <sql:param> tag.

Parameter values representing dates, times, or time stamps are specified using the <sql:dateParam> tag,
using the following syntax:

<sql:dateParam value="expression" type="type"/>

For <sql:dateParam>, the expression for the value attribute must evaluate to an instance of the
java.util.Date class, while the value of the type attribute must be either date, time, or timestamp,
depending upon which of these three types of time-related values is required by the SQL statement.

Like <sql:query>, the <sql:update> action supports three forms:

<sql:update sql="expression" dataSource="expression"
 var="name" scope="scope"/>

<sql:update sql="expression" dataSource="expression"
 var="name" scope="scope">
 <sql:param value="expression"/>
 ...
</sql:update>

<sql:update dataSource="expression"
 var="name" scope="scope">
 SQL statement
 <sql:param value="expression"/>
 ...
</sql:update>

The sql and dataSource attributes have the same semantics for <sql:update> as they do for
<sql:query>. Similarly, the var and scope attributes are again used to specify a scoped variable, but in
this case the value assigned to the scoped variable will be an instance of java.lang.Integer indicating
the number of rows that were changed as a result of executing the database update.

Managing transactions
Transactions are used to protect a sequence of database operations that must either succeed or fail as a group.
Transaction support is built into JSTL's sql library, which makes it trivial to wrap a series of queries and
updates into a transaction simply by nesting the corresponding <sql:query> and <sql:update> actions
in the body content of a <sql:transaction> tag.

The syntax for <sql:transaction> is as follows:

<sql:transaction dataSource="expression" isolation="isolationLevel">
 <sql:query .../> or <sql:update .../>
 ...

The <sql:transaction> action has no required attributes. If you omit the dataSource attribute, then
the JSTL default datasource is used. The isolation attribute is used to specify the isolation level for the
transaction and may be either read_committed, read_uncommitted, repeatable_read, or
serializable. If you do not specify this attribute, the transaction will use the datasource's default isolation
level.

As you might expect, all nested queries and updates must use the same datasource as the transaction itself. In

fact, a <sql:query> or <sql:update> nested inside a <sql:transaction> action is not allowed to
specify a dataSource attribute. It will automatically use the datasource associated (either explicitly or
implicitly) with the surrounding <sql:transaction> tag.

Listing 8 shows an example of how <sql:transaction> is used:

Listing 8. Using <sql:transaction> to combine database updates into a transaction

<sql:transaction>
 <sql:update sql="update blog set title = ? where id = ?">
 <sql:param value="New Title"/>
 <sql:param value="${23}"/>
 </sql:update>
 <sql:update sql="update blog set last_modified = now() where id = ?">
 <sql:param value="${23}"/>
 </sql:update>
</sql:transaction>

A word of caution
JSTL's xml and sql libraries enable complex functionality to be implemented in JSP pages using custom tags.
At the same time, however, implementing this sort of functionality in your presentation layer may not
necessarily be the best approach.

For large applications being written by multiple developers over a long period of time, strict segregation
between the user interface, the underlying business logic, and the data repository has proven to simplify
software maintenance over the long term. The popular Model-View-Controller (MVC) design pattern is a
formalization of this "best practice." In the domain of J2EE Web applications, the model is the business logic
of an application, and the JSP pages comprising the presentation layer are the view. (The controllers are the
form handlers and other server-side mechanisms for enabling browser actions to initiate changes to the model
and subsequently update the view.) MVC dictates that the three major elements of an application -- model,
view, and controller -- have minimal dependencies upon one another, restricting their interactions with each
other to consistent, well-defined interfaces.

An application's reliance on XML documents for data exchange and relational databases for data persistence
are characteristics of the application's business logic (that is, its model). Adherence to the MVC design pattern
would suggest, therefore, that these implementation details should not be reflected in the application's
presentation layer (that is, its view). When JSP is used to implement the presentation layer, then, use of the
xml and sql libraries would be a violation of MVC, because their use would mean exposing elements of the
underlying business logic within the presentation layer.

For this reason, the xml and sql libraries are best suited to small projects and prototyping efforts. Dynamic
compilation of JSP pages by the application server also makes the custom tags in these libraries useful as
debugging tools.

Summary
In this series, we have examined the capabilities of the four JSTL custom tag libraries and their usage. In Part 1
and Part 2, we saw how you can avoid JSP scripting elements in many common situations through use of the
EL and the tags of the core library. Part 3 focused on using the fmt library to localize Web content.

In this final installment, we reviewed the functionality of the xml and sql libraries. If you're willing to accept
the consequences of including business logic in the presentation layer, the tags in these two libraries make it
very easy to incorporate content from XML documents and relational databases into JSP pages. These two
libraries also demonstrate how the JSTL libraries build upon one another and interoperate when integrating
<sql:query> and <c:forEach>, as well as the ability of the xml library to leverage the <c:import>
action.

http://www-106.ibm.com/developerworks/java/library/j-jstl0211/
http://www-106.ibm.com/developerworks/java/library/j-jstl0318/
http://www-106.ibm.com/developerworks/java/library/j-jstl0415/

Resources

Download the source code for the Web log example application.●

The official JSTL Web site is a good starting point to learn more about JSTL.●

The JSTL 1.0 Specification is the final authority on the EL and the four JSTL tag libraries.●

The Jakarta Taglibs project is home to the reference implementation for JSTL 1.0.●

JSTL in Action, by Shawn Bayern (Manning, 2002), provides excellent coverage of all JSTL features,
having been written by the reference implementation lead.

●

Popular Java programming author David Geary has also written a book on JSTL, entitled Core JSTL
(Prentice-Hall and Sun Microsystems Press, 2002).

●

JSPTags.com is a directory of JSP resources, focusing particularly on custom tag libraries.●

Coverage of JSTL is included as part of Sun's Java Web Services Tutorial.●

To find out more about RSS, read James Lewin's "An introduction to RSS news feeds" (developerWorks,
November 2000).

●

Mark Colan provides an introductory overview of XSL in "Putting XSL transformations to work"
(developerWorks, October 2001).

●

For a better understanding of XPath and its relationship to the Document Object Model (DOM), take a
look at "Effective XML processing with DOM and XPath in Java" (developerWorks, May 2002) by
Parand Tony Darugar.

●

Get up to speed with JDBC with this hands-on tutorial, "Building Web-based applications with JDBC"
(developerWorks, December 2001).

●

"Using JSPs and custom tags within VisualAge for Java and WebSphere Studio" (WebSphere Developer
Domain) is a WBOnline hands-on workshop demonstrating the use of servlets, JSP pages, and custom
tag libraries.

●

Learn all about custom tag libraries with Jeff Wilson's excellent article, "Take control of your JSP pages
with custom tags" (developerWorks, January 2002).

●

Noel Bergman's article, "JSP taglibs: Better usability by design" (developerWorks, December 2001),
shows you how declarative tags help improve the usability of your JSP pages.

●

Find hundreds more Java technology resources on the developerWorks Java technology zone.●

About the author
Mark Kolb is a Software Engineer working in Austin, Texas. He is a frequent industry speaker on server-side
Java platform topics and the co-author of Web Development with JavaServer Pages, 2nd Edition. You can
contact Mark at mak@taglib.com.

ftp://www6.software.ibm.com/software/developer/library/j-jstl0520.jar
http://java.sun.com/products/jsp/jstl/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr052/
http://jakarta.apache.org/taglibs/index.html
http://www.manning.com/bayern/index.html
http://www.core-jstl.com/
http://jsptags.com/index.jsp
http://java.sun.com/webservices/docs/ea2/tutorial/doc/JSTL3.html
http://www-106.ibm.com/developerworks/web/library/w-rss.html
http://www-106.ibm.com/developerworks/xml/library/x-xsltwork/
http://www-106.ibm.com/developerworks/xml/library/x-domjava/
http://www-106.ibm.com/developerworks/java/edu/j-dw-jdbcweb-i.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/&origin=j
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www.ibm.com/developerworks/java/
http://www.manning.com/fields2/index.html
mailto:mak@taglib.com

What do you think of this document?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Comments?

IBM developerWorks > Java technology

 About IBM | Privacy | Legal | Contact

ftp://www6.software.ibm.com/software/developer/library/j-jstl0520.jar
javascript:void newWindow()
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	A JSTL primer, Part 4: Accessing SQL and XML content

	BHGLDKBOBEMCFMAHNJOBCJLJIEBAEFJNDP:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	form2:
	x:
	f1: A JSTL primer, Part 4: Accessing SQL and XML content
	f2: Java
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

