Sear Chl
for:

| within | All of dw

Search

Useonly ()" " +-

IBM home | Products & services | Support & downloads | My account

IBM developerWorks: Javatechnology : Java technology articles dEVE!leEI’WDst
A JSTL primer: The expression language G =
PDF e-mail it!
Simplify software maintenance for JSP applications by avoiding scripting elements Contents
Level: Intermediate JSTL 1.0
. Expression language
Mark A. Kolb (mak@taglib.com) PRESIon andiad
Software Engineer Scoped variables
February 2003 Implicit objects
Accessors

The JSP Standard Tag Library (JSTL) isacollection of custom tag -

libraries that implement general -purpose functionality common to Operators

Web applications, including iteration and conditionalization, data Literals

management formatting, manipulation of XML, and database access. o

Inthis first installment of his new series on developerWorks, Teglib directives

software engineer Mark Kolb shows you how to use JSTL tagsto Variable tags

avoid using scripting elementsin your JSP pages. You'll also learn output

how to simplify software maintenance by removing source code =it

from the presentation layer. Finally, you'll learn about JSTL's Setting variables with

simplified expression language, which alows dynamic attribute default values

valuesto be speu_ﬂed for JSTL actions without having to use afull- ResoUrces

blown programming language. -

About the author

JavaServer Pages (JSP) technology is the standard presentation-layer technology
for the J2EE platform. JSP technology provides both scripting elements and actions
for performing computations intended to generate page content dynamically.
Scripting el ements allow program source code to be included in a JSP page for
execution when the page is rendered in response to a user request. Actions
encapsulate computational operations into tags that more closely resemble the
HTML or XML markup that typically comprises the template text of a JSP page.
There are only a handful of actions defined as standard by the JSP specification,

but starting with JSP 1.1, devel opers have been able to create their own actionsin
the form of custom tag libraries.

The JSP Standard Tag Library (JSTL) isacollection of JSP 1.2 custom tag libraries
that implement basic functionality common to a wide range of server-side Java
applications. By providing standard implementations for typical presentation-layer
tasks such as data formatting and iterative or conditional content, JSTL allows JSP
authors to focus on application-specific devel opment needs, rather than
"reinventing the wheel" for these generic operations.

Of course, you could implement such tasks using the JSP scripting elements:
scriptlets, expressions, and declarations. Conditional content, for example, can be
implemented using three scriptlets, highlighted in Listing 1. Because they rely on
embedding program source code (typically Java code) within the page, though,

Rate this article

Related content:
Using JSPs and custom tags

within VisualAge for Java
and WebSphere Studio

Take control of your JSP
pages with custom tags
JSP taglibs: Better usability
by design

Subscribe to the

devel operWorks newsl etter

Also in the Java zone;
Tutorias

Tools and products

Code and components

Articles

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
ftp://www6.software.ibm.com/software/developer/library/j-jstl0211.pdf
javascript:void newWindow()
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/education.nsf/dw/java-onlinecourse-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/java-all-byname?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/java-uicomponents-bytitle?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bytopic?OpenDocument&Count=500
mailto:mak@taglib.com

scripting elements tend to complicate the software maintenance task significantly for JSP pages that use them.
The scriptlet examplein Listing 1, for instance, is critically dependent upon proper matching of braces. Nesting
additional scriptlets within the conditionalized content can wreak havoc if a syntax error isinadvertently
introduced, and it can be quite a challenge to make sense of the resulting error message when the pageis
compiled by the JSP container.

Listing 1. Implementing conditional content through scriptlets

<% if (user.getRole() == "nenber")) { %
<p>Wel cone, nenber! </ p>

<%} else { %
<p>Wel conme, guest! </ p>

<%} %

Fixing such problems typically requires afair bit of programming experience. Whereas the markup in a JSP page
might typically be developed and maintained by a designer well-versed in page layout and graphic design, the
scripting elementsin that same page require the intervention of a programmer when problems arise. This shared
responsibility for the code within a single file makes devel oping, debugging, and enhancing such JSP pages a
cumbersome task. By packaging common functionality into a standardized set of custom tag libraries, JSTL
alows JSP authors to reduce or eliminate the need for scripting elements and avoid the associated maintenance
Costs.

JSTL 1.0

Released in June 2002, JSTL 1.0 consists of four custom tag libraries (cor e, f or mat , xm , and sql) and apair
of general-purpose tag library validators (Scri pt FreeTLVand Per m t t edTagl i bsTLV). Thecor e tag
library provides custom actions to manage data through scoped variables, aswell asto perform iteration and
conditionalization of page content. It also provides tags to generate and operate on URLs. Thef or mat tag
library, asits name suggests, defines actions to format data, specifically numbers and dates. It also provides
support for internationalizing JSP pages using localized resource bundles. The xni library includes tags to
manipul ate data represented through XML, whilethe sql library defines actions to query relational databases.

Thetwo JSTL tag library validators allow developersto enforce coding standards within their JSP applications.
Y ou can configurethe Scr i pt Fr eeTLV validator to prohibit the use of the various types of JSP scripting
elements -- scriptlets, expressions, and declarations -- within a JSP page. Similarly, the

Perm ttedTagl i bsTLV validator can be used to restrict the set of custom tag libraries (including the JSTL
tag libraries) that may be accessed by an application's JSP pages.

While JSTL will eventually be arequired component of the J2EE platform, only a small number of application
serversinclude it today. The reference implementation for JSTL 1.0 is available as part of the Apache Software
Foundation's Jakarta Taglibs project (see Resources). The custom tag libraries in the reference implementation
can be incorporated into any application server supporting the JSP 1.2 and Servlet 2.3 specificationsin order to
add JSTL support.

Expression language

In JSP 1.2, the attributes of JSP actions are specified using either static character strings or, where permitted,
expressions. In Listing 2, for example, static values are specified for the nane and pr oper t y attributes of this
<j sp: set Pr oper t y> action, while an expression is used to specify itsval ue attribute. This action has the
effect of assigning the current value of arequest parameter to the named bean property. Expressions used in this
fashion are called request-time attribute values and are the only mechanism built into the JSP specification for
specifying attribute values dynamicaly.

Listing 2. A JSP action incor porating a request-time attribute value

<j sp: set Property nane="user" property="tinezonePref"
val ue=' <% request.get Paraneter("ti mezone") %'/>

Because request-time attribute values are specified using expressions, they are prone to the same software

mai ntenance issues as other scripting elements. For this reason, the JSTL custom tags support an alternate
mechanism for specifying dynamic attribute values. Rather than using full-blown JSP expressions, attribute
values for JSTL actions can be specified using a simplified expression language (EL). The EL provides
identifiers, accessors, and operators for retrieving and manipulating data resident in the JSP container. The EL is
loosely based on EcmaScript (see Resources) and the XML Path Language (X Path), so its syntax should be
familiar to both page designers and programmers. The EL is geared toward looking up objects and their
properties, and performing simple operations on them; it is not a programming language, or even a scripting
language. When combined with the JSTL tags, however, it enables complex behavior to be represented using a
simple and convenient notation. EL expressions are delimited using aleading dollar sign ($) and both leading and
trailing braces ({}), as highlighted in Listing 3.

Listing 3. A JSTL action illustrating the EL expression delimiters
<c:out val ue="${user.firstNane}"/>

In addition, you can combine multiple expressions with static text to construct a dynamic attribute value through
string concatenation, as highlighted in Listing 4. Individual expressions are comprised of identifiers, accessors,
literals, and operators. Identifiers are used to reference data objects stored in the data center. The EL has 11
reserved identifiers, corresponding to 11 EL implicit objects. All other identifiers are assumed to refer to scoped
variables. Accessors are used to retrieve the properties of an object or the elements of a collection. Literals
represent fixed values -- numbers, character strings, booleans, or nulls. Operators allow data and literalsto be
combined and compared.

Listing 4. Combining static text and multiple EL expressionsto specify a dynamic attribute value

<c:out value="Hello ${user.firstName} ${user.|astNane}"/>

Scoped variables

The JSP API, through the <j sp: useBean> action, allows data to be stored and retrieved from four different
scopes within the JSP container. JSTL extends this capability by providing additional actions for assigning and
removing objects within these scopes. Furthermore, the EL provides built-in support for retrieving these objects
as scoped variables. In particular, any identifier appearing in an EL expression that does not correspond to one of
the EL'simplicit objects is automatically assumed to reference an object stored in one of the four JSP scopes:

. Page scope

. Request scope

. Session scope

. Application scope

Asyou may recall, objects stored in page scope can only be retrieved during the processing of that page for a
specific request. Objects stored in request scope can be retrieved during the processing of all pages taking part in

http://www-106.ibm.com/developerworks/library/resources

the processing of arequest (such asif the processing of arequest encounters one or more <j sp: i ncl ude> or
<j sp: f or war d> actions). If an object is stored in session scope, it can be retrieved by any pages accessed by a
user during a single interactive session with the Web application (that is, until the Ht t pSessi on object
associated with that user'sinteraction isinvalidated). An object stored in application scope is accessible from all
pages and for all users, until the Web application itself is unloaded (typically as aresult of the JSP container being
shut down).

An object is stored in a scope by mapping a character string to the object within the desired scope. Y ou can then
retrieve the object from the scope by providing the same character string. The string is looked up in the scope's
mapping, and the mapped object is returned. Within the Servlet API, such objects are referred to as attributes of
the corresponding scope. In the context of the EL, however, the character string associated with an attribute can
a so be thought of as the name of a variable, which is bound to a particular value by means of the attribute

mappings.

Inthe EL, identifiers not associated with implicit objects are assumed to name objects stored in the four JSP
scopes. Any such identifier isfirst checked against page scope, then request scope, then session scope, and finally
application scope, successively testing whether the name of the identifier matches the name of an object stored in
that scope. The first such match is returned as the value of the EL identifier. It isin thisway that EL identifiers
can be thought of as referencing scoped variables.

In more technical terms, identifiers that do not map to implicit objects are evaluated using the

findAttri but e() method of the PageCont ext instance representing the processing of the page on which
the expression occurs for the request currently being handled. The name of the identifier is passed as the argument
to this method, which searches each of the four scopesin turn for an attribute with the same name. The first match
found isreturned asthe value of thef i ndAt t ri but e() method. If no such attributeislocated in any of the
four scopes, nul | isreturned.

Ultimately, then, scoped variables are attributes of the four JSP scopes that have names that can be used as EL
identifiers. Aslong asthey are assigned alphanumeric names, scoped variables can be created by any of the
mechanisms present in JSP for setting attributes. Thisincludesthe built-in <j sp: useBean> action, aswell as
theset Attri but e() method defined by several of the classesin the Serviet API. In addition, many of the
custom tags defined in the four JSTL libraries are themselves capable of setting attribute values for use as scoped
variables.

Implicit objects
Theidentifiersfor the 11 EL implicit objects are listed in Table 1. Don't confuse these with the JSP implicit
objects (of which there are only nine), as only one object is common to both.

Table 1. The EL implicit objects

Category Identifier Description
JSP pageCont ext The PageCont ext instance corresponding to the
processing of the current page
Scopes pageScope A Map associating the names and values of page-scoped
attributes
request Scope A Map associating the names and values of request-scoped

attributes

sessi onScope A Map associating the names and values of session-scoped
attributes
appl i cati onScope |A Map associating the names and val ues of application-
scoped attributes
Request parameters par am A Map storing the primary values of the request parameters
by name
par anval ues A Map storing all values of the request parameters as
String arrays
Request headers header A Map storing the primary values of the request headers by
name
header Val ues A Map storing al values of the request headersas St r i ng
arrays
Cookies cooki e A Map storing the cookies accompanying the request by
name
Initialization parameters|i ni t Par am A Map storing the context initialization parameters of the
Web application by name

While JSP and EL implicit objects have only one object in common (pageCont ext), other JSP implicit objects
are still accessible from the EL. The reason isthat pageCont ext has properties for accessing al of the other
eight JSP implicit objects. Indeed, thisis the primary reason for including it among the EL implicit objects.

All of the remaining EL implicit objects are maps, which may be used to look up objects corresponding to a
name. The first four maps represent the various attribute scopes discussed previously. They can be used to look up
identifiersin specific scopes, rather than relying on the sequential lookup process that the EL uses by default.

The next four maps are for fetching the values of request parameters and headers. Since the HTTP protocol alows
both request parameters and headers to be multi-valued, there is a pair of maps for each. The first map in each

pair simply returns the primary value for the request parameter or header, typically whichever value happensto
have been specified first in the actual reguest. The second map in each pair allows all of a parameter's or header's
valuesto be retrieved. The keys in these maps are the names of the parameters or headers, while the values are
arrays of St ri ng objects, each element of which is asingle parameter or header value.

The cookie implicit object provides access to the cookies set by arequest. This object maps the names of al the
cookies associated with arequest to Cooki e objects representing the properties of those cookies.

Thefina EL implicit object, i ni t Par am isamap storing the names and values of any context initialization
parameters associated with the Web application. Initialization parameters are specified through the web. xm
deployment descriptor file that appearsin the application's WEB- | NF directory.

Accessors

Since EL identifiers are resolved either asimplicit objects or as scoped variables (which are implemented through
attributes), they will by necessity evaluate to Java objects. The EL can automatically wrap and unwrap primitives
in their corresponding Java classes (for instance, i nt can be coerced into an | nt eger class behind the scenes,
and vice versa), but identifiers for the most part will be pointers to full-blown Java objects.

Asaresult, it's often desirable to access the properties of these objects or, in the case of arrays and collections,
their elements. The EL provides two different accessors for just this purpose -- the dot operator (.) and the

bracket operator ([]) -- enabling properties and elements to be operated upon through the EL, as well.

The dot operator istypically used for accessing the properties of an object. In the expression

${user. first Nane}, for example, the dot operator is used to access the property named f i r st Nane of the
object referenced by the user identifier. The EL accesses object properties using the Java beans conventions, so
agetter for this property (typically amethod named get Fi r st Nanme()) must be defined in order for this
expression to evaluate correctly. When the property being accessed isitself an object, the dot operator can be
applied recursively. For instance, if our hypothetical user object hasan addr ess property that isimplemented
as a Java object, then the dot operator can also be used to access the properties of this object. The expression
${user. address. ci ty}, for example, will return the nested ci t y property of this address object.

The bracket operator is used to retrieve elements of arrays and collections. In the case of arrays and ordered
collections (that is, collectionsimplementing thej ava. uti | . Li st interface), the index of the element to be
retrieved appearsinside the brackets. For example, the expression ${ ur | s[3] } returnsthe fourth element of the
array or collection referenced by the ur | s identifier (indices are zero-based in the EL, just asin the Java
language and JavaScript).

For collectionsimplementing thej ava. uti | . Map interface, the bracket operator looks up avalue stored in the
map using the associated key. The key is specified inside the brackets, and the corresponding value is returned as
the value of the expression. For example, the expression ${ commrands[" di r "]} returnsthe value associated
withthe" di r" key inthe Map referenced by the conmands identifier.

In either case, it is permissible for an expression to appear inside the brackets. The result of evaluating the nested
expression will serve as the index or key for retrieving the appropriate element of the collection or array. Aswas
true of the dot operator, the bracket operator can be applied recursively. This allowsthe EL to retrieve el ements
from multi-dimensional arrays, nested collections, or any combination of the two. Furthermore, the dot operator
and the bracket operator are interoperable. For example, if the elements of an array are themselves objects, the
bracket operator can be used to retrieve an element of the array and be combined with the dot operator to retrieve
one of the element's properties (for instance, ${ ur | s[3] . pr ot ocol }).

Given the EL'srole as asimplified language for specifying dynamic attribute values, one interesting feature of the
EL accessorsis that, unlike the Java language's accessors, they do not throw exceptions when applied to nul | . If
the object to which an EL accessor is applied (for instance, the f oo identifier in both ${ f co. bar} and

${foo["bar"]})isnul |, then the result of applying the accessor will also be nul | . Thisturns out to be
rather helpful behavior under most circumstances, as you'll see shortly.

Finally, the dot operator and the bracket operator are somewhat interchangeable. For example,
${user["firstNanme"]} couldasobeusedtoretrievethef i r st Name property of theuser object, just as
${ commands. di r } could be used to fetch the value associated with the " di r " key in the commands map.

Operators

Using identifiers and accessors, then, the EL is able to traverse object hierarchies containing either application
data (exposed through scoped variables) or information about the environment (through the EL implicit objects).
Simply accessing such data, however, is often inadequate for implementing the presentation logic needed by
many JSP applications.

To thisend, the EL also includes several operators to manipulate and compare data accessed by EL expressions.
These operators are summarized in Table 2.

Table2. The EL operators

Category Operators

Arithmetic +,-,*,/ (ordiv), %(or nod)

Relational == (oreq),!=(orne),<(orlt),>(orgt),<=(orl e),>=(orge)
Logical && (orand), || (oror),! (ornot)

Validation enpty

The arithmetic operators support addition, subtraction, multiplication, and division of numeric values. A
remainder operator is also provided. Note that the division and remainder operators have alternate, non-symbolic
names (in order to be consistent with X Path). An example expression demonstrating the use of the arithmetic
operatorsis shown in Listing 5. The result of applying an arithmetic operator to a pair of EL expressionsisthe
result of applying that operator to the numeric values returned by those expressions.

Listing 5. An EL expression utilizing arithmetic operators

${itemprice * (1 + taxRate[user.address. zi pcode])} ‘

The relational operators alow you to compare either numeric or textual data. The result of the comparisonis
returned as a boolean value. The logical operators alow boolean values to be combined, returning a new boolean
value. The EL logical operators can therefore be applied to the results of nested relational or logical operators, as
demonstrated in Listing 6.

Listing 6. An EL expression utilizing relational and logical operators
${(x >= mn) && (X <= nmax)} ‘

Thefinal EL operator isenpt y, which is particularly useful for validating data. The enpt y operator takes a
single expression as its argument (that is, ${ enpt y i nput }), and returns a boolean value indicating whether or
not the expression evaluates to an "empty" value. Expressionsthat evaluateto nul | are considered empty, as are
collections or arrays with no elements. The enpt y operator will also returnt r ue if its argument evaluatesto a
St ri ng of zero length.

Operator precedence for the EL operatorsis shown in Table 3. As suggested in Listings 5 and 6, parentheses may
be used to group expressions and override the normal precedence rules.

Table 3. EL operator precedence (top to bottom, left to right)

[1..

()

unary - ,not ,!,enpty
*./,div,%nod

+, binary -
0<,><=>=1t,9t,le,ge

==,1=,eq,ne

&&, and

||,or

Literals

Numbers, character strings, booleans, and nul | scan al be specified as literal valuesin EL expressions.
Character strings are delimited by either single or double quotes. Boolean values are designated by t r ue and
f al se.

Taglib directives

Aswe discussed earlier, JSTL 1.0 includes four custom tag libraries. To illustrate the interaction of JSTL tags
with the expression language, we will look at several of the tags from the JSTL cor e library. Asistrue with any
JSP custom tag library, at agl i b directive must be included in any page that you want to be able to use this
library's tags. The directive for this specific library appearsin Listing 7.

Listing 7. Thetaglib directive for the EL version of the JSTL corelibrary
<v@taglib uri="http://java.sun.com jstl/core" prefix="c" %

Actually, therearetwo t agl i b directivesthat correspond to the JSTL cor e library becausein JSTL 1.0 the EL
isoptional. All four of the JSTL 1.0 custom tag libraries have aternate versions that use JSP expressions rather
than the EL for specifying dynamic attribute values. Because these alternate libraries rely on JSP's more
traditional request-time attribute values, they are referred to as the RT libraries, whereas those using the
expression language are referred to as the EL libraries. Devel opers distinguish between the two versions of each
library using alternatet agl i b directives. The directive for using the RT version of the corelibrary isshownin
Listing 8. Given our current focus on the EL, however, it isthe first of these directives that is needed.

Listing 8. Thetaglib directivefor the RT version of the JSTL corelibrary
<v@taglib uri="http://]java.sun.comjstl/core rt" prefix="c rt" %

Variable tags

Thefirst JSTL custom tag we will consider isthe <c: set > action. As already indicated, scoped variables play a
key rolein JSTL, and the <c: set > action provides a tag-based mechanism for creating and setting scoped
variables. The syntax for this action is shown in Listing 9, wherethe var attribute specifies the name of the
scoped variable, the scope attribute indicates which scope the variable residesin, and the val ue attribute
specifies the value to be bound to the variable. If the specified variable already exists, it will ssmply be assigned
the indicated vaue. If not, a new scoped variableis created and initialized to that value.

Listing 9. Syntax for the <c:set> action
<c:set var="nanme" scope="scope" val ue="expression"/>

The scope attribute is optional and defaultsto page.

Two examples of the <c: set > are presented in Listing 10. In the first example, a session-scoped variable is set
toaSt ri ng value. In the second, an expression is used to set a numeric value: a page-scoped variable named
squar e isassigned the result of multiplying the value of arequest parameter named x by itself.

Listing 10. Examples of the <c:set> action

<c:set var="timezone" scope="session" val ue="CST"/>
<c:set var="square" value="${paran{'x'] * paranf'x']}"/>

Rather than using an attribute, you can also specify the value for the scoped variable as the body content of the
<c: set > action. Using this approach, you could rewrite the first examplein Listing 10 as shown in Listing 11.
Furthermore, as we will see momentarily, it's acceptable for the body content of the <c: set > tag to employ
custom tags itself. All content generated within the body of <c: set > will be assigned to the specified variable
asaString vaue

Listing 11. Specifying the value for the <c:set> action through body content
<c:set var="timezone" scope="session">CST</c: set > ‘

The JSTL core library includes a second tag for managing scoped variables, <c: r enbve>. Asits name suggests,
the<c: r empve> action is used to delete a scoped variable, and takes two attributes. Thevar attribute names
the variable to be removed, and the optional scope attribute indicates the scope from which it should be
removed and defaultsto page, as shown in Listing 12.

Listing 12. An example of the <c:remove> action

<c:renove var="tinezone" scope="session"/> ‘

Output

Whilethe <c: set > action allows the result of an expression to be assigned to a scoped variable, a developer will
often want to ssimply display the value of an expression, rather than storeit. Thisistherole of JSTL's<c: out >
custom tag, the syntax of which appearsin Listing 13. This tag evaluates the expression specified by itsval ue
attribute, then prints the result. If the optional def aul t attribute is specified, the <c: out > action will instead
print itsvalue if theval ue attribute's expression evaluates either tonul | or anempty St ri ng.

Listing 13. Syntax for the <c:out> action
<c: out val ue="expressi on" defaul t="expression" escapeXm ="bool ean"/ >

TheescapeXm attributeisaso optional. It controls whether or not characters such as"<", ">", and "&", which
have special meanings in both HTML and XML, should be escaped when output by the <c: out > tag. If
escapeXnl isset to true, then these characters will automatically be trandlated into the corresponding XML
entities (& t ; , > ; , and &anp; , respectively, for the characters mentioned here).

For instance, suppose there is a session-scoped variable named user that is an instance of a class that defines
two propertiesfor users, user nane and conpany. This object is automatically assigned to the session
whenever a user accesses the site, but the two properties are not set until the user actualy logsin. Given this
scenario, consider the JSP fragment shown in Listing 14. Once the user has logged in, this fragment will display
the word "Hello," followed by his or her username and an exclamation point. Before the user haslogged in,
however, the content generated by this fragment will instead be the phrase, "Hello Guest!" In this case, because

theuser name property hasyet to be initialized, the <c: out > tag will instead print out the value of its
def aul t attribute (that is, the character string, "Guest").

Listing 14. An example of the <c:out> action with default content

Hell o <c:out val ue="${user.usernane}" defaul t=="CGuest"/>!

Next, consider Listing 15, which usesthe <c: out > tag'sescapeXni attribute. If the conpany property hasin
this case been set tothe Java St ri ng value" Fl ynn & Sons™, then the content generated by this action will,
infact, beFl ynn & Sons. If thisaction is part of a JSP page generating HTML or XML content, then the
ampersand in the middle of this string of characters may end up being interpreted asan HTML or XML control
character and interrupt the rendering or parsing of this content. If the value of theescapeXmi attribute isinstead
settot r ue, however, the generated content will instead be Fl ynn &anp; Sons. A browser or parser
encountering this content should have no problems with itsinterpretation. Given that HTML and XML are the
most common content typesin JSP applications, it should come as little surprise that the default value for the
escapeXnl attributeist r ue.

Listing 15. An example of the <c:out> action with escaping disabled
<c:out val ue="${user.conpany}" escapeXm =="fal se"/>

Setting variables with default values

In addition to simplifying the display of dynamic data, the ahility of <c: out > to specify adefault valueis aso
useful when setting variable values through <c: set >. Ashighlighted in Listing 11, the value to be assigned to a
scoped variable can be specified as the body content of the <c: set > tag, aswell as through its value attribute.
By nesting a<c: out > action in the body content of a<c: set > tag, the variable assignment can leverage its
default value capability.

Thisapproach isillustrated in Listing 16. The behavior of the outer <c: set > tag is straightforward enough: it
sets the value of the session-scopet i mezone variable based on its body content. In this case, however, that
body content is generated through a<c: out > action. The value attribute of this nested action is the expression
${cookie['tzPref'].val ue}, which attemptsto return the value of a cookie namedt zPr ef by means of
the cooki e implicit object. (The cooki e implicit object maps cookie names to corresponding Cooki e
instances, which means you must use the dot operator to retrieve the actual data stored in the cookie through the
object'sval ue property.)

Listing 16. Combining <c:set> and <c:out> to provide default variable values

<c:set var="timezone" scope=="session">
<c:out value="${cookie['tzPref'].value}" default=="CST"/>
</c:set>

Consider the case, however, in which thisis the user's first experience with the Web application using this code.
Asaresult, thereis no cookie named t zPr ef provided in the request. This means the lookup using the implicit
object will return nul |, in which case the expression as awhole will return nul | . Since the result of evaluating
itsval ue attributeisnul | , the<c: out > tag will instead output the result of evaluating itsdef aul t attribute.
Here, thisisthe character string CST. The net effect, then, isthat thet i nezone scoped variable will be set to
the time zone stored in the user'st zPr ef cookie or, if noneis present, use a default time zone of CST.

TheEL and JSP 2.0

For now, the expression language is only available for specifying dynamic attribute
valuesin JSTL custom tags. An extension of the JSTL 1.0 expression language has been
proposed, however, for inclusion in the JSP 2.0 specification, now undergoing final
review. This extension will allow developers to leverage the EL with their own custom
tags. Page authors will be able to use EL expressions anywhere they are currently
allowed to use JSP expressions, such as to insert dynamic values into template text:
<p>Your preferred tine zone is ${tinezone}. </ p>

This JSP 2.0 feature will, like JSTL itself, enable page authors to further reduce their
dependence on JSP scripting elements, leading to improved maintainability for JSP
applications.

Summary

The EL, in concert with the actions provided by the four JSTL custom tag libraries, alows page authors to
implement presentation-layer logic without resorting to scripting elements. Contrast, for example, the JSP codein
Listing 1 at the beginning of this article with the same functionality asimplemented through the JSTL highlighted
in Listing 17. (The remaining tagsin the JSTL cor e library, including <c: choose> and its children will be
covered in the next article in this series.) Although it is still clear that conditional logic is being performed, the
JSTL version has no Java language source code in it, and the relationships between the tags -- particularly with
respect to nesting requirements -- should be familiar to anyone comfortable with HTML syntax.

Listing 17. Implementing conditional content via JSTL

<c: choose><c: when test="${user.role == 'nenber'}">
<p>Wel cone, nenber! </ p>
</ c: when><c: ot her wi se>
<p>Wel cone, guest!</p>
</ c: ot herw se></c: choose>

By providing standard implementations of functionality common to most Web applications, JSTL helps
accel erate the development cycle. In concert with the EL, JSTL can remove the need for program code in the
presentation layer, greatly simplifying the maintenance of JSP applications.

Resources

. Sun's JSP Standard Tag Library page is agood starting point for learning more about JSTL.

. The JSTL 1.0 Specification is the final authority on the EL and the four JSTL tag libraries.

. The Jakarta Taglibs project is home to the reference implementation for JSTL 1.0.

. JSTL in Action by Shawn Bayern (Manning Publications Co., 2002) provides excellent coverage of al
JSTL features, having been written by the reference implementation lead.

. David Geary, apopular author on Java technology, has also written abook on JSTL, entitled Core JSTL.

http://java.sun.com/products/jsp/jstl/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr052/
http://jakarta.apache.org/taglibs/index.html
http://www.manning.com/bayern/index.html
http://www.amazon.com/exec/obidos/tg/detail/-/0131001531/103-4207394-1320606?vi=glance

. JSPTags.comisadirectory of JSP technology resources, focusing particularly on custom tag libraries.

. Coverage of JSTL isincluded as part of Sun's Java Web Services Tutoridl.

. "Using JSPs and custom tags within VisualAge for Java and WebSphere Studio" (WebSphere Devel oper
Domain) is a WBOnline hands-on workshop demonstrating the use of servlets, JSPs and custom tag
libraries.

. Learn al about custom tag libraries with Jeff Wilson's excellent article, "Take control of your JSP pages
with custom tags" (developerWorks, January 2002).

. Noel Bergman's article, "JSP taglibs: Better usability by design” (devel operWorks, December 2001),
shows you how declarative tags will help improve the usability of your JSP pages.

. For more details on EcmaScript, see Sing Li's " Quick-and-dirty Java programming” (developerWorks, July
2001).

. Find hundreds more Java technology resources on the devel operWorks Java technology zone.

About the author

Mark Kolb is a Software Engineer working in Austin, Texas. He is a frequent industry speaker on server-side Java
topics and the co-author of Web Devel opment with JavaServer Pages, 2nd Edition. Mark can be contacted at

mak @taglib.com.

(5] -

POF email it!

What do you think of this document?
OK:iller! (5) O Good stuff (4) O So-s0; not bad (3) O Needswork (2) O Lame! (2)

Comments?

| Submit feedback I

IBM developerWorks: Javatechnology : Java technology articles develgperwmkg
About IBM | Privacy | Lega | Contact

http://jsptags.com/index.jsp
http://java.sun.com/webservices/docs/ea2/tutorial/doc/JSTL3.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=j
http://www7b.software.ibm.com/wsdd/
http://www7b.software.ibm.com/wsdd/
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-taglib/
http://www-106.ibm.com/developerworks/java/library/j-jsptags.html
http://www-106.ibm.com/developerworks/java/library/j-qdjava/index.html
http://www.ibm.com/developerworks/java/
http://www.manning.com/fields2/index.html
mailto:mak@taglib.com
ftp://www6.software.ibm.com/software/developer/library/j-jstl0211.pdf
javascript:void newWindow()
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-105.ibm.com/developerworks/papers.nsf/dw/java-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks : Java technology : A JSTL primer: The expression language

	OFMJOJMBHLFCGDJPJFIDKLAKGDJIPICC:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	form2:
	x:
	f1: A JSTL primer: The expression language
	f2: Java
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

