
Search
for: within

 Use only () " " + - Search help

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks : Java technology : Java
technology articles

A JSTL primer: Getting down to the core

Contents:
Example application

Flow control

URL actions

Importing content

Request redirection

Summary

Resources

About the author

Rate this article

Related content:
A JSTL primer: The
expression language

Using JSPs and custom tags
within VisualAge for Java
and WebSphere Studio

Take control of your JSP
pages with custom tags

JSP taglibs: Better usability
by design

Subscribe to the
developerWorks newsletter

Also in the Java zone:
Tutorials

Tools and products

Code and components

Articles

Flow control and URL management through custom tags

Level: Intermediate

Mark A. Kolb (mak@taglib.com)
Software Engineer
March 18, 2003

The JSP Standard Tag Library (JSTL) core library, as its name
suggests, provides custom tags for basic functionality, such as
managing scoped variables and interacting with URLs, as well as for
fundamental operations like iteration and conditionalization. Not only
can these tags be leveraged directly by page authors, but they also
provide a foundation for more complex presentation logic in
combination with the other JSTL libraries. Mark Kolb continues his
exploration into JSTL and the core library with a look at tags to
assist with flow control and URL management.

In the initial article of this series, you got your first look at JSTL. We
described the use of its expression language (EL) to access data and operate
on it. As you learned, the EL is used to assign dynamic values to the
attributes of JSTL custom tags, and thus plays the same role as JSP
expressions for specifying request-time attribute values for the built-in
actions and other custom tag libraries.

To demonstrate the use of the EL, we introduced three tags from the core
library: <c:set>, <c:remove>, and <c:out>. <c:set> and
<c:remove> are used for managing scoped variables; <c:out> is for
displaying data, particularly values computed using the EL. Based on this
groundwork, then, we will focus our attention in this article on the remaining
tags in the core library, which can be broadly grouped into two major
categories: flow control and URL management.

Example application
To demonstrate the JSTL tags, we'll use examples from a working
application for the remaining articles in this series. Because of their growing
popularity and familiarity, we'll use a simple Java-based Weblog for this
purpose; see Resources to download the JSP pages and source code for this
application. A Weblog (also known as a blog) is a Web-based journal of
short commentaries on topics of interest to the Weblog's author, typically
with links to related articles or discussions elsewhere on the Web. A
screenshot of the running application is shown in Figure 1.

Figure 1. The Weblog application

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
ftp://www6.software.ibm.com/software/developer/library/j-jstl0318.jar
javascript:void newWindow()
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/java-all-byname?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/java-uicomponents-bytitle?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bytopic?OpenDocument&Count=500
mailto:mak@taglib.com
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html

Although a couple dozen Java classes are required for the full implementation, only two of the Weblog
application's classes, Entry and UserBean, are referenced in the presentation layer. To understand the
JSTL examples, then, only these two classes are important. A class diagram for Entry and UserBean is
shown in Figure 2.

Figure 2. Class diagram for the Weblog application

The Entry class represents a dated entry within a Weblog. Its id attribute is used to store and retrieve
the entry in a database, while the title and text attributes represent the entry's actual content. Two
instances of the Java language's Date class are referenced by the created and lastModified
attributes, representing when the entry was first created and last edited. The author attribute references a
UserBean instance identifying the person who created the entry.

The UserBean class stores information about the application's authenticated users, such as user name,
full name, and e-mail address. This class also includes an id attribute for interacting with an associated
database. Its final attribute, roles, references a list of String values identifying the
application-specific roles associated with the corresponding user. For the Weblog application, the relevant
roles are "User" (the default role common to all application users) and "Author" (the role that designates
users who are allowed to create and edit Weblog entries).

Flow control
Because the EL can be used in place of JSP expressions to specify dynamic attribute values, it reduces the
need for page authors to use scripting elements. Because scripting elements can be a significant source of
maintenance problems in JSP pages, providing simple (and standard) alternatives to their use is a major
advantage of JSTL.

The EL retrieves data from the JSP container, traverses object hierarchies, and performs simple operations
on the results. In addition to accessing and manipulating data, however, another common use of JSP
scripting elements is flow control. In particular, it is fairly common for page authors to resort to scriptlets
to implement iterative or conditional content. However, because such operations are beyond the
capabilities of the EL, the core library instead provides several custom actions to manage flow control in
the form of iteration, conditionalization, and exception handling.

Iteration
In the context of Web applications, iteration is primarily used to fetch and display collections of data,
typically in the form of a list or sequence of rows in a table. The primary JSTL action for implementing
iterative content is the <c:forEach> custom tag. This tag supports two different styles of iteration:
iteration over an integer range (like the Java language's for statement) and iteration over a collection (like
the Java language's Iterator and Enumeration classes).

To iterate over a range of integers, the syntax of the <c:forEach> tag shown in Listing 1 is used. The
begin and end attributes should be either static integer values or expressions evaluating to integer
values. They specify the initial value of the index for the iteration and the index value at which iteration
should cease, respectively. When iterating over a range of integers using <c:forEach>, these two
attributes are required and all others are optional.

Listing 1. Syntax for numerical iteration through the <c:forEach> action

<c:forEach var="name" varStatus="name"
 begin="expression" end="expression" step="expression">
 body content
</c:forEach>

The step attribute, when present, must also have an integer value. It specifies the amount to be added to

the index after each iteration. The index of the iteration thus starts at the value of the begin attribute, is
incremented by the value of the step attribute, and halts iteration when it exceeds the value of the end
attribute. Note that if the step attribute is omitted, the step size defaults to 1.

If the var attribute is specified, then a scoped variable with the indicated name will be created and
assigned the current value of the index for each pass through the iteration. This scoped variable has nested
visibility -- it can only be accessed within the body of the <c:forEach> tag. (We'll discuss the use of
the optional varStatus attribute shortly.) Listing 2 shows an example of the <c:forEach> action for
iterating over a fixed set of integer values.

Listing 2. Using the <c:forEach> tag to generate tabular data corresponding to a range of numeric
values

<table>
<tr><th>Value</th>
 <th>Square</th></tr>
<c:forEach var="x" begin="0" end="10" step="2">
 <tr><td><c:out value="${x}"/></td>
 <td><c:out value="${x * x}"/></td></tr>
</c:forEach>
</table>

This example code generates a table of the squares of the first five even numbers, as shown in Figure 3.
This is accomplished by specifying a value of two for both the begin and step attributes, and a value of
ten for the end attribute. In addition, the var attribute is used to create a scoped variable for storing the
index value, which is referenced within the body of the <c:forEach> tag. Specifically, a pair of
<c:out> actions are used to display the index and its square, the latter of which is computed using a
simple expression.

Figure 3. Output of Listing 2

When iterating over the members of a collection, one additional attribute of the <c:forEach> tag is
used: the items attribute, which is shown in Listing 3. When you use this form of the <c:forEach>
tag, the items attribute is the only required attribute. The value of the items attribute should be the
collection over whose members the iteration is to occur, and is typically specified using an EL expression.
If a variable name is specified through the <c:forEach> tag's item attribute, then the named variable
will be bound to successive elements of the collection for each iteration pass.

Listing 3. Syntax for iterating through a collection through the <c:forEach> action

<c:forEach var="name" items="expression" varStatus="name"
 begin="expression" end="expression" step="expression">
 body content
</c:forEach>

All of the standard collection types provided by the Java platform are supported by the <c:forEach>
tag. In addition, you can use this action to iterate through the elements of an array, including arrays of
primitives. Table 1 contains a complete list of the values supported by the items attribute. As the final
row of the table indicates, JSTL defines its own interface,
javax.servlet.jsp.jstl.sql.Result, for iterating through the result of an SQL query. (We'll
present further details on this capability in a later article in this series.)

Table 1. Collections supported by the items attribute of the <c:forEach> tag

Value for items Resulting item values

java.util.Collection Elements from call to iterator()

java.util.Map Instances of java.util.Map.Entry

java.util.Iterator Iterator elements

java.util.Enumeration Enumeration elements

Array of Object instances Array elements

Array of primitive values Wrapped array elements

Comma-delimited String Substrings

javax.servlet.jsp.jstl.sql.Result Rows from an SQL query

You can use the begin, end, and step attributes to restrict which elements of the collection are
included in the iteration. As was the case for numerical iteration through <c:forEach>, an iteration
index is also maintained when iterating through the elements of a collection. Only those elements that
correspond to index values matching the specified begin, end, and step values will actually be
processed by the <c:forEach> tag.

Listing 4 shows the <c:forEach> tag being used to iterate through a collection. For this JSP fragment, a
scoped variable named entryList has been set to a list (specifically, an ArrayList) of Entry
objects. The <c:forEach> tag processes each element of this list in turn, assigning it to a scoped
variable named blogEntry, and generating two table rows -- one for the Weblog entry's title and a
second for its text. These properties are retrieved from the blogEntry variable through a pair of
<c:out> actions with corresponding EL expressions. Note that, because both the title and text of a
Weblog entry might contain HTML markup, the escapeXml attribute of both <c:out> tags is set to
false. Figure 4 shows the result.

Listing 4. Displaying the Weblog entries for a given date using the <c:forEach> tag

<table>
 <c:forEach items="${entryList}" var="blogEntry">
 <tr><td align="left" class="blogTitle">
 <c:out value="${blogEntry.title}" escapeXml="false"/>
 </td></tr>
 <tr><td align="left" class="blogText">
 <c:out value="${blogEntry.text}" escapeXml="false"/>
 </td></tr>
 </c:forEach>
</table>

Figure 4. Output of Listing 4

The remaining <c:forEach> attribute, varStatus, plays the same role whether iterating over
integers or collections. Like the var attribute, varStatus is used to create a scoped variable. Instead of
storing the current index value or the current element, however, the variable named by the varStatus
attribute is assigned an instance of the javax.servlet.jsp.jstl.core.LoopTagStatus class.
This class defines a set of properties, listed in Table 2, that describe the current state of an iteration.

Table 2. Properties of the LoopTagStatus object

Property Getter Description

current getCurrent() The item (from the collection) for the current round of iteration

index getIndex() The zero-based index for the current round of iteration

count getCount() The one-based count for the current round of iteration

first isFirst() Flag indicating whether the current round is the first pass through the
iteration

last isLast() Flag indicating whether the current round is the last pass through the
iteration

begin getBegin() The value of the begin attribute

end getEnd() The value of the end attribute

step getStep() The value of the step attribute

Listing 5 shows an example of how the varStatus attribute is used. It modifies the code in Listing 4 to
add numbering of the Weblog entries to the table rows displaying their titles. This is done by specifying a
value for the varStatus attribute and then accessing the count property of the resulting scoped
variable. The results appear in Figure 5.

Listing 5. Using the varStatus attribute to display a count of Weblog entries

<table>
 <c:forEach items=
 "${entryList}" var="blogEntry" varStatus="status">
 <tr><td align="left" class="blogTitle">
 <c:out value="${status.count}"/>.
 <c:out value="${blogEntry.title}" escapeXml="false"/>
 </td></tr>
 <tr><td align="left" class="blogText">
 <c:out value="${blogEntry.text}" escapeXml="false"/>
 </td></tr>
 </c:forEach>
</table>

Figure 5. Output of Listing 5

In addition to <c:forEach>, the core library provides a second iteration tag: <c:forTokens>. This
custom action is the JSTL analog of the Java language's StringTokenizer class. The
<c:forTokens> tag, shown in Listing 6, has the same set of attributes as the collection-oriented version
of <c:forEach>, with one addition. For <c:forTokens>, the string to be tokenized is specified
through the items attribute, while the set of delimiters used to generate the tokens is provided through
the delims attribute. As was the case for <c:forEach>, you can use the begin, end, and step
attributes to restrict the tokens to be processed to those matching the corresponding index values.

Listing 6. Syntax for iterating through a string's tokens with the <c:forTokens> action

<c:forTokens var="name" items="expression"
 delims="expression" varStatus="name"
 begin="expression" end="expression" step="expression">
 body content
</c:forTokens>

Conditionalization
For Web pages containing dynamic content, you might want different categories of users to see different
forms of content. In our Weblog, for instance, visitors should be able to read entries and perhaps submit

feedback, but only authorized users should be able to post new entries or edit existing content.

Both usability and software maintenance are often improved by implementing such features within the
same JSP page and then using conditional logic to control what gets displayed on a per-request basis. The
core library provides two different conditionalization tags -- <c:if> and <c:choose> -- to
implement these features.

The more straightforward of these two actions, <c:if>, simply evaluates a single test expression and
then processes its body content only if that expression evaluates to true. If not, the tag's body content is
ignored. As Listing 7 shows, <c:if> can optionally assign the result of the test to a scoped variable
through its var and scope attributes (which play the same role here as they do for <c:set>). This
capability is particularly useful if the test is expensive: the result can be cached in a scoped variable and
retrieved in subsequent calls to <c:if> or other JSTL tags.

Listing 7. Syntax for the <c:if> conditional action

<c:if test="expression" var="name" scope="scope">
 body content
</c:if>

Listing 8 shows <c:if> used with the first property of a <c:forEach> tag's LoopTagStatus
object. In this case, as shown in Figure 6, the creation date for a set of Weblog entries is displayed just
above the first entry for that date, but is not repeated before any of the other entries.

Listing 8. Using <c:if> to display the date for Weblog entries

<table>
 <c:forEach items=
 "${entryList}" var="blogEntry" varStatus="status">
 <c:if test="${status.first}">
 <tr><td align="left" class="blogDate">
 <c:out value="${blogEntry.created}"/>
 </td></tr>
 </c:if>
 <tr><td align="left" class="blogTitle">
 <c:out value="${blogEntry.title}" escapeXml="false"/>
 </td></tr>
 <tr><td align="left" class="blogText">
 <c:out value="${blogEntry.text}" escapeXml="false"/>
 </td></tr>
 </c:forEach>
</table>

Figure 6. Output of Listing 8

As Listing 8 shows, the <c:if> tag provides a very compact notation for simple cases of conditionalized
content. For cases in which mutually exclusive tests are required to determine what content should be
displayed, the JSTL core library also provides the <c:choose> action. The syntax for <c:choose>
is shown in Listing 9.

Listing 9. Syntax for the <c:choose> action

<c:choose>
 <c:when test="expression">
 body content
 </c:when>
 ...
 <c:otherwise>
 body content
 </c:otherwise>
</c:choose>

Each condition to be tested is represented by a corresponding <c:when> tag, of which there must be at
least one. Only the body content of the first <c:when> tag whose test evaluates to true will be
processed. If none of the <c:when> tests return true, then the body content of the <c:otherwise>
tag will be processed. Note, though, that the <c:otherwise> tag is optional; a <c:choose> tag can
have at most one nested <c:otherwise> tag. If all <c:when> tests are false and no
<c:otherwise> action is present, then no <c:choose> body content will be processed.

Listing 10 shows an example of the <c:choose> tag in action. Here, protocol information is retrieved
from the request object (by means of the EL's pageContext implicit object) and tested using a simple
string comparison. Based on the results of these tests, a corresponding text message is displayed.

Listing 10. Content conditionalization using <c:choose>

<c:choose>
 <c:when test="${pageContext.request.scheme eq 'http'}">
 This is an insecure Web session.
 </c:when>
 <c:when test="${pageContext.request.scheme eq 'https'}">
 This is a secure Web session.
 </c:when>
 <c:otherwise>
 You are using an unrecognized Web protocol. How did this happen?!
 </c:otherwise>
</c:choose>

Exception handling
The final flow-control tag is <c:catch>, which allows for rudimentary exception handling within a JSP
page. More specifically, any exceptions raised within the body content of this tag will be caught and
ignored (that is, the standard JSP error-handling mechanism will not be invoked). However, if an
exception is raised and the <c:catch> tag's optional var attribute has been specified, the exception will
be assigned to the specified variable (with page scope), enabling custom error handling within the page
itself. Listing 11 shows the syntax of <c:catch> (an example appears later in Listing 18).

Listing 11. Syntax for the <c:catch> action

<c:catch var="name">
 body content
</c:catch>

URL actions
The remaining tags in the JSTL core library focus on URLs. The first of these, the aptly named
<c:url> tag, is used to generate URLs. In particular, <c:url> provides three elements of functionality
that are particularly important when constructing URLs for J2EE Web applications:

Prepending the name of the current servlet context●

URL re-writing for session management●

URL encoding of request-parameter names and values●

Listing 12 shows the syntax for the <c:url> tag. The value attribute is used to specify a base URL,
which the tag then transforms as necessary. If this base URL starts with a forward slash, then a servlet
context name will be prepended. An explicit context name can be provided using the context attribute.
If this attribute is omitted, then the name of the current servlet context will be used. This is particularly
useful because servlet context names are decided during deployment, rather than during development. (If
the base URL does not start with a forward slash, then it is assumed to be a relative URL, in which case
the addition of a context name is unnecessary.)

Listing 12. Syntax for the <c:url> action

<c:url value="expression" context="expression"
 var="name" scope="scope">
 <c:param name="expression" value="expression"/>
 ...
</c:url>

URL rewriting is automatically performed by the <c:url> action. If the JSP container detects a cookie
storing the user's current session ID, no rewriting is necessary. If no such cookie is present, however, all
URLs generated by <c:url> will be rewritten to encode the session ID. Note that if an appropriate

cookie is present in subsequent requests, <c:url> will stop rewriting URLs to include this ID.

If a value is supplied for the var attribute (optionally accompanied by a corresponding value for the
scope attribute), the generated URL will be assigned as the value of the specified scoped variable.
Otherwise, the resulting URL will be output using the current JspWriter. This ability to directly output
its result allows the <c:url> tag to appear as the value, for example, of the href attribute of an HTML
<a> tag, as shown in Listing 13.

Listing 13. Generating a URL as the attribute value for an HTML tag

<a href="<c:url value='/content/sitemap.jsp'/>">View sitemap

Finally, if any request parameters are specified through nested <c:param> tags, then their names and
values will be appended to the generated URL using the standard notation for HTTP GET requests. In
addition, URL encoding is performed: any characters present in either the names or values of these
parameters that must be transformed in order to yield a valid URL will be translated appropriately. Listing
14 illustrates the behavior of <c:url>.

Listing 14. Generating a URL with request parameters

<c:url value="/content/search.jsp">
 <c:param name="keyword" value="${searchTerm}"/>
 <c:param name="month" value="02/2003"/>
</c:url>

The JSP code in Listing 14 has been deployed to a servlet context named blog, and the value of the
scoped variable searchTerm has been set to "core library". If a session cookie has been detected,
then the URL generated by Listing 14 will be like the one in Listing 15. Note that the context name has
been prepended, and the request parameters have been appended. In addition, the space in the value of the
keyword parameter and the forward slash in the value of the month parameter have been encoded as
required for HTTP GET parameters (specifically, the space has been translated into a + and the slash has
been translated into the sequence %2F).

Listing 15. URL generated in the presence of a session cookie

/blog/content/search.jsp?keyword=foo+bar&month=02%2F2003

When no session cookie is present, the URL in Listing 16 is the result. Again, the servlet context has been
prepended and the URL-encoded request parameters have been appended. In addition, however, the base
URL has been rewritten to include specification of a session ID. When a browser sends a request for a
URL that has been rewritten in this manner, the JSP container automatically extracts the session ID and
associates the request with the corresponding session. In this way, a J2EE application that requires session
management doesn't need to rely on cookies being enabled by users of the application.

Listing 16. URL generated in the absence of a session cookie

/blog/content/search.jsp;jsessionid=233379C7CD2D0ED2E9F3963906DB4290
 ?keyword=foo+bar&month=02%2F2003

Importing content
JSP has two built-in mechanisms to incorporate content from a different URL into a JSP page: the
include directive and the <jsp:include> action. In both cases, however, the content to be included
must be part of the same Web application (or servlet context) as the page itself. The major distinction
between these two tags is that the include directive incorporates the included content during page
compilation, while the <jsp:include> action operates during request-time processing of JSP pages.

The core library's <c:import> action is essentially a more generic, more powerful version of
<jsp:include> (sort of a <jsp:include> on steroids). Like <jsp:include>, <c:import> is
a request-time action, and its basic task is to insert the content of some other Web resource into a JSP
page. Its syntax is very similar to that of <c:url>, as shown in Listing 17.

Listing 17. Syntax for the <c:import> action

<c:import url="expression" context="expression"
 charEncoding="expression" var="name" scope="scope">
 <c:param name="expression" value="expression"/>
 ...
</c:import>

The URL for the content to be imported is specified through the url attribute, which is <c:import>'s
only required attribute. Relative URLs are permitted and are resolved against the URL of the current page.
If the value of the url attribute starts with a forward slash, however, it is interpreted as an absolute URL
within the local JSP container. Without a value for the context attribute, such an absolute URL is
assumed to reference a resource in the current servlet context. If an explicit context is specified through
the context attribute, then the absolute (local) URL is resolved against the named servlet context.

The <c:import> action is not limited to accessing local content, however. Complete URIs, including
protocol and host names, can also be specified as the value of the url attribute. In fact, the protocol is not
even restricted to HTTP. Any protocol supported by the java.net.URL class may be used in the value
for the url attribute of <c:import>. This capability is shown in Listing 18.

Here, the <c:import> action is used to include the content of a document accessed through the FTP
protocol. In addition, the <c:catch> action is employed to locally handle any errors that might occur
during the FTP file transfer. This is accomplished by specifying a scoped variable for the exception using
<c:catch>'s var attribute, and then checking its value using <c:if>. If an exception was raised, then
assignment to the scoped variable will occur: as the EL expression in Listing 18 suggests, its value will not
be empty. Since retrieval of the FTP document will have failed, an error message to that effect is
displayed.

Listing 18. Example combining <c:import> and <c:catch>

<c:catch var="exception">
 <c:import url="ftp://ftp.example.com/package/README"/>
</c:catch>
<c:if test="${not empty exception}">
 Sorry, the remote content is not currently available.
</c:if>

The final two (optional) attributes of the <c:import> action are var and scope. The var attribute
causes the content fetched from the specified URL to be stored (as a String value) in a scoped variable,
rather than included in the current JSP page. The scope attribute controls the scoping of this variable, and
defaults to page scope. As we will see in a later article, this ability of <c:import> to store an entire
document in a scoped variable is leveraged by the tags in the JSTL xml library.

Note also that (optional) nested <c:param> tags may be used to specify request parameters for the URL
being imported. As was the case for <c:param> tags nested with <c:url>, parameter names and
values are URL encoded as necessary.

Request redirection
The final core library tag is <c:redirect>. This action is used to send an HTTP redirect response to a
user's browser, and is the JSTL equivalent of the sendRedirect() method of
javax.servlet.http.HttpServletResponse. The behavior of this tag's url and context

attributes, shown in Listing 19, is identical to the behavior of <c:import>'s url and context
attributes, as is the effect of any nested <c:param> tags.

Listing 19. Syntax for the <c:redirect>action

<c:redirect url="expression" context="expression">
 <c:param name="expression" value="expression"/>
 ...
</c:redirect>

Listing 20 shows the <c:redirect> action, which replaces the error message in Listing 18 with a
redirect to a designated error page. In this example, the <c:redirect> tag is used in a similar way as
the standard <jsp:forward> action. Recall, however, that forwarding through a request dispatcher is
implemented on the server side, while redirects are performed by the browser. From the developer's
perspective, forwarding is more efficient than redirecting, but the <c:redirect> action is a bit more
flexible because <jsp:forward> can only dispatch to other JSP pages within the current servlet
context.

Listing 20. Redirecting in response to an exception

<c:catch var="exception">
 <c:import url="ftp://ftp.example.com/package/README"/>
</c:catch>
<c:if test="${not empty exception}">
 <c:redirect url="/errors/remote.jsp"/>
</c:if>

The main difference from the user's perspective is that a redirect will update the URL displayed by the
browser and will therefore affect the setting of bookmarks. Forwarding, on the other hand, is transparent to
the end user. The choice between <c:redirect> and <jsp:forward>, then, also depends upon the
desired user experience.

Summary
The JSTL core library contains a variety of general-purpose custom tags that should be of use to a wide
spectrum of JSP developers. The URL and exception-handling tags, for example, nicely complement
existing JSP functionality, such as the <jsp:include> and <jsp:forward> actions, the include
directive, and the errorpage attribute of the page directive. The iteration and conditional actions
enable complex presentation logic to be implemented without the need for scripting elements, particularly
in combination with the variable tags (<c:set> and <c:remove>) and the EL.

Resources

Part 1 in this series, A JSTL primer: The expression language (developerWorks, February 2003),
introduces JSTL and details the expression language and several of the tags in core library.

●

Download the source code for the Weblog example application.●

Sun's product page for the JSP Standard Tag Library is a good starting point to learn more about
JSTL.

●

The JSTL 1.0 Specification is the final authority on the EL and the four JSTL tag libraries.●

The Jakarta Taglibs project is home to the reference implementation for JSTL 1.0.●

JSTL in Action by Shawn Bayern (Manning, 2002) provides excellent coverage of all JSTL features,●

http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
ftp://www6.software.ibm.com/software/developer/library/j-jstl0318.jar
http://java.sun.com/products/jsp/jstl/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr052/
http://jakarta.apache.org/taglibs/index.html
http://www.manning.com/bayern/index.html

having been written by the reference implementation lead.

Popular Java programming author David Geary has also written a book on JSTL, entitled Core
JSTL.

●

JSPTags.com is a directory of JSP resources, focusing particularly on custom tag libraries.●

Coverage of JSTL is included as part of Sun's Java Web Services Tutorial.●

"Using JSPs and custom tags within VisualAge for Java and WebSphere Studio" (WebSphere
Developer Domain) is a WBOnline hands-on workshop demonstrating the use of servlets, JSP
pages, and custom tag libraries.

●

Learn all about custom tag libraries with Jeff Wilson's excellent article, "Take control of your JSP
pages with custom tags" (developerWorks, January 2002).

●

Noel Bergman's article, "JSP taglibs: Better usability by design" (developerWorks, December 2001),
shows you how declarative tags will help improve the usability of your JSP pages.

●

Find hundreds more Java technology resources on the developerWorks Java technology zone.●

About the author
Mark Kolb is a Software Engineer working in Austin, Texas. He is a frequent industry speaker on
server-side Java topics and the co-author of Web Development with JavaServer Pages, 2nd Edition. You
can contact Mark at mak@taglib.com.

What do you think of this document?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Comments?

IBM developerWorks : Java technology : Java technology articles

 About IBM | Privacy | Legal | Contact

http://www.core-jstl.com/
http://www.core-jstl.com/
http://jsptags.com/index.jsp
http://java.sun.com/webservices/docs/ea2/tutorial/doc/JSTL3.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/&origin=j
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www.ibm.com/developerworks/java/
http://www.manning.com/fields2/index.html
mailto:mak@taglib.com
ftp://www6.software.ibm.com/software/developer/library/j-jstl0318.jar
javascript:void newWindow()
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks : Java technology : A JSTL primer: Getting down to the core

	JAGIHICKGNCELJIAMFFAMCJJAIFDBENJ:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	form2:
	x:
	f1: A JSTL primer: Getting down to the core
	f2: Java
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

