Search

for within [I seoren |

Use+-()"" Search help
IBM home | Products & services | Support & downloads | My account

IBM developerWorks > Java technology dEVE|Dp erWorks
A JSTL primer, Part 4: Accessing SQL and XML ® o

content Code e-mail it!
Custom tag libraries for exchanging XML and database content in JSP pages Contents:
Level: Intermediate The xml library
Mark A. Kolb (mek@taglib.com) The sq librar
Software Engineer A word of caution
May 20, 2003 Summary

A hallmark of Web-based applications is the integration of multiple
subsystems. Two of the most common mechanisms for exchanging data
between such subsystems are SQL and XML. In this article, Mark Kolb About the author
concludes his coverage of JSTL with an introduction to the sql and xmi Rate this article
libraries for accessing database and XML content in JSP pages. -

Resources

The stereotypical architecture for a Web-based application calls for threetiers: a Related content:
Web server for handling requests, an application server for implementing Building Web-based
business logic, and a database for managing persistent data. The linkage between gpplications with JDBC
the application and database tiers typically takes the form of SQL calsinto a
relationa database. When the business logic is written in the Java language, Teke cqntrol of your JSP
JDBC is used to implement these calls. pages with custom tegs

If the application calls for integration with additional servers (either local or ;SF;:;_J“SS: Better usability

remote), further mechanisms for exchanging data between the various subsystems 2Y-9€3dN
will be required. An increasingly common approach to communicating data both ~ Subscribe to the
within and between Web applications is the exchange of XML documents. developerWorks newsletter

So far in our tour of JSTL, we've examined the JSTL expression language (EL) developerWorks Toolbox
and both thecor e and f nt_tag libraries. In thisfinal installment, we'll consider subscription
thesql and xm librariesthat -- as their names suggest -- provide custom tags

for accessing and manipulating data retrieved from SQL databases and XML Alsoin the Java zone:
documents. Tutorials

The xml library Don't miss the rest Tools and products
By design, XML provides a flexible means for : :

representing structured data that is at the same time of this ser s Code and components
readily amenable to validation. Asaresult, it is Part 1, "The Articles

particularly well suited for exchanging data between expression language”

loosely coupled systems. Thisin turn makesit an (February 2003)

attractive integration technology for Web-based

applications. Part 2, " Getting down

The first step in interacting with data represented as —tz%g; core” (March

XML istoretrieveit asan XML document and parse it

to yield a data structure for accessing the contents of the Part 3. " Presentation

document. After the document has been parsed you can | . TR

then optionally transform it to yield a new XML iseverything” (April

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/
ftp://www6.software.ibm.com/software/developer/library/j-jstl0520.jar
javascript:void newWindow()
http://www-106.ibm.com/developerworks/java/edu/j-dw-jdbcweb-i.html
http://www-106.ibm.com/developerworks/java/edu/j-dw-jdbcweb-i.html
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/toolbox/
http://www-106.ibm.com/developerworks/toolbox/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tools.jsp
http://www-106.ibm.com/developerworks/views/java/code.jsp
http://www-106.ibm.com/developerworks/views/java/articles.jsp
mailto:mak@taglib.com
http://www-106.ibm.com/developerworks/java/library/j-jstl0211/
http://www-106.ibm.com/developerworks/java/library/j-jstl0318/
http://www-106.ibm.com/developerworks/java/library/j-jstl0415/
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html
http://www-106.ibm.com/developerworks/java/library/j-jstl0318/
http://www-106.ibm.com/developerworks/java/library/j-jstl0318/
http://www-106.ibm.com/developerworks/java/library/j-jstl0415/
http://www-106.ibm.com/developerworks/java/library/j-jstl0415/

document, to which the same operations can again be ’ 2003)
applied. Finally, the data from the document can be
extracted and then displayed or used asinput for performing additional operations.

These steps are mirrored in the JSTL tags used for manipulating XML. XML documents are retrieved using the
<c: i mport > tag fromthecor e library, as we discussed in Part 2, Getting down to the core. The

<Xx: par se> tag isthen used to parse the document, with support for standard XML parsing technologies such
as the Document Object Model (DOM) and Simple API for XML (SAX). The<x: t ransf or > tagis
available for transforming XML documents and relies on the standard technology for transforming XML data:
the Extensible Stylesheet Language (XSL). Finally, several tags are provided for accessing and manipulating
parsed XML data, all of which rely on yet another standard, the XML Path Language (X Path), for referencing
the contents of parsed XML documents.

Parsing XML
The <x: par se> tag actually takes several forms, depending upon the type of parsing desired. The most basic
form of this action uses the following syntax:

<x: parse xm ="expressi on" var="nane" scope="scope"
filter="expression" system d="expression"/>

Of these five attributes, only the xnl attribute is required, and its value should be either a St r i ng containing
the XML document to be parsed or an instance of j ava. i 0. Reader through which the document to be
parsed can be read. Alternatively, you can specify the document to be parsed as the body content of the

<X: par se> tag, using this syntax:

<X: parse var="nanme" scope="scope"
filter="expression" system d="expressi on">
body cont ent
</ x: par se>

Thevar and scope attributes specify a scoped variable for storing the parsed document. This variable can
then be used by the other tagsin thexm library to perform additional operations. Note that when thevar and
scope attributes are present, the type of data structure used by JSTL to represent the parsed document is
implementation-specific, allowing for vendor optimization.

If your application needsto perform operations on the parsed document that is provided by JSTL, then an
aternate form of <x: par se> can be used, which requires that the parsed document adhere to a standard
interface. In this case the syntax for the tag is as follows:

<x: parse xml ="expression" var Don="nane" scopeDon"scope"
filter="expression" system d="expression"/>

When you use thisversion of <x: par se>, the object representing the parsed XML document must implement
theor g. w3c. dom Docunent interface. Y ou can also use the var Domand scopeDomattributesin place
of var and scope when the XML document is specified as the body content of <x: par se>, asfollows:

<x: par se var Dom=" name" scopeDon="scope"
filter="expression" system d="expressi on">
body cont ent
</ x: par se>

The remaining two attributes, fi | t er and syst enl d, enable more fine-grained control of the parsing. The

http://www-106.ibm.com/developerworks/java/library/j-jstl0318/

filter atribute specifies aninstance of theor g. xm . sax. XMLFi | t er
classfor filtering the document prior to parsing. This attribute is particularly
useful if the document to be parsed is very large, but only asmall subset is of
interest for the task at hand. The syst enl d attribute indicates the URI for
the document being parsed and resolves any relative paths present in the
document. This attribute is required if the XML being parsed uses relative
URLstto refer to other documents or resources that need to be accessed during
the parsing process.

Listing 1 demonstrates the use of the <x: par se> tag, including its
interaction with <c: i nport >. Here, the<c: i nport > tagisused to
retrieve the RDF Site Summary (RSS) feed for the well-known Slashdot Web
site. The XML document representing the RSS feed is then parsed by

<x: par se>, and an implementation-specific data structure representing the
parsed document is stored in avariable named r ss with page scope.

Listing 1. Interaction of the <x:parse> and <c:import> actions

L earning about RSS

RDF Site Summary (RSS) is
an XML document format
published by many
news-oriented sites, which
liststheir current headlines
and provides URLsfor linking
to the corresponding articles.
Assuch, it providesasimple
mechanism for syndicating
news items over the Web. For
further details on RSS, see
Resources.

<x: parse var="rss" xm ="${rssFeed}"/>

<c:inport var="rssFeed" url="http://slashdot.org/slashdot.rdf"/>

Transforming XML

XML istransformed by means of XSL stylesheets. JSTL supports this operation through use of the
<x: t ransf or m> tag. Aswasthe case for <x: par se>, the<x: t r ansf or n tag supports several

different forms. The syntax for the most basic form of <x: t r ansf or n» is:

<x:transform xnl =" expressi on" xslt="expressi on"
var =" nanme" scope="scope"
xm Syst em d="expressi on"

<x: par am nane="expressi on" val ue="expressi on"/>

</ x:transfor np

xsl t Syst eml d="expr essi on" >

Here, thexm attribute specifies the document to be transformed, and the xs| t attribute specifies the
stylesheet defining that transformation. These two attributes are required; the others are optional.

Likethexm attribute of <x: par se>, the value of thexml attribute of <x: t r ansf or > can be either a

St ri ng containing an XML document or a Reader for accessing such a document. In addition, however, it
can also take the form of an instance of either the or g. w3c. dom Docunent classor the

javax. xnl . transf orm Sour ce class. Findly, it can also be the value of avariable assigned using either

thevar or var Domattribute of the <x: par se> action.

Alternatively, you can include the XML document to be transformed as the body content of the

<x: transf or m> action. In this case, the syntax for <x: t r ansf or n» is

<x:transform xslt="expressi on"
var ="name" scope="scope"

body cont ent
<x: par am nane="expressi on" val ue="expressi on"/>

</ x:transfornp

xm Syst eml d="expressi on" xslt Systenl d="expressi on">

In both cases, the xsl t attribute specifying the X SL stylesheet should be either aSt r i ng, aReader, or an
instance of j avax. xm . t ransf or m Sour ce.

If thevar attribute is present, the transformed XML document will be assigned to the corresponding scoped
variable as an instance of the or g. w3c. dom Docunent class. Asusual, the scope attribute specifiesthe
scope for this variable assignment.

The<x: t r ansf or n» tag aso supports storing the result of the transformation in an instance of the

javax. xm . transform Resul t class, rather than as an instance of or g. w3c. dom Docunent . If the
var and scope attributes are omitted and aResul t object is specified asthe value of ther esul t attribute,
the<x: t r ansf or nP tag will use that object to hold the results of applying the stylesheet. The two syntax
variationsfor using ther esul t attribute of <x: t r ansf or > appear in Listing 2:

Listing 2. Syntax variationsfor the <x:transform> action when using the result attributeto supply a
javax.xml.transform.Result instance

<x:transform xm ="expressi on" xslt="expression"
resul t =" expressi on"
xm Syst em d="expressi on" xsltSystem d="expressi on">
<x: par am nane="expressi on" val ue="expressi on"/>

</ x: transfornp

<x:transform xslt="expression"
resul t =" expressi on"
xm Syst em d="expressi on" xsltSystem d="expressi on">
body cont ent
<x: param nane="expressi on" val ue="expression"/>

</ x:transfornp

When you employ either of these two forms of <x: t r ansf or m», thej avax. xm . transf orm Resul t
object must be created independently from the custom tag. The object itself is supplied as the value of the
resul t atribute.

If neither thevar attribute nor ther esul t attribute is present, then the results of the transformation will
simply beinserted into the JSP page as aresult of processing the <x: t r ansf or > action. Thisis particularly
useful when a stylesheet is being used to transform data from XML into HTML, asillustrated in Listing 3:

Listing 3. Directly displaying transformed XML datain a JSP page

<c:inmport var="rssFeed" url="http://slashdot.org/slashdot.rdf"/>
<c:inmport var="rssToHtm " url="/WEB-INF/ xslt/rss2htm . xsl"/>
<x:transform xm ="${rssFeed}" xslt="${rssToH m }"/>

In this example, both the RSS feed and an appropriate stylesheet are read in using the <c: i nport > tag. The
output of the stylesheet isHTML, which isdirectly displayed by omitting boththevar andr esul t attributes
of <x: t ransf or n>. Figure 1 shows a sample result:

Figure 1. Output of Listing 3

" O O http://localhost:8080/blog/jstl-examples/transformXML.jsp

RELSEE 3 [il | + | @ http://localhost:8080 /blog/jstl-examples transfor: | & |

Slashdot

The 69/8 Metworking Problem

Slashback: Folding, Cursing. Exporting

Building a Town=-Wide LAN?

More Thoughts On How to Wire Senegal

Linux On Unmodded Xbox. Improved

Flaw Delays Shipment Of New 'Canterwood' Pentium 4
Blackboard Campus IDs: Security Thru Cease & Desist k
Tiny Bubbles Key to Cooling Crazy Hot CPUs

Rolling Out Broadband Internet, On The Cheap

Java for the Gameboy Advance

" & 8 8 8 & & B 8 @

Likethesyst em d attribute of <x: par se>, thexm Syst enl d and xsl t Syst em d attributes of

<x: t ransf or > are used to resolve relative paths within XML documents. In this case, the xm Syst enl d
attribute applies to the document provided as the value of thetag's xm attribute, whilethexsl t Syst em d
attribute is used to resolve relative paths within the stylesheet specified by thetag'sxsl t attribute.

If the stylesheet driving the document transformation takes parameters, they are specified using the
<x: par an® tag. When present, these tags must appear inside the body of the <x: t r ansf or n¥ tag. If the
XML document being transformed is also specified as body content, then it must precede any <x: par ane

tags.

The <x: par an® tag has two required attributes -- nanme and val ue -- just like the <c: par an® and
<f mt : par an® tagsdiscussed in Part 2 and Part 3 of this series.

Working with XML content

Parsing and transformation act upon XML documentsin their entirety. After you've massaged the document
into a usable form, however, often only certain elements of the data contained in the document will be of
interest to a particular application. For thisreason, the xm library includes several tags for accessing and
manipulating individual pieces of content from XML documents.

If you've read Part 2 of this series (Getting down to the core) then the names of these xm tags will be familiar.
They are based on corresponding tags from the JSTL cor e library. Whereas these cor e library tags access
data from the JSP container through their val ue attributes using EL expressions, their counterparts in the xm
library access data from XML documents through sel ect attributes using XPath expressions.

XPath is a standardized notation for referencing the elements of XML documents and their attributes and body
content. Asits name suggests, this notation resembles file system paths in the sense that the components of an
XPath statement are delimited by slashes. These components map to the nodes of an XML document, with
successive components matching nested elements. In addition, asterisks can be used as wildcards to match
multiple nodes, and bracketed expressions can be used to match attribute values and specify indices. There are
severa online references describing X Path and its use (see Resources).

To display an element of datafrom an XML document, then, use the <x: out > action, which isthe XML
analog tothe cor e library's<c: out > tag. Whereas <c: out > has attributes named val ue and
escapeXm , however, the attributes of <x: out > aresel ect and escapeXm :

<x: out sel ect =" XPat hExpr essi on" escapeXn ="bool ean"/ >

http://www-106.ibm.com/developerworks/java/library/j-jstl0318/
http://www-106.ibm.com/developerworks/java/library/j-jstl0415/
http://www-106.ibm.com/developerworks/java/library/j-jstl0318/

The difference, of course, isthat the value of the sel ect attribute must be an XPath expression, while the
val ue attribute of <c: out > must be an EL expression. The meaning of theescapeXni attributeisthe
same for both tags.

Listing 4 demonstrates use of the <x: out > action. Note that the X Path expression specified for the sel ect
attribute is prefaced by an EL expression for a scoped variable, specificaly $r ss. This EL expression
identifies the parsed XML document against which the X Path statement is to be evaluated. The statement here
searches the document for elementsnamedt i t | e whose parent nodes are named channel , selecting the
first such element it finds (as specified by the[1] index at the end of the expression). The <x: out > action
causes the body content of this element to be displayed, with XML character escaping turned off.

Listing 4. Using the <x:out> action to display the body content of an XML element

<c:inmport var="rssFeed" url="http://slashdot.org/slashdot.rdf"/>
<x: parse var="rss" xm ="${rssFeed}"/>

<x:out select="$rss//*[nanme()="channel']/*[name()="title J[1]"
escapexni ="f al se"/ >

In addition to <x: out >, the JSTL xml library includes the following tags for manipulating XML data:
o <X: set > for assigning the value of an XPath expression to a JSTL scoped variable
« <x: i f > for conditionalizing content based on the boolean value of an XPath expression

o <X:choose>, <x: when>, and <x: ot her wi se> for implementing mutually exclusive
conditionalization based on X Path expressions

« <x: for Each> for iterating over multiple elements matched by an XPath expression

Each of these tags behaves similarly to the corresponding tag from the cor e library. Use of <x: f or Each>,
for example, isillustrated in Listing 5, in which the <x: f or Each> action is used to iterate over all of the
elementsnamed i t emin an XML document representing an RSS feed. Note that the XPath expressionsin the
two <x: out > actions nested in the body content of <x: f or Each> are relative to the nodes over which the
<x: f or Each> tagisiterating. They are used to retrievethel i nk andti t | e child nodesof eachi t em
element.

Listing 5. Using the <x:out> and <x:for Each> actionsto select and display XML data

<c:inport var="rssFeed" url="http://slashdot.org/slashdot.rdf"/>
<x:parse var="rss" xm ="${rssFeed}"/>

<a href="<x:out select="%rss//*[nane()="channel']/*[nanme()="1i
><x:out select="$rss//*[name()="channel']/*[name()="title'][
escapexm ="f al se"/ ></ a>

nk'][1]"/>"
il

<x:forEach select="$rss//*[name()="item]">
 <a href="<x:out select="./*[name()="link"]"/>"
><x:out select="./*[name()="title']" escapeXnm ="fal se"/>
</ x: f or Each>

The output resulting from the JSP code in Listing 5 isidentical to that of Listing 3, which appearsin Figure 1.

Thexm library's XPath-oriented tags thus provide an aternative to stylesheets for transforming XML content,
particularly in cases where the final output isHTML.

The sl library
The fourth and final set of JSTL actionsisthesql custom tag library. Asits name suggests, thislibrary
provides tags for interacting with relational databases. More specifically, thesql library definestags for

specifying datasources, issuing queries and updates, and grouping queries and updates into transactions.

Datasources

Datasources are factories for obtaining database connections. They often implement some form of connection
pooling to minimize the overhead associated with the creating and initializing connections. Java 2 Enterprise
Edition (J2EE) application servers typically provide built-in support for datasources, which are made available
to J2EE applications through the Java Naming and Directory Interface (JNDI).

JSTL'ssql tagsrely on datasources for obtaining connections. Several, in fact, include an optional
dat aSour ce attribute for explicitly specifying their connection factory, either as an instance of the
j avax. sql . Dat aSour ce interface or asa JNDI name.

You can obtain instances of j avax. sql . Dat aSour ce usingthe<sql : set Dat aSour ce> tag, which
takes the two following forms:

<sql : set Dat aSour ce dat aSour ce="expr essi on"
var =" name" scope="scope"/>

<sqgl : set Dat aSour ce url ="expr essi on" driver="expression"
user ="expressi on" password="expressi on"
var =" name" scope="scope"/>

For the first form, only the dat aSour ce attribute is required. For the second, only theur | attributeis
required.

Use thefirst form to access a datasource associated with a INDI name, by providing that name as the value of
the dat aSour ce attribute. The second form causes a new datasource to be created, using the JDBC URL
provided as the value of the ur | attribute. The optional dr i ver attribute specifies the name of the class
implementing the database driver, while the user and passwor d attributes provide login credentials for
accessing the database, if needed.

For either of the two forms of <sql : set Dat aSour ce>, the optional var and scope attributes assign the
specified datasource to a scoped variable. If thevar attribute is not present, however, then the

<sqgl : set Dat aSour ce> action has the effect of setting the default datasource for use by sql tags that
don't specify an explicit datasource.

Youcanasousethej avax. servl et.jsp.jstl.sqgl.dataSource context parameter to configure the
sql library's default datasource. In practice, placing an entry such asthe onein Listing 6 in your application's
web.xml file is the most convenient way to specify a default datasource. Using <sql : set Dat aSour ce> to
do so requires the use of a JSP page to initialize the application, and therefore some way to run that page
automatically.

Listing 6. Using a JINDI nameto set JSTL'sdefault datasourcein the web.xml deployment descriptor

<cont ext - par anp
<par am nane>j avax. servl et.jsp.jstl.sql.dataSource</param nanme>
<par ant val ue>j dbc/ bl og</ par am val ue>

</ cont ext - par anp

Submitting queries and updates

After accessto a datasource is established, you can usethe <sql : quer y> action to execute queries, while
database updates are performed using the <sgl : updat e> action. Queries and updates are specified as SQL
statements, which may be parameterized using an approach based on JDBC's

j ava. sql . Prepar edSt at enent interface. Parameter values are specified using nested <sql : par anp
and <sql : dat ePar an tags.

Three variations of the <sgl : quer y> action are supported, as follows:

<sql : query sql ="expressi on" dataSour ce="expressi on"
var =" name" scope="scope"
maxRows="expr essi on" start Row="expression"/>

<sql : query sql ="expressi on" dataSour ce="expressi on"
var =" nanme" scope="scope"
maxRows="expr essi on" st art Row="expressi on">
<sqgl : par am val ue="expressi on"/ >

</ sqI squery>

<sql : query dat aSour ce="expr essi on"
var =" nanme" scope="scope"
maxRows="expr essi on" st art Row="expressi on">
SQL st at enent
<sqgl : par am val ue="expressi on"/ >

</ sqI s query>

For the first two forms, only the sql and var attributes are required. For the third, only var isrequired.

Thevar and scope attributes specify a scoped variable for storing the results of the query. The max Rows
attribute can be used to limit the number of rows returned by the query, whilethe st ar t Row attribute allows
some initial number of rowsto be ignored (such as being skipped over when the result set is being constructed
by the database).

After you execute the query, the result set is assigned to the scoped variable as an instance of the
javax.servlet.jsp.jstl.sql.Result interface. Thisobject provides propertiesfor accessing the
rows, column names, and size of the query's result set, as summarized in Table 1.

Table 1. Properties defined by the javax.servlet.jsp.jstl.sgl.Result interface

Property Description

An array of Sor t edMap objects, each of which maps column namesto asingle row in
rows

the result set
rowsBylndex An array of arrays, each corresponding to asingle row in the result set

An array of strings naming the columns in the result set, in the same order as used for

columnNames the rowsBylndex property

rowCount The total number of rows in the query result

limitedByMaxRows | True if the query was limited by the value of the maxRows attribute

Of these properties, r ows is particularly convenient, because you can useit to iterate through the result set and
access the column data by name. Thisis demonstrated in Listing 7, where aquery's results are assigned to a
scoped variable named quer yResul t s, the rows of which are then iterated over using the cor e library's
<c: f or Each> tag. Nested <c: out > tags take advantage of the EL's built-in support for Map collectionsto
look up row data corresponding to column names. (Recall from Part 1 that ${row. titl e} and

${rowf "title"]} areequivaent expressions.)

Listing 7 aso demonstrates the use of <sql : set Dat aSour ce> to associate a datasource with a scoped
variable, which is subsequently accessed by the <sql : quer y> action through itsdat aSour ce attribute.

http://www-106.ibm.com/developerworks/java/library/j-jstl0211/

Listing 7. Using <sgl:query> to query a database, and using <c:for Each> to iterate through the result set

<sqgl : set Dat aSour ce var ="dat aSrc"
url ="jdbc: mysqgl :///taglib" driver="org.gjt.mm nysql.Driver"
user="admi n" password="secret"/>
<sql : query var="queryResul ts" dataSource="${dataSrc}">
select * fromblog group by created desc linmt ?
<sql : param val ue="${6} "/ ></sql : query>

<t abl e border="1">
<tr>
<t h>| D</t h>
<t h>Cr eat ed</t h>
<th>Titl e</th>
<t h>Aut hor </t h>
</[tr>
<c:forEach var="row' itens="${queryResults.rows}">
<tr>
<td><c:out value="${row. id}"/></td>
<td><c:out value="${row. created}"/></td>
<td><c:out value="${row title}"/></td>
<t d><c:out val ue="${row. author}"/></td>
</[tr>
</ c:forEach>
</ tabl e>

Figure 2 shows sample page output corresponding to the JSTL code in Listing 7. Note a so that the SQL
statement appearing in the body of the <sql : quer y> actionin Listing 7 is parameterized.

Figure 2. Output of Listing 7

L SQL Query

|« » | [@][6] [+] @nhtp://localhost:8080/blog/jsti-example | % |
SQL Query i

| Created || Title ||Authar|
28][2003-03-05 15:49:31.0[On second thought... [[1 |
27][2003-03-05 15:44:45.0][Hello readers 1 |
26][2003-03-04 11:42:38.0][Another day, another post][1 |
[25][2003-03-03 15:34:38.0|[Third Post 1 |
[24][2003-03-03 15:34:03.0][Second Post 1 |
23][2003-03-03 15:33:28.0][First Post 1 |

Withinan <sql : quer y> action, SQL statements specified either as body content or through the sql
attribute can be parameterized using the ? character. For each such parameter in the SQL statement, there
should be a corresponding <sql : par an® or <sql : dat ePar an® action nested in the body of the

<sql : quer y>tag. The<sqgl : par anm tag takes asingle attribute -- val ue -- for specifying the parameter
value. Alternatively, when the value for the parameter should be a character string, you can omit theval ue

attribute and provide the parameter value as the body content of the <sgl : par an® tag.

Parameter values representing dates, times, or time stamps are specified using the <sql : dat ePar an tag,
using the following syntax:

<sql : dat ePar am val ue="expressi on" type="type"/>

For <sgl : dat ePar an®, the expression for the val ue attribute must evaluate to an instance of the
java. util . Dat e class, whilethe value of thet ype attribute must be either dat e, ti me, orti mest anp,
depending upon which of these three types of time-related values is required by the SQL statement.

Like<sql : quer y>, the<sqgl : updat e> action supports three forms:

<sqgl : updat e sql ="expressi on" dat aSour ce="expr essi on"
var =" name" scope="scope"/>

<sql : updat e sgl ="expressi on" dat aSource="expressi on"
var =" nanme" scope="scope">
<sgl : par am val ue="expressi on"/ >

</ sql : updat e>
<sqgl : updat e dat aSour ce="expr essi on"
var =" nanme" scope="scope">
SQL st at enent
<sgl : par am val ue="expressi on"/ >

</sq| : updat e>

Thesql and dat aSour ce attributes have the same semanticsfor <sql : updat e> asthey do for

<sgl : quer y>. Similarly, thevar and scope attributes are again used to specify a scoped variable, but in
this case the value assigned to the scoped variable will be aninstance of j ava. | ang. | nt eger indicating
the number of rows that were changed as a result of executing the database update.

Managing transactions

Transactions are used to protect a sequence of database operations that must either succeed or fail as a group.
Transaction support is built into JSSTL'ssql library, which makesit trivial to wrap a series of queries and
updates into a transaction simply by nesting the corresponding <sql : quer y> and <sqgl : updat e> actions
in the body content of a<sql : t ransact i on> tag.

The syntax for <sql : t ransact i on> isasfollows:

<sqgl :transacti on dat aSour ce="expressi on" isolation="isol ati onLevel ">
<sql:query .../> or <sql:update .../>

The<sql : t ransact i on> action has no required attributes. If you omit the dat aSour ce attribute, then
the JSTL default datasource isused. Thei sol at i on attribute is used to specify the isolation level for the
transaction and may be either r ead_conmi tt ed, read_unconmi tt ed, r epeat abl e_r ead, or

seri al i zabl e. If you do not specify this attribute, the transaction will use the datasource's default isolation
level.

Asyou might expect, all nested queries and updates must use the same datasource as the transaction itself. In

fact, a<sqgl : query>or <sql : updat e> nested insidea<sql : t ransact i on> action is not allowed to
specify adat aSour ce attribute. It will automatically use the datasource associated (either explicitly or
implicitly) with the surrounding <sgl : t r ansact i on> tag.

Listing 8 shows an example of how <sql : t ransact i on> is used:

Listing 8. Using <sgl:transaction> to combine database updatesinto a transaction

<sqgl : transacti on>
<sgl : updat e sgl ="update blog set title = ? where id = ?">
<sql : param val ue="New Titl e"/ >
<sql : param val ue="${23}"/>
</ sql : updat e>
<sqgl : updat e sql ="update bl og set |last_nodified = now() where id = ?">
<sqgl : param val ue="${23}"/ >
</ sql : updat e>
</ sql :transacti on>

A word of caution

JSTL'sxm and sql libraries enable complex functionality to be implemented in JSP pages using custom tags.
At the same time, however, implementing this sort of functionality in your presentation layer may not
necessarily be the best approach.

For large applications being written by multiple devel opers over along period of time, strict segregation
between the user interface, the underlying business logic, and the data repository has proven to simplify
software maintenance over the long term. The popular Model-View-Controller (MV C) design patternisa
formalization of this"best practice.”" In the domain of J2EE Web applications, the model is the business logic
of an application, and the JSP pages comprising the presentation layer are the view. (The controllers are the
form handlers and other server-side mechanisms for enabling browser actionsto initiate changes to the model
and subsequently update the view.) MV C dictates that the three major elements of an application -- model,
view, and controller -- have minimal dependencies upon one another, restricting their interactions with each
other to consistent, well-defined interfaces.

An application’'s reliance on XML documents for data exchange and relational databases for data persistence
are characteristics of the application's business logic (that is, its model). Adherence to the MV C design pattern
would suggest, therefore, that these implementation details should not be reflected in the application's
presentation layer (that is, its view). When JSP is used to implement the presentation layer, then, use of the
xm and sql librarieswould be aviolation of MV C, because their use would mean exposing elements of the
underlying business logic within the presentation layer.

For thisreason, thexm and sql libraries are best suited to small projects and prototyping efforts. Dynamic
compilation of JSP pages by the application server also makes the custom tags in these libraries useful as
debugging tools.

Summary
In this series, we have examined the capabilities of the four JSTL custom tag libraries and their usage. In Part 1

and Part 2, we saw how you can avoid JSP scripting elements in many common situations through use of the
EL and the tags of the cor e library. Part 3 focused on using the f mt library to localize Web content.

In thisfinal installment, we reviewed the functionality of thexm and sql libraries. If you're willing to accept
the consequences of including business logic in the presentation layer, the tags in these two libraries make it
very easy to incorporate content from XML documents and relational databases into JSP pages. These two
libraries also demonstrate how the JSTL libraries build upon one another and interoperate when integrating
<sgl : query>and <c: f or Each>, aswell asthe ability of thexm library to leveragethe<c: i nport >
action.

http://www-106.ibm.com/developerworks/java/library/j-jstl0211/
http://www-106.ibm.com/developerworks/java/library/j-jstl0318/
http://www-106.ibm.com/developerworks/java/library/j-jstl0415/

Resources

Download the source code for the Web log example application.

The official JSTL Web siteisagood starting point to learn more about JSTL.

The JSTL 1.0 Specification is the final authority on the EL and the four JSTL tag libraries.

The Jakarta Taglibs project is home to the reference implementation for JSTL 1.0.

JSTL in Action, by Shawn Bayern (Manning, 2002), provides excellent coverage of all JSTL features,
having been written by the reference implementation lead.

Popular Java programming author David Geary has a so written abook on JSTL, entitled Core JSTL
(Prentice-Hall and Sun Microsystems Press, 2002).

JSPTags.com isadirectory of JSP resources, focusing particularly on custom tag libraries.

Coverage of JSTL isincluded as part of Sun's Java Web Services Tutorial.

To find out more about RSS, read James Lewin's "An introduction to RSS news feeds" (devel operWorks,
November 2000).

Mark Colan provides an introductory overview of XSL in "Putting XSL transformations to work™
(devel operWorks, October 2001).

For a better understanding of XPath and its relationship to the Document Object Model (DOM), take a
look at "Effective XML processing with DOM and XPath in Java" (devel operWorks, May 2002) by
Parand Tony Darugar.

Get up to speed with IDBC with this hands-on tutorial, "Building Web-based applications with JDBC"
(devel operWorks, December 2001).

"Using JSPs and custom tags within Visual Age for Java and WebSphere Studio” (WebSphere Devel oper
Domain) is a WBOnline hands-on workshop demonstrating the use of servlets, JSP pages, and custom
tag libraries.

Learn all about custom tag libraries with Jeff Wilson's excellent article, "Take control of your JSP pages
with custom tags" (developerWorks, January 2002).

Noel Bergman's article, "JSP taglibs: Better usability by design” (devel operWorks, December 2001),
shows you how declarative tags help improve the usability of your JSP pages.

Find hundreds more Java technology resources on the devel operWorks Java technology zone.

About the author

Mark Kolb is a Software Engineer working in Austin, Texas. He is afrequent industry speaker on server-side
Java platform topics and the co-author of Web Devel opment with JavaServer Pages, 2nd Edition. Y ou can
contact Mark at mak@taglib.com.

ftp://www6.software.ibm.com/software/developer/library/j-jstl0520.jar
http://java.sun.com/products/jsp/jstl/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr052/
http://jakarta.apache.org/taglibs/index.html
http://www.manning.com/bayern/index.html
http://www.core-jstl.com/
http://jsptags.com/index.jsp
http://java.sun.com/webservices/docs/ea2/tutorial/doc/JSTL3.html
http://www-106.ibm.com/developerworks/web/library/w-rss.html
http://www-106.ibm.com/developerworks/xml/library/x-xsltwork/
http://www-106.ibm.com/developerworks/xml/library/x-domjava/
http://www-106.ibm.com/developerworks/java/edu/j-dw-jdbcweb-i.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/&origin=j
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www.ibm.com/developerworks/java/
http://www.manning.com/fields2/index.html
mailto:mak@taglib.com

._E.]
Code email it!

What do you think of thisdocument?

OK:iller! (5) O Good stuff (4) O So-so; not bad (3)

Comments?

O Needs work (2) OLame (1)

| Submit feedback |

IBM developerWorks > Java technol ogy

About IBM | Privacy | Legal | Contact

developerWorks

ftp://www6.software.ibm.com/software/developer/library/j-jstl0520.jar
javascript:void newWindow()
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	A JSTL primer, Part 4: Accessing SQL and XML content

	BHGLDKBOBEMCFMAHNJOBCJLJIEBAEFJNDP:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	form2:
	x:
	f1: A JSTL primer, Part 4: Accessing SQL and XML content
	f2: Java
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

