Search
for:

within|............... Search
[| =N

Useonly ()" " +- Search help
IBM home | Products & services | Support & downloads | My account

IBM developerWorks: Javatechnology : Java developerWorks
technology articles

A JSTL primer: Getting down to the core

Ec::le &m;l it!
Flow control and URL management through custom tags Contents:
Level: Intermediate Example application
Mark A. Kolb (mak@taglib.com) Flow control
Software Engineer URL actions
March 18, 2003 I mporting content

The JSP Standard Tag Library (JSTL) cor e library, asits name
suggests, provides custom tags for basic functionality, such as
managing scoped variables and interacting with URLs, aswell asfor ~ Summary
fundamental operations like iteration and conditionalization. Not only
can these tags be leveraged directly by page authors, but they also
provide a foundation for more complex presentation logic in About the author
combination with the other JSTL libraries. Mark Kolb continueshis Rrge this article
exploration into JSTL and the cor e library with alook at tagsto -
assist with flow control and URL management.

Request redirection

Resources

Related content:

Intheinitial article of this series, you got your first look at JSTL. We A JSTL primer: The
described the use of its expression language (EL) to access data and operate €xpression language
on i_t. Asyou learned, the EL is used to assign dynamic values to the Using JSPs and custom tags
attrlbut(_as of JSTL custom tags, and _thus pl ays the samerole as JS_P _ within VisualAge for Java
expressions for specifying reguest-time attribute values for the built-in d WebSphere Studi
actions and other custom tag libraries. an £re JUdo

. Take control of your JSP
To demonstrate the use of the EL, we introduced three tags from thecor e pages with custom tags

library: <c: set >, <c: renove>, and <c: out >. <c: set > and
<c: renpve> are used for managing scoped variables; <c: out > isfor JSP taglibs. Better usability
displaying data, particularly values computed using the EL. Based on this by design

groundwork, then, we will focus our attention in this article on the remaining Subscribe to the

tagsin the cor e library, which can be broadly grouped into two major =

categories: flow control and URL management. devel operWorks newslefter
Example application Alsoin the Java zone:
To demonstrate the JSTL tags, we'll use examples from aworking Tutorials

application for the remaining articlesin this series. Because of their growing
popularity and familiarity, we'll use asimple Java-based Weblog for this
purpose; see Resources to download the JSP pages and source code for this ~ Code and components
application. A Weblog (also known as ablog) is a Web-based journal of Articles

short commentaries on topics of interest to the Weblog's author, typically
with linksto related articles or discussions elsewhere on the Web. A
screenshot of the running application is shown in Figure 1.

Tools and products

Figure 1. The Weblog application

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
ftp://www6.software.ibm.com/software/developer/library/j-jstl0318.jar
javascript:void newWindow()
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/java-all-byname?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/java-uicomponents-bytitle?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bytopic?OpenDocument&Count=500
mailto:mak@taglib.com
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html

- - JSTL Blog
|« »|[@]| 6] [+] @nttp://iocalhost:8080/blog/index.jsp ||(Q-Coogle | | ¥ |

[0 MNewsw Personal Comp¥ Macv Docsv Devv taglib.com~> Followup~

[ogin] {‘:
ogin
<% JSTL Blog %>
An example application for demonstrating JSTL.
Wednesday, March 5, 2003 Slashdot
Hello readers ¢ Funding Mew nges
These are just some test postings for my second article on JSTL E’G'GL CIané 1 hll:!l“':'n
at developerWorks. Nothing too terricly exciting, I'm afraid. N e
[Posted 3:44 PM CST by mak] + High-Resolution
Optical Imaging
On second thought... - E.Iashtna::k: Hurmility,
What to talk about? Any comments on current events would fa'::ﬁf;rtsi-n: aal:lsl:l;.cggﬁme
guickly become dated. Of course, given that each set of Tester
postings is preceded by the date on which they were entered, + Rambus Destrayed
it'll be pretty obvious when these examples were created, won't Evidence In Anti-trust
it? [Posted 3:49 PM CST by mak] Trial
¢ Human Interface
Tuesday, March 4, 2003 Subtleties in Software
Another day, another post e The Future That
Am I content with this content? [Posted 11:42 AM CST by mak] Hasn't Arrived
¢ MNanodiamonds Are
Mot Forever
Monday, March 3, 2003 & What Fruits Wil
First Post Feduced RE&ED Bear ’
Okay, it looks like this is working. [Posted 3:33 PM CST by mak] For The U.5.?
Second Post
How about a second entry for the same date? [Posted 3:34 PM
CST by mak]
Third Post
Yes, indeed. [Posted 3:34 PM CST by mak]
Recommended titles
[prefs] for Java and general
software development (‘:;

Although a couple dozen Java classes are required for the full implementation, only two of the Weblog
application's classes, Ent r y and User Bean, are referenced in the presentation layer. To understand the
JSTL examples, then, only these two classes are important. A class diagram for Ent ry and User Bean is
shown in Figure 2.

Figure 2. Classdiagram for the Weblog application

Entry UserBean
id:long . 1 id:long
title:String <author> ———— username:String
text:String fullName:String
created:Date emailAddress:String
lastModified:Date roles:List
addRole(String):void

removeRolelString):void
hasRole{String):boalean

The Ent r y class represents a dated entry within aWeblog. Itsi d attribute is used to store and retrieve
the entry in adatabase, whilethet i t | e andt ext attributes represent the entry's actual content. Two
instances of the Javalanguage's Dat e class are referenced by thecr eat ed and | ast Modi fi ed
attributes, representing when the entry wasfirst created and last edited. The aut hor attribute references a
User Bean instance identifying the person who created the entry.

The User Bean class stores information about the application's authenticated users, such as user name,
full name, and e-mail address. Thisclassaso includesani d attribute for interacting with an associated
database. Itsfinal attribute, r ol es, referencesalist of St ri ng vauesidentifying the
application-specific roles associated with the corresponding user. For the Weblog application, the relevant
roles are "User" (the default role common to all application users) and "Author” (the role that designates
users who are allowed to create and edit Weblog entries).

Flow control

Because the EL can be used in place of JSP expressions to specify dynamic attribute values, it reduces the
need for page authors to use scripting elements. Because scripting elements can be a significant source of
maintenance problems in JSP pages, providing simple (and standard) alternatives to their useis amajor
advantage of JSTL.

The EL retrieves datafrom the JSP container, traverses object hierarchies, and performs simple operations
on the results. In addition to accessing and manipulating data, however, another common use of JSP
scripting elementsis flow contral. In particular, it isfairly common for page authors to resort to scriptlets
to implement iterative or conditional content. However, because such operations are beyond the
capabilities of the EL, the cor e library instead provides several custom actions to manage flow control in
the form of iteration, conditionalization, and exception handling.

Iteration

In the context of Web applications, iteration is primarily used to fetch and display collections of data,
typically in the form of alist or sequence of rowsin atable. The primary JSTL action for implementing
iterative content isthe <c: f or Each> custom tag. This tag supports two different styles of iteration:
iteration over an integer range (like the Javalanguage'sf or statement) and iteration over a collection (like
the Javalanguage's| t er at or and Enuner at i on classes).

To iterate over arange of integers, the syntax of the <c: f or Each> tag shown in Listing 1 isused. The
begi n and end attributes should be either static integer values or expressions evaluating to integer
values. They specify the initial value of the index for the iteration and the index value at which iteration
should cease, respectively. When iterating over arange of integers using <c: f or Each>, thesetwo
attributes are required and al others are optional.

Listing 1. Syntax for numerical iteration through the <c:for Each> action

<c: forEach var="nanme" var St at us="nane"
begi n="expr essi on" end="expressi on" step="expressi on">
body cont ent
</ c: for Each>

The st ep attribute, when present, must also have an integer value. It specifies the amount to be added to

the index after each iteration. Theindex of the iteration thus starts at the value of the begi n attribute, is
incremented by the value of the st ep attribute, and halts iteration when it exceeds the value of the end
attribute. Note that if the st ep attribute is omitted, the step size defaultsto 1.

If thevar attribute is specified, then a scoped variable with the indicated name will be created and
assigned the current value of the index for each pass through the iteration. This scoped variable has nested
visibility -- it can only be accessed within the body of the <c: f or Each> tag. (Well discuss the use of

the optional var St at us attribute shortly.) Listing 2 shows an example of the<c: f or Each> action for
iterating over afixed set of integer values.

Listing 2. Using the <c:for Each> tag to generate tabular data corresponding to a range of numeric
values

<t abl e>
<t r ><t h>Val ue</t h>
<t h>Square</th></tr>
<c:forEach var="x" begi n="0" end="10" step="2">
<tr><td><c:out value="${x}"/></td>
<td><c:out value="${x * x}"/></td></tr>
</ c: for Each>
</t abl e>

This example code generates a table of the squares of the first five even numbers, as shown in Figure 3.
Thisis accomplished by specifying avalue of two for both the begi n and st ep attributes, and a value of
ten for the end attribute. In addition, the var attribute is used to create a scoped variable for storing the
index value, which is referenced within the body of the <c: f or Each> tag. Specifically, a pair of

<c: out > actions are used to display the index and its square, the latter of which is computed using a
simple expression.

Figure 3. Output of Listing 2
4 A http'_Hlucalhnst:EﬂB[}fhlngfjs.tl—examglesffﬂrEach.jsp
|« »][] 0] +]| @ntpsiocalhost:80¢ [(Q-Coogle) |]

[0 MNewsw Personalv Compv Macv Docs¥ Devv taglib.comv 3

Value Square

2 4

4 16
b 36
B b4
10 100

When iterating over the members of a collection, one additional attribute of the <c: f or Each> tagis
used: thei t ens attribute, which is shown in Listing 3. When you use thisform of the <c: f or Each>
tag, thei t ens attribute isthe only required attribute. The value of thei t ens attribute should be the
collection over whose members the iteration isto occur, and istypically specified using an EL expression.
If avariable name is specified through the <c: f or Each> tag'si t emattribute, then the named variable
will be bound to successive elements of the collection for each iteration pass.

Listing 3. Syntax for iterating through a collection through the <c:for Each> action

<c:forEach var="nane" itens="expression" var Stat us="nane"
begi n="expr essi on" end="expressi on" step="expressi on">
body cont ent
</ c: forEach>

All of the standard collection types provided by the Java platform are supported by the <c: f or Each>
tag. In addition, you can use this action to iterate through the elements of an array, including arrays of
primitives. Table 1 contains a complete list of the values supported by thei t ens attribute. Asthe final
row of the table indicates, JSTL definesits own interface,
javax.servlet.jsp.jstl.sqgl.Result,foriterating through the result of an SQL query. (Well
present further details on this capability in alater articlein this series.)

Table 1. Collections supported by thei t ens attribute of the <c:forEach> tag

Valueforitens Resulting i t emvalues
java.util.Collection Elementsfromcall toi t er at or ()
java.util.Mp Instancesof j ava. util . Map. Entry
java.util.lterator Iterator elements

java. util.Enumeration Enumeration elements

Array of Qbj ect instances Array elements

Array of primitive values Wrapped array elements
Commardelimited St ri ng Substrings
javax.servlet.jsp.jstl.sqgl.Result Rows from an SQL query

You can usethebegi n, end, and st ep attributes to restrict which elements of the collection are
included in the iteration. As was the case for numerical iteration through <c: f or Each>, aniteration
index is also maintained when iterating through the elements of a collection. Only those elements that
correspond to index values matching the specified begi n, end, and st ep vaueswill actually be
processed by the<c: f or Each> tag.

Listing 4 showsthe <c: f or Each> tag being used to iterate through a collection. For this JSP fragment, a
scoped variable named ent r yLi st has been set to alist (specifically, an ArrayLi st)of Entry
objects. The <c: f or Each> tag processes each element of thislist in turn, assigning it to a scoped
variable named bl ogEnt r y, and generating two table rows -- one for the Weblog entry'sti t| e anda
second for itst ext . These properties are retrieved from the bl ogEnt r y variable through a pair of

<c: out > actions with corresponding EL expressions. Note that, because both the title and text of a
Weblog entry might contain HTML markup, the escapeXmni attribute of both <c: out > tagsis set to
false. Figure 4 shows the resullt.

Listing 4. Displaying the Weblog entriesfor a given date using the <c:for Each> tag

<t abl e>
<c:forEach itenms="${entryList}" var="bl ogEntry">
<tr><td align="left" class="blogTitle">
<c:out value="${blogEntry.title}" escapexXm ="fal se"/>
</td></tr>
<tr><td align="left" class="bl ogText">
<c:out value="${bl ogEntry.text}" escapexm ="fal se"/>
</td></tr>
</ c: for Each>
</ tabl e>

Figure 4. Output of Listing 4
- JSTL Blog

|« »|[@][6] +] @ntp:y/localhost:8080/blog/jsti-exampl || (Q-Coogle) | 34 |

(101 MNewsw Personalv Compv Macv¥ Docsv Devv taglib.com~ Followup~

NewssViews 1
Hello readers
i
These are just some test postings for my second article on JSTL at developerWorks. Mothing
too terribly exciting, I'm afraid.
On second thought...
What to talk about? Any comments on current events would guickly become dated. Of course,
given that each set of postings is preceded by the date on which they were entered, it'll be
pretty obwvious when these examples were created, won't it? \

Theremaining <c: f or Each> attribute, var St at us, plays the same role whether iterating over
integers or collections. Likethevar attribute, var St at us isused to create a scoped variable. Instead of
storing the current index value or the current element, however, the variable named by thevar St at us
attribute is assigned an instance of thej avax. servl et.jsp.jstl.core. LoopTagSt at us class.
This class defines a set of properties, listed in Table 2, that describe the current state of an iteration.

Table 2. Properties of the LoopTagStatus object

Property | Getter Description

current |get Current () |Theitem (from the collection) for the current round of iteration

index get I ndex() The zero-based index for the current round of iteration

count get Count () The one-based count for the current round of iteration

first i sFirst() Flag indicating whether the current round is the first pass through the
iteration

last i sLast () Flag indicating whether the current round is the last pass through the
iteration

begin get Begi n() The value of the begi n attribute

end get End() The value of the end attribute

step get St ep() The value of the st ep attribute

Listing 5 shows an example of how thevar St at us attribute is used. It modifies the code in Listing 4 to
add numbering of the Weblog entries to the table rows displaying their titles. Thisis done by specifying a
value for thevar St at us attribute and then accessing the count property of the resulting scoped
variable. The results appear in Figure 5.

Listing 5. Using the var Status attribute to display a count of Weblog entries

<t abl e>
<c:forEach itens=
"${entryList}" var="bl ogEntry" varStatus="status">
<tr><td align="left" class="blogTitle">
<c:out val ue="${status.count}"/>.
<c:out value="${blogEntry.title}" escapexn ="fal se"/>
</td></tr>
<tr><td align="left" class="bl ogText">
<c:out value="${bl ogEntry.text}" escapexm ="fal se"/>
</td></tr>
</ c: forEach>
</tabl e>

Figureb5. Output of Listing 5
e (o’ (o JSTL Blog

|« » |[@][0] +] @ntp//localhost:8080/blog/jsti-examplt | [Q-Coogle) | & |

[l HNews~v Personal Comp¥ Macv Docsv Dev¥ taglib.com~ Followup~
Newsaviews]

1. Hello readers

These are just some test postings for my second article on JSTL at developerWorks. Mothing
too terribly exciting, I'm afraid.

2. On second thought...

What to talk about? Any comments on current events would guickly become dated. Of course,
given that each set of postings is preceded by the date on which they were entered, it'll be
pretty obwvious when these examples were created, won't it?

18

In additionto <c: f or Each>, the cor e library provides a second iteration tag: <c: f or Tokens>. This
custom action isthe JSTL analog of the Javalanguage's St r i ngTokeni zer class. The

<c: f or Tokens> tag, shown in Listing 6, has the same set of attributes as the collection-oriented version
of <c: f or Each>, with one addition. For <c: f or Tokens>, the string to be tokenized is specified
through thei t ens attribute, while the set of delimiters used to generate the tokens is provided through
thedel i s attribute. Aswasthe casefor <c: f or Each>, you can usethebegi n, end, and st ep
attributes to restrict the tokens to be processed to those matching the corresponding index values.

Listing 6. Syntax for iterating through a string'stokenswith the <c:for Tokens> action

<c:forTokens var="nane" itenms="expression"
del i ns="expressi on" var St at us="nane"
begi n="expr essi on" end="expressi on" step="expressi on">
body cont ent
</ c:forTokens>

Conditionalization
For Web pages containing dynamic content, you might want different categories of users to see different
forms of content. In our Weblog, for instance, visitors should be able to read entries and perhaps submit

feedback, but only authorized users should be able to post new entries or edit existing content.

Both usability and software maintenance are often improved by implementing such features within the
same JSP page and then using conditional logic to control what gets displayed on a per-request basis. The
cor e library provides two different conditionalization tags-- <c: i f > and <c: choose> -- to
implement these features.

The more straightforward of these two actions, <c: i f >, simply evaluates a single test expression and
then processes its body content only if that expression evaluatestot r ue. If not, the tag's body content is
ignored. AsListing 7 shows, <c: i f > can optionally assign the result of the test to a scoped variable
through itsvar and scope attributes (which play the sasme role here asthey do for <c: set >). This
capahility is particularly useful if the test is expensive: the result can be cached in a scoped variable and
retrieved in subsequent callsto <c: i f > or other JSTL tags.

Listing 7. Syntax for the <c:if> conditional action

<c:if test="expression" var="nanme" scope="scope">
body cont ent
</fc:if>

Listing 8 shows<c: i f > used withthefi r st property of a<c: f or Each>tag'sLoopTagSt at us
object. In this case, as shown in Figure 6, the creation date for a set of Weblog entriesis displayed just
above the first entry for that date, but is not repeated before any of the other entries.

Listing 8. Using <c:if> to display the date for Weblog entries

<t abl e>
<c:forEach itens=
"${entryList}" var="bl ogEntry" varStatus="status">
<c:if test="${status.first}">
<tr><td align="left" class="bl ogDate">
<c:out val ue="${bl ogEntry.created}"/>
</[td></tr>
</c:if>
<tr><td align="left" class="blogTitle">
<c:out value="${blogEntry.title}" escapexn ="fal se"/>
</td></tr>
<tr><td align="left" class="bl ogText">
<c:out value="${bl ogEntry.text}" escapexm ="fal se"/>
</td></tr>
</ c: for Each>
</t abl e>

Figure6. Output of Listing 8

o & & JSTL Blog
|« » | [@] [06][+] @nhttp://localhost:8080/blog/jsti-exampli | [Q~ Google

[l HNews~v Personal Comp¥ Macv Docsv Dev¥ taglib.com~ Followup~
Newsaviews 1

2003-03-05 15:44:45.0

Hello readers

These are just some test postings for my second article on JSTL at developerWorks. Mothing
too terribly exciting, I'm afraid.

On second thought...

What to talk about? Any comments on current events would guickly become dated. Of course,
given that each set of postings is preceded by the date on which they were entered, it'll be
pretty obvious when these examples were created, won't it?

<

AsListing 8 shows, the<c: i f > tag provides a very compact notation for simple cases of conditionalized
content. For cases in which mutually exclusive tests are required to determine what content should be
displayed, the JSTL cor e library aso providesthe <c: choose> action. The syntax for <c: choose>
isshownin Listing 9.

Listing 9. Syntax for the <c:choose> action

<c: choose>
<c:when test="expression">
body cont ent
</ c: when>

<c: ot her wi se>
body cont ent
</ c: ot her wi se>
</ c: choose>

Each condition to be tested is represented by a corresponding <c: when> tag, of which there must be at
least one. Only the body content of the first <c: when> tag whoset est evaluatestot r ue will be
processed. If none of the <c: when> testsreturnt r ue, then the body content of the <c: ot her wi se>
tag will be processed. Note, though, that the <c: ot her wi se> tagisoptional; a<c: choose> tag can
have at most one nested <c: ot her wi se> tag. If al <c: when> testsaref al se and no

<c: ot herwi se> action is present, then no <c: choose> body content will be processed.

Listing 10 shows an example of the <c: choose> tag in action. Here, protocol information is retrieved
from the request object (by means of the EL's pageCont ext implicit object) and tested using asimple
string comparison. Based on the results of these tests, a corresponding text message is displayed.

Listing 10. Content conditionalization using <c:choose>

<c: choose>
<c:when test="${pageCont ext.request.schene eq 'http'}">
This is an insecure Wb sessi on.
</ c: when>
<c: when test="${pageCont ext.request.schene eq 'https'}">
This is a secure Wb session
</ c: when>
<c: ot herwi se>
You are using an unrecogni zed Web protocol. How did this happen?!
</ c: ot herw se>
</ c: choose>

Exception handling

Thefinal flow-control tag is<c: cat ch>, which alows for rudimentary exception handling within a JSP
page. More specifically, any exceptions raised within the body content of this tag will be caught and
ignored (that is, the standard JSP error-handling mechanism will not be invoked). However, if an
exception israised and the <c: cat ch> tag's optional var attribute has been specified, the exception will
be assigned to the specified variable (with page scope), enabling custom error handling within the page
itself. Listing 11 shows the syntax of <c: cat ch> (an example appears later in Listing 18).

Listing 11. Syntax for the <c:catch> action

<c:catch var="nane">
body cont ent
</c:catch>

URL actions

Theremaining tagsin the JSTL cor e library focus on URLSs. Thefirst of these, the aptly named

<c: url > tag, is used to generate URLS. In particular, <c: ur | > provides three elements of functionality
that are particularly important when constructing URL s for J2EE Web applications:

« Prepending the name of the current servlet context
« URL re-writing for session management
» URL encoding of request-parameter names and values

Listing 12 shows the syntax for the <c: ur | > tag. Theval ue attribute is used to specify abase URL,
which the tag then transforms as necessary. If this base URL starts with aforward slash, then a servlet
context name will be prepended. An explicit context name can be provided using the cont ext attribute.
If this attribute is omitted, then the name of the current servlet context will be used. Thisis particularly
useful because servlet context names are decided during deployment, rather than during development. (If
the base URL does not start with aforward slash, then it is assumed to be arelative URL, in which case
the addition of a context name is unnecessary.)

Listing 12. Syntax for the <c:url> action

<c:url val ue="expression" context="expression"
var =" nane" scope="scope">
<c: par am nane="expressi on" val ue="expressi on"/>

</c:url>

URL rewriting is automatically performed by the <c: ur | > action. If the JSP container detects a cookie
storing the user's current session ID, no rewriting is necessary. If no such cookie is present, however, all
URLs generated by <c: ur | > will be rewritten to encode the session ID. Note that if an appropriate

cookie is present in subsequent requests, <c: ur | > will stop rewriting URLsto include this|D.

If avalueis supplied for the var attribute (optionally accompanied by a corresponding value for the
scope attribute), the generated URL will be assigned as the value of the specified scoped variable.
Otherwise, the resulting URL will be output using the current JspW i t er . This ability to directly output
itsresult allowsthe <c: ur | > tag to appear asthe value, for example, of the hr ef attribute of an HTML
<a>tag, asshownin Listing 13.

Listing 13. Generating a URL asthe attribute valuefor an HTML tag

<a href="<c:url value='/content/sitemap.jsp'/>">View sitemap

Finaly, if any request parameters are specified through nested <c: par an® tags, then their names and
values will be appended to the generated URL using the standard notation for HTTP GET requests. In
addition, URL encoding is performed: any characters present in either the names or values of these
parameters that must be transformed in order to yield avalid URL will be translated appropriately. Listing
14 illustrates the behavior of <c: ur | >.

Listing 14. Generating a URL with request parameters

<c:url value="/content/search.jsp">
<c: par am nanme="keyword" val ue="${searchTern}"/>
<c: par am nane="nont h" val ue="02/2003"/>
</c:url>

The JSP code in Listing 14 has been deployed to a servlet context named bl og, and the value of the
scoped variablesear chTer mhasbeensetto" core |i brary". If asession cookie has been detected,
then the URL generated by Listing 14 will be like the one in Listing 15. Note that the context name has
been prepended, and the request parameters have been appended. In addition, the space in the value of the
keywor d parameter and the forward slash in the value of the mont h parameter have been encoded as
required for HTTP GET parameters (specifically, the space has been translated into a + and the slash has
been trangdlated into the sequence Y2F).

Listing 15. URL generated in the presence of a session cookie

/ bl og/ cont ent/ sear ch. j sp?keywor d=f oo+bar &mnt h=029%2F2003

When no session cookie is present, the URL in Listing 16 is the result. Again, the servlet context has been
prepended and the URL -encoded request parameters have been appended. In addition, however, the base
URL has been rewritten to include specification of a session ID. When a browser sends arequest for a
URL that has been rewritten in this manner, the JSP container automatically extracts the session ID and
associates the request with the corresponding session. In this way, a J2EE application that requires session
management doesn't need to rely on cookies being enabled by users of the application.

Listing 16. URL generated in the absence of a session cookie

/ bl og/ content/ search. j sp;jsessi oni d=233379C7CD2D0ED2E9F3963906DB4290
?keywor d=f oo+bar &ront h=02%2F2003

Importing content

JSP has two built-in mechanisms to incorporate content from a different URL into a JSP page: the

i ncl ude directiveandthe<j sp: i ncl ude> action. In both cases, however, the content to be included
must be part of the same Web application (or serviet context) as the page itself. The major distinction
between these two tagsisthat thei ncl ude directive incorporates the included content during page
compilation, whilethe <j sp: i ncl ude> action operates during request-time processing of JSP pages.

Thecor e library's<c: i nport > action is essentially a more generic, more powerful version of

<j sp: i ncl ude> (sort of a<j sp: i ncl ude> on steroids). Like<j sp: i ncl ude>, <c: i nport>is
arequest-time action, and its basic task is to insert the content of some other Web resource into a JSP
page. Its syntax isvery similar to that of <c: ur | >, asshownin Listing 17.

Listing 17. Syntax for the <c:.import> action

<c:inport url="expression" context="expression"
char Encodi ng="expr essi on" var="nanme" scope="scope">
<c: par am nane="expressi on" val ue="expressi on"/>

</c:inmport>

The URL for the content to be imported is specified through the ur | attribute, whichis<c: i nport >'s
only required attribute. Relative URLSs are permitted and are resolved against the URL of the current page.
If the value of theur | attribute starts with aforward slash, however, it isinterpreted as an absolute URL
within the local JSP container. Without a value for the cont ext attribute, such an absolute URL is
assumed to reference aresource in the current servlet context. If an explicit context is specified through
the cont ext attribute, then the absolute (local) URL is resolved against the named servlet context.

The<c: i nmpor t > action isnot limited to accessing local content, however. Complete URIs, including
protocol and host names, can also be specified as the value of the ur | attribute. In fact, the protocol is not
even restricted to HTTP. Any protocol supported by thej ava. net . URL class may be used in the value
for theur | attribute of <c: i npor t >. This capability is shownin Listing 18.

Here, the<c: i mport > action is used to include the content of a document accessed through the FTP
protocol. In addition, the<c: cat ch> action is employed to locally handle any errors that might occur
during the FTP file transfer. This is accomplished by specifying a scoped variable for the exception using
<c: cat ch>'svar attribute, and then checking its value using <c: i f >. If an exception was raised, then
assignment to the scoped variable will occur: asthe EL expression in Listing 18 suggests, its value will not
be empty. Since retrieval of the FTP document will have failed, an error message to that effect is
displayed.

Listing 18. Example combining <c:import> and <c:catch>

<c: catch var="exception">

<c:inport url="ftp://ftp.exanpl e. conl package/ READVE"/ >
</c:catch>
<c:if test="${not enpty exception}">

Sorry, the renpte content is not currently avail abl e.
</c:if>

The final two (optional) attributes of the<c: i npor t > action arevar and scope. Thevar attribute
causes the content fetched from the specified URL to be stored (asa St r i ng value) in a scoped variable,
rather than included in the current JSP page. The scope attribute controls the scoping of this variable, and
defaults to page scope. Aswe will seein alater article, this ability of <c: i nport > to store an entire
document in a scoped variable is leveraged by thetagsin the JSSTL xni library.

Note aso that (optional) nested <c: par an® tags may be used to specify reguest parameters for the URL
being imported. Aswas the case for <c: par an tags nested with <c: ur | >, parameter names and
values are URL encoded as necessary.

Request redirection

Thefinal cor e library tagis<c: r edi r ect >. Thisaction is used to send an HTTP redirect response to a
user's browser, and isthe JSTL equivalent of the sendRedi r ect () method of

javax. servlet. http. Ht t pSer vl et Response. The behavior of thistag'sur | and cont ext

attributes, shown in Listing 19, isidentical to the behavior of <c: i nport >'sur| and cont ext
attributes, asis the effect of any nested <c: par an tags.

Listing 19. Syntax for the <c:redirect>action

<c:redirect url="expression" context="expression">
<c: par am nane="expressi on" val ue="expressi on"/>

</c:redirect>

Listing 20 showsthe <c: r edi r ect > action, which replaces the error message in Listing 18 with a
redirect to a designated error page. In thisexample, the<c: r edi r ect > tagisused in asimilar way as
the standard <j sp: f or war d> action. Recall, however, that forwarding through arequest dispatcher is
implemented on the server side, while redirects are performed by the browser. From the devel oper's
perspective, forwarding is more efficient than redirecting, but the <c: r edi r ect > action isabit more
flexible because <j sp: f or war d> can only dispatch to other JSP pages within the current servlet
context.

Listing 20. Redirecting in responseto an exception

<c:catch var="exception">
<c:inmport url="ftp://ftp.exanple.conm package/ README"/ >
</ c:catch>
<c:if test="${not enpty exception}">
<c:redirect url="/errors/renmote.jsp"/>
</c:if>

The main difference from the user's perspective is that aredirect will update the URL displayed by the
browser and will therefore affect the setting of bookmarks. Forwarding, on the other hand, is transparent to
the end user. The choice between <c: r edi r ect > and <j sp: f or war d>, then, also depends upon the
desired user experience.

Summary

The JSTL cor e library contains a variety of general-purpose custom tags that should be of useto awide
spectrum of JSP developers. The URL and exception-handling tags, for example, nicely complement
existing JSP functionality, such asthe<j sp: i ncl ude> and <j sp: f or war d> actions, thei ncl ude
directive, and the er r or page attribute of the page directive. The iteration and conditional actions
enable complex presentation logic to be implemented without the need for scripting elements, particularly
in combination with the variable tags (<c: set > and <c: r enpove>) and the EL.

Resources
o Part 1inthisseries, A JSTL primer: The expression language (developerWorks, February 2003),
introduces JSTL and details the expression language and several of thetagsin cor e library.

« Download the source code for the Weblog example application.

« Sun's product page for the JSP Standard Tag Library is agood starting point to learn more about
JSTL.

o TheJSTL 1.0 Specification isthe final authority on the EL and the four JSTL tag libraries.

« The Jakarta Taglibs project is home to the reference implementation for JSTL 1.0.

« JSTL in Action by Shawn Bayern (Manning, 2002) provides excellent coverage of all JSTL features,

http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
ftp://www6.software.ibm.com/software/developer/library/j-jstl0318.jar
http://java.sun.com/products/jsp/jstl/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr052/
http://jakarta.apache.org/taglibs/index.html
http://www.manning.com/bayern/index.html

having been written by the reference implementation lead.

» Popular Java programming author David Geary has also written abook on JSTL, entitled Core
JSTL.

» JSPTags.com isadirectory of JSP resources, focusing particularly on custom tag libraries.

» Coverage of JSTL isincluded as part of Sun's Java Web Services Tutorial.

» "Using JSPs and custom tags within Visual Age for Java and WebSphere Studio" (WebSphere
Developer Domain) is a WBOnNline hands-on workshop demonstrating the use of servlets, JSP
pages, and custom tag libraries.

« Learn all about custom tag libraries with Jeff Wilson's excellent article, "Take control of your JSP
pages with custom tags" (developerWorks, January 2002).

» Noel Bergman's article, "JSP taglibs. Better usability by design" (developerWorks, December 2001),
shows you how declarative tags will help improve the usability of your JSP pages.

« Find hundreds more Java technology resources on the devel operWorks Java technology zone.

About the author

Mark Kolb is a Software Engineer working in Austin, Texas. He is afrequent industry speaker on
server-side Java topics and the co-author of Web Devel opment with JavaServer Pages, 2nd Edition. You
can contact Mark at mak@taglib.com.

® =
Code email it!

What do you think of this document?

OKiller' (5) O Good stuff (4) O So-so; not bad (3) O Needswork (2) O Lame! (1)

Comments?

| Submit feedback |

IBM developerWorks: Java technology : Java technology articles developerWorks

About IBM | Privacy | Legal | Contact

http://www.core-jstl.com/
http://www.core-jstl.com/
http://jsptags.com/index.jsp
http://java.sun.com/webservices/docs/ea2/tutorial/doc/JSTL3.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/&origin=j
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www.ibm.com/developerworks/java/
http://www.manning.com/fields2/index.html
mailto:mak@taglib.com
ftp://www6.software.ibm.com/software/developer/library/j-jstl0318.jar
javascript:void newWindow()
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks : Java technology : A JSTL primer: Getting down to the core

	JAGIHICKGNCELJIAMFFAMCJJAIFDBENJ:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	form2:
	x:
	f1: A JSTL primer: Getting down to the core
	f2: Java
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

