
Search 
for: 

 within 

 Use only ( ) " " + -  Search help  

    IBM home  |  Products & services  |  Support & downloads   |  My account

IBM developerWorks : Java technology : Java technology articles

A JSTL primer: The expression language

Contents:
JSTL 1.0

Expression language

Scoped variables

Implicit objects

Accessors

Operators

Literals

Taglib directives

Variable tags

Output

Setting variables with 
default values

Resources

About the author

Rate this article

Related content:
Using JSPs and custom tags 
within VisualAge for Java 
and WebSphere Studio

Take control of your JSP 
pages with custom tags

JSP taglibs: Better usability 
by design

Subscribe to the 
developerWorks newsletter

Also in the Java zone:
Tutorials

Tools and products

Code and components

Articles

Simplify software maintenance for JSP applications by avoiding scripting elements
Level: Intermediate

Mark A. Kolb (mak@taglib.com)
Software Engineer
February 2003

The JSP Standard Tag Library (JSTL) is a collection of custom tag 
libraries that implement general-purpose functionality common to 
Web applications, including iteration and conditionalization, data 
management formatting, manipulation of XML, and database access. 
In this first installment of his new series on developerWorks, 
software engineer Mark Kolb shows you how to use JSTL tags to 
avoid using scripting elements in your JSP pages. You'll also learn 
how to simplify software maintenance by removing source code 
from the presentation layer. Finally, you'll learn about JSTL's 
simplified expression language, which allows dynamic attribute 
values to be specified for JSTL actions without having to use a full-
blown programming language.

JavaServer Pages (JSP) technology is the standard presentation-layer technology 
for the J2EE platform. JSP technology provides both scripting elements and actions 
for performing computations intended to generate page content dynamically. 
Scripting elements allow program source code to be included in a JSP page for 
execution when the page is rendered in response to a user request. Actions 
encapsulate computational operations into tags that more closely resemble the 
HTML or XML markup that typically comprises the template text of a JSP page. 
There are only a handful of actions defined as standard by the JSP specification, 
but starting with JSP 1.1, developers have been able to create their own actions in 
the form of custom tag libraries.

The JSP Standard Tag Library (JSTL) is a collection of JSP 1.2 custom tag libraries 
that implement basic functionality common to a wide range of server-side Java 
applications. By providing standard implementations for typical presentation-layer 
tasks such as data formatting and iterative or conditional content, JSTL allows JSP 
authors to focus on application-specific development needs, rather than 
"reinventing the wheel" for these generic operations.

Of course, you could implement such tasks using the JSP scripting elements: 
scriptlets, expressions, and declarations. Conditional content, for example, can be 
implemented using three scriptlets, highlighted in Listing 1. Because they rely on 
embedding program source code (typically Java code) within the page, though, 

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
ftp://www6.software.ibm.com/software/developer/library/j-jstl0211.pdf
javascript:void newWindow()
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/java-all-byname?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/java-uicomponents-bytitle?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bytopic?OpenDocument&Count=500
mailto:mak@taglib.com


scripting elements tend to complicate the software maintenance task significantly for JSP pages that use them. 
The scriptlet example in Listing 1, for instance, is critically dependent upon proper matching of braces. Nesting 
additional scriptlets within the conditionalized content can wreak havoc if a syntax error is inadvertently 
introduced, and it can be quite a challenge to make sense of the resulting error message when the page is 
compiled by the JSP container.

Listing 1. Implementing conditional content through scriptlets

<% if (user.getRole() == "member")) { %>
    <p>Welcome, member!</p>
<% } else { %>
    <p>Welcome, guest!</p>
<% } %>

Fixing such problems typically requires a fair bit of programming experience. Whereas the markup in a JSP page 
might typically be developed and maintained by a designer well-versed in page layout and graphic design, the 
scripting elements in that same page require the intervention of a programmer when problems arise. This shared 
responsibility for the code within a single file makes developing, debugging, and enhancing such JSP pages a 
cumbersome task. By packaging common functionality into a standardized set of custom tag libraries, JSTL 
allows JSP authors to reduce or eliminate the need for scripting elements and avoid the associated maintenance 
costs.

JSTL 1.0
Released in June 2002, JSTL 1.0 consists of four custom tag libraries (core, format, xml, and sql) and a pair 
of general-purpose tag library validators (ScriptFreeTLV and PermittedTaglibsTLV). The core tag 
library provides custom actions to manage data through scoped variables, as well as to perform iteration and 
conditionalization of page content. It also provides tags to generate and operate on URLs. The format tag 
library, as its name suggests, defines actions to format data, specifically numbers and dates. It also provides 
support for internationalizing JSP pages using localized resource bundles. The xml library includes tags to 
manipulate data represented through XML, while the sql library defines actions to query relational databases.

The two JSTL tag library validators allow developers to enforce coding standards within their JSP applications. 
You can configure the ScriptFreeTLV validator to prohibit the use of the various types of JSP scripting 
elements -- scriptlets, expressions, and declarations -- within a JSP page. Similarly, the 
PermittedTaglibsTLV validator can be used to restrict the set of custom tag libraries (including the JSTL 
tag libraries) that may be accessed by an application's JSP pages.

While JSTL will eventually be a required component of the J2EE platform, only a small number of application 
servers include it today. The reference implementation for JSTL 1.0 is available as part of the Apache Software 
Foundation's Jakarta Taglibs project (see Resources). The custom tag libraries in the reference implementation 
can be incorporated into any application server supporting the JSP 1.2 and Servlet 2.3 specifications in order to 
add JSTL support.

Expression language
In JSP 1.2, the attributes of JSP actions are specified using either static character strings or, where permitted, 
expressions. In Listing 2, for example, static values are specified for the name and property attributes of this 
<jsp:setProperty> action, while an expression is used to specify its value attribute. This action has the 
effect of assigning the current value of a request parameter to the named bean property. Expressions used in this 
fashion are called request-time attribute values and are the only mechanism built into the JSP specification for 
specifying attribute values dynamically.



Listing 2. A JSP action incorporating a request-time attribute value

<jsp:setProperty name="user" property="timezonePref"
                 value='<%= request.getParameter("timezone") %>'/>

Because request-time attribute values are specified using expressions, they are prone to the same software 
maintenance issues as other scripting elements. For this reason, the JSTL custom tags support an alternate 
mechanism for specifying dynamic attribute values. Rather than using full-blown JSP expressions, attribute 
values for JSTL actions can be specified using a simplified expression language (EL). The EL provides 
identifiers, accessors, and operators for retrieving and manipulating data resident in the JSP container. The EL is 
loosely based on EcmaScript (see Resources) and the XML Path Language (XPath), so its syntax should be 
familiar to both page designers and programmers. The EL is geared toward looking up objects and their 
properties, and performing simple operations on them; it is not a programming language, or even a scripting 
language. When combined with the JSTL tags, however, it enables complex behavior to be represented using a 
simple and convenient notation. EL expressions are delimited using a leading dollar sign ($) and both leading and 
trailing braces ({}), as highlighted in Listing 3.

Listing 3. A JSTL action illustrating the EL expression delimiters

<c:out value="${user.firstName}"/>

In addition, you can combine multiple expressions with static text to construct a dynamic attribute value through 
string concatenation, as highlighted in Listing 4. Individual expressions are comprised of identifiers, accessors, 
literals, and operators. Identifiers are used to reference data objects stored in the data center. The EL has 11 
reserved identifiers, corresponding to 11 EL implicit objects. All other identifiers are assumed to refer to scoped 
variables. Accessors are used to retrieve the properties of an object or the elements of a collection. Literals 
represent fixed values -- numbers, character strings, booleans, or nulls. Operators allow data and literals to be 
combined and compared.

Listing 4. Combining static text and multiple EL expressions to specify a dynamic attribute value

<c:out value="Hello ${user.firstName} ${user.lastName}"/>

Scoped variables
The JSP API, through the <jsp:useBean> action, allows data to be stored and retrieved from four different 
scopes within the JSP container. JSTL extends this capability by providing additional actions for assigning and 
removing objects within these scopes. Furthermore, the EL provides built-in support for retrieving these objects 
as scoped variables. In particular, any identifier appearing in an EL expression that does not correspond to one of 
the EL's implicit objects is automatically assumed to reference an object stored in one of the four JSP scopes:

●     Page scope
●     Request scope
●     Session scope
●     Application scope

As you may recall, objects stored in page scope can only be retrieved during the processing of that page for a 
specific request. Objects stored in request scope can be retrieved during the processing of all pages taking part in 

http://www-106.ibm.com/developerworks/library/resources


the processing of a request (such as if the processing of a request encounters one or more <jsp:include> or 
<jsp:forward> actions). If an object is stored in session scope, it can be retrieved by any pages accessed by a 
user during a single interactive session with the Web application (that is, until the HttpSession object 
associated with that user's interaction is invalidated). An object stored in application scope is accessible from all 
pages and for all users, until the Web application itself is unloaded (typically as a result of the JSP container being 
shut down).

An object is stored in a scope by mapping a character string to the object within the desired scope. You can then 
retrieve the object from the scope by providing the same character string. The string is looked up in the scope's 
mapping, and the mapped object is returned. Within the Servlet API, such objects are referred to as attributes of 
the corresponding scope. In the context of the EL, however, the character string associated with an attribute can 
also be thought of as the name of a variable, which is bound to a particular value by means of the attribute 
mappings.

In the EL, identifiers not associated with implicit objects are assumed to name objects stored in the four JSP 
scopes. Any such identifier is first checked against page scope, then request scope, then session scope, and finally 
application scope, successively testing whether the name of the identifier matches the name of an object stored in 
that scope. The first such match is returned as the value of the EL identifier. It is in this way that EL identifiers 
can be thought of as referencing scoped variables.

In more technical terms, identifiers that do not map to implicit objects are evaluated using the 
findAttribute() method of the PageContext instance representing the processing of the page on which 
the expression occurs for the request currently being handled. The name of the identifier is passed as the argument 
to this method, which searches each of the four scopes in turn for an attribute with the same name. The first match 
found is returned as the value of the findAttribute() method. If no such attribute is located in any of the 
four scopes, null is returned.

Ultimately, then, scoped variables are attributes of the four JSP scopes that have names that can be used as EL 
identifiers. As long as they are assigned alphanumeric names, scoped variables can be created by any of the 
mechanisms present in JSP for setting attributes. This includes the built-in <jsp:useBean> action, as well as 
the setAttribute() method defined by several of the classes in the Servlet API. In addition, many of the 
custom tags defined in the four JSTL libraries are themselves capable of setting attribute values for use as scoped 
variables.

Implicit objects
The identifiers for the 11 EL implicit objects are listed in Table 1. Don't confuse these with the JSP implicit 
objects (of which there are only nine), as only one object is common to both.

Table 1. The EL implicit objects 

Category Identifier Description

JSP pageContext The PageContext instance corresponding to the 
processing of the current page

Scopes pageScope A Map associating the names and values of page-scoped 
attributes

requestScope A Map associating the names and values of request-scoped 
attributes



sessionScope A Map associating the names and values of session-scoped 
attributes

applicationScope A Map associating the names and values of application-
scoped attributes

Request parameters param A Map storing the primary values of the request parameters 
by name

paramValues A Map storing all values of the request parameters as 
String arrays

Request headers header A Map storing the primary values of the request headers by 
name

headerValues A Map storing all values of the request headers as String 
arrays

Cookies cookie A Map storing the cookies accompanying the request by 
name

Initialization parameters initParam A Map storing the context initialization parameters of the 
Web application by name

While JSP and EL implicit objects have only one object in common (pageContext), other JSP implicit objects 
are still accessible from the EL. The reason is that pageContext has properties for accessing all of the other 
eight JSP implicit objects. Indeed, this is the primary reason for including it among the EL implicit objects.

All of the remaining EL implicit objects are maps, which may be used to look up objects corresponding to a 
name. The first four maps represent the various attribute scopes discussed previously. They can be used to look up 
identifiers in specific scopes, rather than relying on the sequential lookup process that the EL uses by default.

The next four maps are for fetching the values of request parameters and headers. Since the HTTP protocol allows 
both request parameters and headers to be multi-valued, there is a pair of maps for each. The first map in each 
pair simply returns the primary value for the request parameter or header, typically whichever value happens to 
have been specified first in the actual request. The second map in each pair allows all of a parameter's or header's 
values to be retrieved. The keys in these maps are the names of the parameters or headers, while the values are 
arrays of String objects, each element of which is a single parameter or header value.

The cookie implicit object provides access to the cookies set by a request. This object maps the names of all the 
cookies associated with a request to Cookie objects representing the properties of those cookies.

The final EL implicit object, initParam, is a map storing the names and values of any context initialization 
parameters associated with the Web application. Initialization parameters are specified through the web.xml 
deployment descriptor file that appears in the application's WEB-INF directory.

Accessors
Since EL identifiers are resolved either as implicit objects or as scoped variables (which are implemented through 
attributes), they will by necessity evaluate to Java objects. The EL can automatically wrap and unwrap primitives 
in their corresponding Java classes (for instance, int can be coerced into an Integer class behind the scenes, 
and vice versa), but identifiers for the most part will be pointers to full-blown Java objects.

As a result, it's often desirable to access the properties of these objects or, in the case of arrays and collections, 
their elements. The EL provides two different accessors for just this purpose -- the dot operator (.) and the 



bracket operator ([]) -- enabling properties and elements to be operated upon through the EL, as well.

The dot operator is typically used for accessing the properties of an object. In the expression 
${user.firstName}, for example, the dot operator is used to access the property named firstName of the 
object referenced by the user identifier. The EL accesses object properties using the Java beans conventions, so 
a getter for this property (typically a method named getFirstName()) must be defined in order for this 
expression to evaluate correctly. When the property being accessed is itself an object, the dot operator can be 
applied recursively. For instance, if our hypothetical user object has an address property that is implemented 
as a Java object, then the dot operator can also be used to access the properties of this object. The expression 
${user.address.city}, for example, will return the nested city property of this address object.

The bracket operator is used to retrieve elements of arrays and collections. In the case of arrays and ordered 
collections (that is, collections implementing the java.util.List interface), the index of the element to be 
retrieved appears inside the brackets. For example, the expression ${urls[3]} returns the fourth element of the 
array or collection referenced by the urls identifier (indices are zero-based in the EL, just as in the Java 
language and JavaScript).

For collections implementing the java.util.Map interface, the bracket operator looks up a value stored in the 
map using the associated key. The key is specified inside the brackets, and the corresponding value is returned as 
the value of the expression. For example, the expression ${commands["dir"]} returns the value associated 
with the "dir" key in the Map referenced by the commands identifier.

In either case, it is permissible for an expression to appear inside the brackets. The result of evaluating the nested 
expression will serve as the index or key for retrieving the appropriate element of the collection or array. As was 
true of the dot operator, the bracket operator can be applied recursively. This allows the EL to retrieve elements 
from multi-dimensional arrays, nested collections, or any combination of the two. Furthermore, the dot operator 
and the bracket operator are interoperable. For example, if the elements of an array are themselves objects, the 
bracket operator can be used to retrieve an element of the array and be combined with the dot operator to retrieve 
one of the element's properties (for instance, ${urls[3].protocol}).

Given the EL's role as a simplified language for specifying dynamic attribute values, one interesting feature of the 
EL accessors is that, unlike the Java language's accessors, they do not throw exceptions when applied to null. If 
the object to which an EL accessor is applied (for instance, the foo identifier in both ${foo.bar} and 
${foo["bar"]}) is null, then the result of applying the accessor will also be null. This turns out to be 
rather helpful behavior under most circumstances, as you'll see shortly.

Finally, the dot operator and the bracket operator are somewhat interchangeable. For example, 
${user["firstName"]} could also be used to retrieve the firstName property of the user object, just as 
${commands.dir} could be used to fetch the value associated with the "dir" key in the commands map.

Operators
Using identifiers and accessors, then, the EL is able to traverse object hierarchies containing either application 
data (exposed through scoped variables) or information about the environment (through the EL implicit objects). 
Simply accessing such data, however, is often inadequate for implementing the presentation logic needed by 
many JSP applications.

To this end, the EL also includes several operators to manipulate and compare data accessed by EL expressions. 
These operators are summarized in Table 2.

Table 2. The EL operators 



Category Operators

Arithmetic +, -, *, / (or div), % (or mod)

Relational == (or eq), != (or ne), < (or lt), > (or gt), <= (or le), >= (or ge)

Logical && (or and), || (or or), ! (or not)

Validation empty

The arithmetic operators support addition, subtraction, multiplication, and division of numeric values. A 
remainder operator is also provided. Note that the division and remainder operators have alternate, non-symbolic 
names (in order to be consistent with XPath). An example expression demonstrating the use of the arithmetic 
operators is shown in Listing 5. The result of applying an arithmetic operator to a pair of EL expressions is the 
result of applying that operator to the numeric values returned by those expressions.

Listing 5. An EL expression utilizing arithmetic operators

${item.price * (1 + taxRate[user.address.zipcode])}

The relational operators allow you to compare either numeric or textual data. The result of the comparison is 
returned as a boolean value. The logical operators allow boolean values to be combined, returning a new boolean 
value. The EL logical operators can therefore be applied to the results of nested relational or logical operators, as 
demonstrated in Listing 6.

Listing 6. An EL expression utilizing relational and logical operators

${(x >= min) && (x <= max)}

The final EL operator is empty, which is particularly useful for validating data. The empty operator takes a 
single expression as its argument (that is, ${empty input}), and returns a boolean value indicating whether or 
not the expression evaluates to an "empty" value. Expressions that evaluate to null are considered empty, as are 
collections or arrays with no elements. The empty operator will also return true if its argument evaluates to a 
String of zero length.

Operator precedence for the EL operators is shown in Table 3. As suggested in Listings 5 and 6, parentheses may 
be used to group expressions and override the normal precedence rules.

Table 3. EL operator precedence (top to bottom, left to right) 

[], .

()

unary -, not, !, empty

*, /, div, %, mod

+, binary -

() <, >, <=, >=, lt, gt, le, ge

==, !=, eq, ne



&&, and

||, or

Literals
Numbers, character strings, booleans, and nulls can all be specified as literal values in EL expressions. 
Character strings are delimited by either single or double quotes. Boolean values are designated by true and 
false.

Taglib directives
As we discussed earlier, JSTL 1.0 includes four custom tag libraries. To illustrate the interaction of JSTL tags 
with the expression language, we will look at several of the tags from the JSTL core library. As is true with any 
JSP custom tag library, a taglib directive must be included in any page that you want to be able to use this 
library's tags. The directive for this specific library appears in Listing 7.

Listing 7. The taglib directive for the EL version of the JSTL core library

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

Actually, there are two taglib directives that correspond to the JSTL core library because in JSTL 1.0 the EL 
is optional. All four of the JSTL 1.0 custom tag libraries have alternate versions that use JSP expressions rather 
than the EL for specifying dynamic attribute values. Because these alternate libraries rely on JSP's more 
traditional request-time attribute values, they are referred to as the RT libraries, whereas those using the 
expression language are referred to as the EL libraries. Developers distinguish between the two versions of each 
library using alternate taglib directives. The directive for using the RT version of the core library is shown in 
Listing 8. Given our current focus on the EL, however, it is the first of these directives that is needed.

Listing 8. The taglib directive for the RT version of the JSTL core library

<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c_rt" %>

Variable tags
The first JSTL custom tag we will consider is the <c:set> action. As already indicated, scoped variables play a 
key role in JSTL, and the <c:set> action provides a tag-based mechanism for creating and setting scoped 
variables. The syntax for this action is shown in Listing 9, where the var attribute specifies the name of the 
scoped variable, the scope attribute indicates which scope the variable resides in, and the value attribute 
specifies the value to be bound to the variable. If the specified variable already exists, it will simply be assigned 
the indicated value. If not, a new scoped variable is created and initialized to that value.

Listing 9. Syntax for the <c:set> action

<c:set var="name" scope="scope" value="expression"/>

The scope attribute is optional and defaults to page.

Two examples of the <c:set> are presented in Listing 10. In the first example, a session-scoped variable is set 
to a String value. In the second, an expression is used to set a numeric value: a page-scoped variable named 
square is assigned the result of multiplying the value of a request parameter named x by itself.



Listing 10. Examples of the <c:set> action

<c:set var="timezone" scope="session" value="CST"/>
<c:set var="square" value="${param['x'] * param['x']}"/>

Rather than using an attribute, you can also specify the value for the scoped variable as the body content of the 
<c:set> action. Using this approach, you could rewrite the first example in Listing 10 as shown in Listing 11. 
Furthermore, as we will see momentarily, it's acceptable for the body content of the <c:set> tag to employ 
custom tags itself. All content generated within the body of <c:set> will be assigned to the specified variable 
as a String value.

Listing 11. Specifying the value for the <c:set> action through body content

<c:set var="timezone" scope="session">CST</c:set>

The JSTL core library includes a second tag for managing scoped variables, <c:remove>. As its name suggests, 
the <c:remove> action is used to delete a scoped variable, and takes two attributes. The var attribute names 
the variable to be removed, and the optional scope attribute indicates the scope from which it should be 
removed and defaults to page, as shown in Listing 12.

Listing 12. An example of the <c:remove> action

<c:remove var="timezone" scope="session"/>

Output
While the <c:set> action allows the result of an expression to be assigned to a scoped variable, a developer will 
often want to simply display the value of an expression, rather than store it. This is the role of JSTL's <c:out> 
custom tag, the syntax of which appears in Listing 13. This tag evaluates the expression specified by its value 
attribute, then prints the result. If the optional default attribute is specified, the <c:out> action will instead 
print its value if the value attribute's expression evaluates either to null or an empty String.

Listing 13. Syntax for the <c:out> action

<c:out value="expression" default="expression" escapeXml="boolean"/>

The escapeXml attribute is also optional. It controls whether or not characters such as "<", ">", and "&", which 
have special meanings in both HTML and XML, should be escaped when output by the <c:out> tag. If 
escapeXml is set to true, then these characters will automatically be translated into the corresponding XML 
entities (&lt;, &gt;, and &amp;, respectively, for the characters mentioned here).

For instance, suppose there is a session-scoped variable named user that is an instance of a class that defines 
two properties for users, username and company. This object is automatically assigned to the session 
whenever a user accesses the site, but the two properties are not set until the user actually logs in. Given this 
scenario, consider the JSP fragment shown in Listing 14. Once the user has logged in, this fragment will display 
the word "Hello," followed by his or her username and an exclamation point. Before the user has logged in, 
however, the content generated by this fragment will instead be the phrase, "Hello Guest!" In this case, because 



the username property has yet to be initialized, the <c:out> tag will instead print out the value of its 
default attribute (that is, the character string, "Guest").

Listing 14. An example of the <c:out> action with default content

Hello <c:out value="${user.username}" default=="Guest"/>!

Next, consider Listing 15, which uses the <c:out> tag's escapeXml attribute. If the company property has in 
this case been set to the Java String value "Flynn & Sons", then the content generated by this action will, 
in fact, be Flynn & Sons. If this action is part of a JSP page generating HTML or XML content, then the 
ampersand in the middle of this string of characters may end up being interpreted as an HTML or XML control 
character and interrupt the rendering or parsing of this content. If the value of the escapeXml attribute is instead 
set to true, however, the generated content will instead be Flynn &amp; Sons. A browser or parser 
encountering this content should have no problems with its interpretation. Given that HTML and XML are the 
most common content types in JSP applications, it should come as little surprise that the default value for the 
escapeXml attribute is true.

Listing 15. An example of the <c:out> action with escaping disabled

<c:out value="${user.company}" escapeXml=="false"/>

Setting variables with default values
In addition to simplifying the display of dynamic data, the ability of <c:out> to specify a default value is also 
useful when setting variable values through <c:set>. As highlighted in Listing 11, the value to be assigned to a 
scoped variable can be specified as the body content of the <c:set> tag, as well as through its value attribute. 
By nesting a <c:out> action in the body content of a <c:set> tag, the variable assignment can leverage its 
default value capability.

This approach is illustrated in Listing 16. The behavior of the outer <c:set> tag is straightforward enough: it 
sets the value of the session-scope timezone variable based on its body content. In this case, however, that 
body content is generated through a <c:out> action. The value attribute of this nested action is the expression 
${cookie['tzPref'].value}, which attempts to return the value of a cookie named tzPref by means of 
the cookie implicit object. (The cookie implicit object maps cookie names to corresponding Cookie 
instances, which means you must use the dot operator to retrieve the actual data stored in the cookie through the 
object's value property.)

Listing 16. Combining <c:set> and <c:out> to provide default variable values

<c:set var="timezone" scope=="session">
   <c:out value="${cookie['tzPref'].value}" default=="CST"/>
</c:set>

Consider the case, however, in which this is the user's first experience with the Web application using this code. 
As a result, there is no cookie named tzPref provided in the request. This means the lookup using the implicit 
object will return null, in which case the expression as a whole will return null. Since the result of evaluating 
its value attribute is null, the <c:out> tag will instead output the result of evaluating its default attribute. 
Here, this is the character string CST. The net effect, then, is that the timezone scoped variable will be set to 
the time zone stored in the user's tzPref cookie or, if none is present, use a default time zone of CST.



The EL and JSP 2.0
For now, the expression language is only available for specifying dynamic attribute 
values in JSTL custom tags. An extension of the JSTL 1.0 expression language has been 
proposed, however, for inclusion in the JSP 2.0 specification, now undergoing final 
review. This extension will allow developers to leverage the EL with their own custom 
tags. Page authors will be able to use EL expressions anywhere they are currently 
allowed to use JSP expressions, such as to insert dynamic values into template text: 
<p>Your preferred time zone is ${timezone}.</p>

This JSP 2.0 feature will, like JSTL itself, enable page authors to further reduce their 
dependence on JSP scripting elements, leading to improved maintainability for JSP 
applications.

Summary
The EL, in concert with the actions provided by the four JSTL custom tag libraries, allows page authors to 
implement presentation-layer logic without resorting to scripting elements. Contrast, for example, the JSP code in 
Listing 1 at the beginning of this article with the same functionality as implemented through the JSTL highlighted 
in Listing 17. (The remaining tags in the JSTL core library, including <c:choose> and its children will be 
covered in the next article in this series.) Although it is still clear that conditional logic is being performed, the 
JSTL version has no Java language source code in it, and the relationships between the tags -- particularly with 
respect to nesting requirements -- should be familiar to anyone comfortable with HTML syntax.

Listing 17. Implementing conditional content via JSTL

<c:choose><c:when test="${user.role == 'member'}">
    <p>Welcome, member!</p>
  </c:when><c:otherwise>
    <p>Welcome, guest!</p>
  </c:otherwise></c:choose>

By providing standard implementations of functionality common to most Web applications, JSTL helps 
accelerate the development cycle. In concert with the EL, JSTL can remove the need for program code in the 
presentation layer, greatly simplifying the maintenance of JSP applications.

Resources

●     Sun's JSP Standard Tag Library page is a good starting point for learning more about JSTL.

●     The JSTL 1.0 Specification is the final authority on the EL and the four JSTL tag libraries.

●     The Jakarta Taglibs project is home to the reference implementation for JSTL 1.0.

●     JSTL in Action by Shawn Bayern (Manning Publications Co., 2002) provides excellent coverage of all 
JSTL features, having been written by the reference implementation lead.

●     David Geary, a popular author on Java technology, has also written a book on JSTL, entitled Core JSTL.

http://java.sun.com/products/jsp/jstl/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr052/
http://jakarta.apache.org/taglibs/index.html
http://www.manning.com/bayern/index.html
http://www.amazon.com/exec/obidos/tg/detail/-/0131001531/103-4207394-1320606?vi=glance


●     JSPTags.com is a directory of JSP technology resources, focusing particularly on custom tag libraries.

●     Coverage of JSTL is included as part of Sun's Java Web Services Tutorial.

●     "Using JSPs and custom tags within VisualAge for Java and WebSphere Studio" (WebSphere Developer 
Domain) is a WBOnline hands-on workshop demonstrating the use of servlets, JSPs and custom tag 
libraries.

●     Learn all about custom tag libraries with Jeff Wilson's excellent article, "Take control of your JSP pages 
with custom tags" (developerWorks, January 2002).

●     Noel Bergman's article, "JSP taglibs: Better usability by design" (developerWorks, December 2001), 
shows you how declarative tags will help improve the usability of your JSP pages.

●     For more details on EcmaScript, see Sing Li's "Quick-and-dirty Java programming" (developerWorks, July 
2001).

●     Find hundreds more Java technology resources on the developerWorks Java technology zone.

About the author
Mark Kolb is a Software Engineer working in Austin, Texas. He is a frequent industry speaker on server-side Java 
topics and the co-author of Web Development with JavaServer Pages, 2nd Edition. Mark can be contacted at 
mak@taglib.com.

What do you think of this document?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Comments?

IBM developerWorks : Java technology : Java technology articles

  About IBM  |  Privacy  |  Legal  |  Contact

http://jsptags.com/index.jsp
http://java.sun.com/webservices/docs/ea2/tutorial/doc/JSTL3.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www7b.software.ibm.com/wsdd/
http://www7b.software.ibm.com/wsdd/
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-qdjava/index.html
http://www.ibm.com/developerworks/java/
http://www.manning.com/fields2/index.html
mailto:mak@taglib.com
ftp://www6.software.ibm.com/software/developer/library/j-jstl0211.pdf
javascript:void newWindow()
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks : Java technology : A JSTL primer: The expression language


	OFMJOJMBHLFCGDJPJFIDKLAKGDJIPICC: 
	form1: 
	x: 
	f1: 1
	f2: dW
	f3: 
	f4: [dW]

	f5: 

	form2: 
	x: 
	f1: A JSTL primer: The expression language
	f2: Java
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5: 

	f6: 




