
ar
X

iv
:c

s.
IR

/0
00

70
17

13

 J
ul

 2
00

0

Fuzzy data: XML may handle it

Keywords: Fuzzy data, Model flexibility, XML schema

Author: Ralf Schweiger; Simon Hoelzer MD, Joachim Dudeck MD

Institute of Medical Informatics, Justus-Liebig-University Giessen, Germany

Author Contact Address:

Ralf Schweiger
Heinrich-Buff-Ring 44
35392 Giessen
Germany

tel.:+49-641-9941370
fax.:+49-641-9941359
mailto:Ralf.Schweiger@informatik.med.uni-giessen.de

Fuzzy data: XML may handle it

Abstract

Data modeling is one of the most difficult tasks in application engineering. The quality of the

data model often determines the quality of the application itself. As a consequence, data

modeling has to be done very carefully. The engineer must be aware of the use cases and the

required application services and at a certain point of time he has to fix the data model which

forms the base for the application services. However, once the data model has been fixed it is

difficult to consider changing needs. This might be a problem in specific domains, which are as

dynamic as the healthcare domain. With fuzzy data we address all those data that are difficult to

organize in a single database. In this paper we discuss a gradual and pragmatic approach that uses

the XML technology to conquer more model flexibility. XML may provide the clue between

unstructured text data and structured database solutions and shift the paradigm from „organizing

the data along a given model“ towards „organizing the data along user requirements“.

Introduction

Most heavily, XML is discussed as a message format (1,2). Existing interchange formats are

often limited with respect to the number of available delimiters and with respect to the number of

hierarchical levels. With XML on the other hand we may easily invent new delimiters and the

simple start-end-delimitation of XML can express any hierarchical structure. In addition, an

arriving XML message can be easily parsed and transformed using the DOM and XSL facility.

XML consequently provides the communication framework that will facilitate the development

of communication interfaces (3).

However, we might use XML also as a storage format. Database solutions are well accepted in

domains where the data structures are approximately clear. Clear in this context implies a „broad

consensus“ and the „validity over a long period of time“. However, this is not true for all

domains. Especially in the healthcare domain we often find narrative documents that are difficult

to exploit with respect to their content. Experts in medical information science consequently

postulate the insertion of more structure and more codes into medical documents (4). The reasons

for this situation are manifold. Healthcare data are document oriented, that means the healthcare

data are organized into cohesive communication units that contain different kinds (administrative

and clinical) of data. Such data are difficult to organize in a single database. Another reason for

this situation is the fact that healthcare data need to be very flexible with respect to their

structure. It must be possible to put a comment into any context of the clinical document. Any

model that restricts the proper, i.e. the context related accommodation of the information would

fail sooner or later. A model must not put constraints on the documentation process, but has to

obey the user requirements. Finally, we cannot reduce clinical documents to a set of related data

items since items often have a descriptive context. We consequently need the possibility to freely

mix up data items with narrative text. Database schemas are often not flexible enough to satisfy

these constraints (cohesive form, flexibility to change and narrative context).

With XML on the other hand, we may invent markup for the identification of single items in

textual documents, i.e. we add structure to the data rather than adding data to a given structure.

The data consequently remain in a cohesive form. In addition, the structure remains flexible since

we can easily add new markup, i.e. structure to the documents. Besides, XML provides the

concept of mixed content models allowing to freely mix up single items with narrative text. The

problem of the XML approach reveals, when we have to manage a large set of related documents,

e.g. the reports of an entire pathology institute. We run the risk of losing control over the items

contained in the various documents. What we need is a sort of data model or schema that can be

used to establish search strategies upon the document base. The XML schema approach (5) may

help to solve the problem.

The concept

The idea is to let the document author extend the document where and when necessary and to

automatically update an XML schema definition which represents the overall document model.

The XML schema definition keeps track of the items contained in a set of related documents and

can be used to establish search strategies upon the document set. XML consequently provides the

means to preserve the flexibility of free text documents AND to schematize the data at the same

time. XML may provide the clue between unstructured text data and structured database solutions

and shift the paradigm from organizing the data along a given and often fixed schema towards

organizing the data along changing user requirements.

Figure 1: The XML schema as a superset and summary of the items contained in a set of related

documents. We may change the schema as easily as the documents (both are XML files) thus

combining the flexibility of free text with the schematization of a database.

Method

The following figure outlines the overall architecture of our approach. In the center of the

architecture is a software component, which will be referred to as manager. The manager uses an

XML schema definition of the document model to automatically generate and organize a

corresponding user front and storage back end. As a consequence, the application system can be

easily adjusted to changing user requirements by simply providing a different model description.

If needed, the manager will reorganize existing data. In addition, the manager changes the user

interface so that the end user can enter data instances to the newly added model items. The main

difference of our approach compared to a database approach is the fact that the meta data, i.e. the

XML schema

XML documents

content model can be updated as easily as the data itself. In addition, the manager handles both,

the user front and the storage back end. The model description, the user front end (data entry and

data presentation) and the storage back end will be now described in separate sections.

Figure 2: XML based application system that improves the model flexibility. The manager

automatically adjusts the entire application system to the latest model description (XML schema

definition). The user himself may change the document model in order to satisfy the latest

documentation requirements.

Model description

For the description of a document model, we use a standard XML schema definition (Schema).

Figure 3 presents the XML schema of a simple clinical report. The root element of a

corresponding model instance, i.e. an XML document that validates against the XML schema, is

the report element. According to its type, the report element contains a report date, a sender and a

receiver of the report, a patient that the report relates to, a report subject (reason of

communication) and a report content (clinical findings etc.). The sender and the receiver of the

report are both of type PersonType, i.e. they have a name and an address. The PatientType is

Style

Form

Model description

Manager

User interface

Document store

derived from the PersonType by extension that means the patient has a name, an address and in

addition a date of birth and a gender. Elements without an explicit type such as the report date

and the report subject are assumed to have the simple type „string“. The minOccurs and

maxOccurs attributes of the XML schema namespace are used to define optional elements such

as the person address and repeatable elements such as the address telecommunication (telephone,

facsimile, email etc.).

The standard XML schema markup (default namespace) is mixed up with the markup of a

nonstandard user namespace. The user namespace defines a few XML attributes such as prompt

and form which allow the schema designer to easily assign and relate elements of the user form to

elements of the document model. The usage of a nonstandard namespace for the description of

data forms is just pragmatism and might be replaced by any other namespace with similar

expressiveness. All elements in the XML schema with simple types correspond to data entry

forms in the user interface. The gender element e.g. has the prompt „Geschlecht“ and the possible

gender values m(ale), f(emale) and no value are represented by the prompts „mann“, „frau“ and

„undefined“ which are offered to the end user in a selection box. The report content element has

the prompt „Befund“ and corresponds to a text area with eleven rows. Default values for the

prompt (element name) and the form (single line of text) attribute further simplify the schema

definition.

<schema
 xmlns="XML schema namespace"
 xmlns:user="namespace for the description of the user interface">

<element name="Report" type="ReportType" user:prompt="Bericht"/>

<complexType name="ReportType">
<element name="Date"/>
<element name="Sender" type="PersonType" user:prompt="Von"/>
<element name="Receiver" type="PersonType" user:prompt="An"/>
<element name="Patient" type="PatientType"/>
<element name="Subject" user:prompt="Betreff" user:form="narrate 4"/>
<element name="Content" user:prompt="Befund" user:form="narrate 11"/>
</complexType>

<complexType name="PersonType">
<element name="Name"/>
<element name="Address" type="AddressType" minOccurs="0"/>
</complexType>

<complexType name="PatientType" base="PersonType" derivedBy="extension">
<element name="DoB" user:prompt="Gebdat"/>
<element name="Gender" user:prompt="Geschlecht" user:form="mann/m,frau/f"/>
</complexType>

<complexType name="AddressType">
<element name="Institution" user:form="narrate 2"/>
<element name="Street" user:prompt="Strasse"/>
<element name="City" user:prompt="Ort"/>
<element name="Telecommunication" maxOccurs="unbounded"
user:prompt="Telekomm"/>
</complexType>

</schema>

Figure 3: XML schema definition of a simple clinical report.

User front end

Figure 4 and Figure 5 represent the user interface of the application system. The manager

generates the user form from the XML schema definition in Figure 3 and enables the end user to

enter instances of model elements, i.e. to assign data to the elements in the XML schema. When

selecting an element instance (radio button), the applicable functions automatically appear on top

of the data entry form. The functions of the user front end can be subdivided into editor functions

and document management functions.

Editor functions may be used to open and close composed and narrative element instances thus

controlling the document details. The content of closed element instances is presented to the user

so that the user can immediately open the right instance in the case of many element instances.

The newInstance (creation of a new element instance) and delInstance (deletion of an element

instance) function are derived from the element occurrence defined in the XML schema. The

selected content element e.g. is not repeatable (we would have to specify

maxOccurs=“unbounded“ in the XML schema). As a consequence, the newInstance function

does not appear. Beside of instance functions, the user interface may also offer model functions

to the user. Model functions such as the newEl function enable the user to insert new elements

into the document model.

Examples for document management functions are shown in Figure 4. The getModel function

allows the user to select a different document model, e.g. a different version of the pathology

report or even a different model domain such as laboratory. The newDoc function creates an

empty document from the XML schema that can be used to enter either a completely new report

or to enter only a few selecting data and to retrieve the matching documents by the getDoc

function. The currently selected documents are listed in the left frame of the Web browser

window and the user can choose a document from the list for update purposes. The styleDoc

function allows the user to see the presentation style (Figure 5) of the data before he stores them

in the document base using the putDoc function. The presentation style of the document model is

defined in a stylesheet associated with the current content model.

Figure 4: User form for data entry.

Figure 5: Presentation of data.

Storage back end

Figure 6 shows the back end representation of the data entered by the user. The data are logically

stored as XML documents that are valid against the corresponding XML schema definition. The

manager does not care about the physical details of the document store, which have been

wrapped by some logical Application Programming Interface (API).

Figure 6: XML structured data as the result of the data entry.

Discussion

In this paper we present an XML based approach towards more flexible data models. The

approach uses an XML schema definition for the description of a document model. Such an XML

schema definition can be updated by the application engineer or even the user himself. The

adjustment of the entire application system, i.e. the user front and the storage back end is

managed automatically. As a consequence, new model requirements are easy to satisfy. With

such an approach we may handle fuzzy data, i.e. data that are difficult to accommodate in a single

database. In this section we will discuss the role of XML in our approach.

The ultimate problem of our approach can be phrased in the following question: How can we

change the structure of single documents and track the structure (model) of a set of documents at

the same time? Without an overall model we would not know what elements can be searched for

in the document base. The answer is that the model needs to be as modifiable as the data itself.

And this is exactly the point where XML may contribute to the solution of our problem. The

standard XML schema language is well suited for the explicit description of document models. In

addition, XML files, and this includes the model instances as well as the model itself, are easy to

transform with standard XML facilities such as DOM and XSLT.

For the description of the document model we prefer an XML schema definition over a

Document Type Definition (DTD). The XML schema approach supports more abstraction

concepts thus allowing a higher reuse of definitions. This shall be illustrated at the PersonType

definition. The PersonType defines an element type respectively an element class, which is

reused for the sender and the receiver of a report. The XML schema consequently supports the

abstraction concept of „classification“ which can be already found in the DTD (Document Type

Definition) approach. Furthermore, the XML schema supports a derivation concept that has no

counterpart in the DTD. The PatientType e.g. is derived from the PersonType by extension, i.e.

the PersonType is a generalization of the PatientType. Abstraction concepts such as classification

and generalization allow a high reuse of definitions.

The model flexibility can be illustrated at the gender element of the presented XML schema

definition (Figure 3). The gender element has been added to the schema in spite of the fact that

existing documents would no longer comply with this new schema definition. The manager

automatically extends the user form and lets the gender value undefined. The user can now define

the gender value and save it in the document store. The key point in our approach is that the

manager always uses the XML schema definition to organize the data in the application system.

XML may also facilitate the development of communication interfaces to other systems. This

includes the export of documents to another system as well as the import of existing data into a

given document. When sending a given document to another system, we usually have to

transform the local storage format into a standard message format. XML supports such a format

transformation. The Document Object Model (DOM) e.g. parses an XML document into its

elements and provides methods for the ease of document navigation and document manipulation

from within a programming environment (6). The eXtensible Styling Language (XSL) supports

the transformation of existing documents into a different document style, e.g. a presentation style

or a message style (7). The fact that XML is increasingly preferred as the interchange format for

messages will further facilitate the development and the maintenance of communication

interfaces.

Beside of the data export, the user may also retrieve existing data and integrate these data

seamlessly into a given document. For this purpose, the user namespace may define a get

attribute that can be added to any element in the XML schema and whose value is a standard

URL. The URL defines the location of the remote data. For the integration of the patient data

from an existing patient system e.g. we may add a „user:get“ attribute to the patient element with

the URL instance

http://patientHost/patientServer?service=getPatientData&argument=/Report/Patient/Name

The URL enables the manager to instantiate the arguments from the document content, to send

the service value and the argument instances to the server and to integrate the returned data into

the given document. The argument is defined using the standard XML Path language (8). The

XPath "/Report/Patient/Name" e.g. instructs the manager to read the patient name from the

document instance before contacting the remote server. The manager will complain if the patient

name has not yet been entered. The data retrieval itself is controlled by the user using the

getInstance function.

Conclusion

Inflexible data models can lead to low acceptance of application systems in domains which are as

dynamic as the healthcare domain. Our approach to this problem is to let the user requirements

change the model description, i.e. to adjust the structure to the data instead of adjusting the data

to the structure. The key concept of our solution is to make the structure, i.e. the XML schema

definition as modifiable as the data itself. Necessary adjustments of the user front & storage back

end are managed automatically. The XML technology provides a proper means in terms of XML

Schema, XSLT, XPath and DOM to implement such an approach.

Literature

1. J. P. Morgenthal, SIGS Component Strategies, 54 (May 1999).

2. CEN/TC 251/N99-067, Task Force XML Final report 1999-07-02.

3. J. Dudeck, International Journal of Medical Informatics 48, 163 (1998).

4. J. J. Cimino, Yearbook of Medical Informatics, 289 (1995).

5. WD-xmlschema-0-20000407, XML Schema Part 0: Primer, W3C Working Draft, 7 April

2000.

6. REC-DOM-Level-1-19981001, Document Object Model (DOM) Level 1 Specification,

Version 1.0, W3C Recommendation 1 October, 1998.

7. REC-xslt-19991116, XSL Transformations (XSLT), Version 1.0, W3C Recommendation 16

November 1999.

8. REC-xpath-19991116, XML Path Language (XPath), Version 1.0, W3C Recommendation 16

November 1999.

