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Basic Information about the subject

About the subject

Duration: 2+1 hours per week, 28+14 hours per study
Guarant: prof. RNDr. Villiam Geffert, DrSc.
Assessment: Examinaiton
Final examination: Written test
Requirements:

At least 80% presence on practices during the semester
At least 60% success on written test at final examination

Course objective:
To introduce basic concepts of logic programming and
inductive logic programming.
To acquire knowledge on fuzzy logic programming from the
deductive and inductive point of view.
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Syllabus of the subject

Important notions from classical logic
Deduction

Resolution, Derivation, Deduction
Subsumption theorem
Refutation theorem

Induction
Examples, Background Knowledge, Hypothesis
Learning task
Hypothesis space
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truth values, many-valued operators, ...

Truth functional fuzzy logic deduction
Language of fuzzy logic programming
computation rules
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computed answer, correct answer
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The learning task
Generalized Annotated Programs
Truth completion

Tomáš Horváth, ICS, UPJŠ Košice Basics of Knowledge Systems



Introduction
Logic Programming

Fuzzy logic programming
Conclusions

Deduction in LP
Inductive LP

1 Introduction
Basic Information about the subject

2 Logic Programming
Deduction in LP
Inductive LP

3 Fuzzy logic programming
Motivation on fuzzy logic programming
Deduction in FLP
Induction of FLP

4 Conclusions
Applications
Future directions

Tomáš Horváth, ICS, UPJŠ Košice Basics of Knowledge Systems



Introduction
Logic Programming

Fuzzy logic programming
Conclusions

Deduction in LP
Inductive LP

Language

Our language consist of
Attributes A1, . . . ,Am ∈ A with domains D1, . . . ,Dm ∈ D.
For each attribute Ai we have

Variables VAi

Constants CAi

Functions f (A1, . . . ,An) ∈ F
Predicates p(A1, . . . ,Ao) ∈ P

p(A1, . . . ,Ao) : DA1 × . . .×DAo 7→
{

0, 1
}
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Language

The frequently used operators of our language are:
Conjunction ∧
Disjunction ∨
Implication→
Aggregation @

A combination of ∧,∨and@ is again an aggregation.
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Truth values and connectives

The set of truth values is the set
{

0,1
}

The truth functions of the operators are
Conjunctor ∧•

∧•(0, 0) = ∧•(0, 1) = ∧•(1, 0) = 0
∧•(1, 1) = 1

Disjunctor ∨•
∨•(0, 1) = ∨•(1, 0) = ∨•(1, 1) = 1
∨•(0, 0) = 0

Implicator→•
→• (0, 0) =→• (0, 1) =→• (1, 1) = 1
→• (1, 0) = 0

Aggregator @•

assume @•(0, . . . , 0) = 0 and @•(1, . . . , 1) = 1
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Herbrand structures

Let L be first-order language.

Herbrand universe UL is the set of all ground terms created
from constants and function symbols of the language L. In case
that L does not contains constants, we add an arbitrary sign,
e.g. "a" what enables us to create ground terms.

Herbrand base BL is the set of all ground atoms created from
perdicate symbols of the language L and terms from the
Herbrand universe UL.
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Herbrand structures

Let L be first-order language.

Herbrand interpretation f is the function f : BL 7→
{

0, 1
}

Let f be a Herbrand interpretation and Σ a set of (closed)
formulas of L.
If f is a model of Σ then f is a Herbrand model of Σ.

Tomáš Horváth, ICS, UPJŠ Košice Basics of Knowledge Systems



Introduction
Logic Programming

Fuzzy logic programming
Conclusions

Deduction in LP
Inductive LP

Clauses

A clause (rule) is a formula of the form
∀x1, . . . ,∀xs(L1 ∨ . . . ∨ Lm), where Li are literals and x1, . . . , xs
are variables appering in L1 ∨ . . . ∨ Lm.

The notation ∀x1, . . . ,∀xs(A1 ∨ . . . ∨ Ak ∨ ¬B1 ∨ . . . ∨ ¬Bn) is
equivalent to ∀x1, . . . ,∀xs(B1 ∧ . . . ∧ Bn → A1 ∨ . . . ∨ Ak ).
Instead of this complicated notation we will use an abbreviated
notation A1, . . . , Ak ← B1, . . . , Bn.
A1, . . . , Ak is the head and B1, . . . , Bn is the body of the clause.
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Clauses

A program clause is a clause of the form A← B1, . . . , Bn, what
contains exactly one literal (A) in the head and zero or more
literals in the body.
A program is a set of program clauses.
A ground clause is a clause of the form A←, i.e. a program
clause with an empty body.
A goal is a clause of the form← B1, . . . , Bn, i.e. a program
clause with an empty head.
An empty clause is a clause with emty body and empty head.
We denote it by 2. A Horn clause is either a program clause or
a goal.
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Theorems on Herbrand models

Let Σ be a set of clauses and Σ has a model. Then Σ has a
Herbrand model, too.

Let Σ be a set of clauses. Then Σ is unsatisfiable iff Σ has no
Herbrand model.

Let Σ be a set of clauses. Then Σ has a model iff Σ has a
Herbrand model.
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Minimal Herbrand model

Let Π be a program and
{

Mi

}
i∈I

is a nonempty set of Herbrand

models of Π. Then MΠ =
⋂

i∈I Mi is a Herbrand model of Π.

We call MΠ a minimal herbrand model of Π.

If Π is a program, then MΠ =
{

A ∈ BΠ|Π |= A
}
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The TΠ operator

Let Π be a program. A function TΠ : BΠ 7→ BΠ is defined as
follows:

Let I be a Herbrand interpretation. Then
TΠ(I) =

{
A ∈ BΠ|A← A1, . . . , An is a ground instance of a

clause in Π and
{

A1, . . . , An
}
⊆ I

}
Let Π be a program and I a Herbrand interpretation of Π. Then I
is a model of Π iff TΠ(I) ⊆ I.
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Resolution

Let C1 = L1 ∨ . . .∨Li ∨ . . .∨Lm and C2 = M1 ∨ . . .∨Mj ∨ . . .∨Mn
be clauses with no common variables. If the substitution θ is
the most general unifier (mgu) of

{
Li , Mj

}
, then the clause C =

(L1∨ . . .∨Li−1∨Li+1∨ . . .∨Lm∨M1∨ . . .∨Mj−1∨Mj+1∨ . . .∨Mn)θ
is the binary resolvent of C1 and C2 resolved upon the literals Li
and Mj

Let C be a clause, L1, . . . , Ln(n ≥ 1) are unifiable literals in C
and θ is the mgu of

{
L1, . . . , Ln

}
. Then the factor of C is

obtained by removing L2θ, . . . , Lnθ from Cθ.

Correctness of resolution

If C is a resolvent of C1 and C2 then
{

C1, C2 |= C.
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Derivation

Let Σ be a set of clauses and C a clause. Derivation of C from
Σ is a finite sequance of clauses R1, . . . , Rk = C, such that
every clause Ri either belongs to Σ or is a resolvent of two
clauses from

{
R1, . . . , Rk

}
. If such a derivation exist, we

denote it by Σ `r C.

The derivation of an empty clause 2 from Σ we call refutation of
Σ.
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Deduction

Let C and D be clauses. C subsumes D (C � D) if there exists
a substitution θ such that Cθ ⊆ D. Notice, that in this definition
the notation

{
A,¬B1, . . . ,¬Bk

}
is used for a clause

A← B1, . . . , Bk .

Correctness of subsumption

If C subsumes D then C |= D.

Let Σ be a set of clauses and C a clause. There exist a
deduction of C from Σ (denote Σ `d C), if C is a tautology or
there exist a clause D, such that Σ `r D and D subsumes C.
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Theorems

The subsumption theorem for resolution

Let Σ a set of clauses and C a clause. Then Σ |= C iff Σ `d C.

Refutation theorem for resolution
Let Σ a set of clauses. Then Σ is unsatisfiable iff Σ `r 2.

The subsumtion theorem for resolution and the Refutation
theorem for resolution are equivalent.
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SLD-derivation

Let Σ be a set of Horn clauses and C a Horn clause.
SLD-derivation of C from Σ is a finite sequence of Horn clauses
R0, . . . , Rk = C such that R0 ∈ Σ and every Ri for1 ≤ i ≤ k is a
binary resolvent of Ri−1 and a program clause Ci ∈ Σ in which
the resolved literals are the head of Ci and a selected atom in
the body of Ri−1. R0 is called the top clause and Ci are the
input clauses of SLD-derivation. We denote SLD-derivation of
C from Σ by Σ `sr C.

The SLD-derivation of 2 from Σ we call SLD-refutation of Σ
(denote Σ `sr 2).
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SLD-deduction

Let Σ be a set of Horn clauses and C a Horn clause. There
exist an SLD-deduction of C from Σ, if C is a tautology or there
exist a Horn clause D, such that Σ `sr D and D subsumes C.
We denote SLD-derivation of C from Σ by Σ `sd C.
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Theorems

The subsumption theorem for SLD-resolution

Let Σ a set of Horn clauses and C a Horn clause. Then Σ |= C
iff Σ `sd C.

Refutation theorem for SLD-resolution
Let Σ a set of Horn clauses. Then Σ is unsatisfiable iff Σ `sr 2.

The subsumtion theorem for SLD-resolution and the Refutation
theorem for SLD-resolution are equivalent.
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Examples

Let f be a Herbrand interpretation of the language L.

a concept predicate is an arbitrary predicate pc(VA1 , . . . ,VAn)

a concept is defined as Cf =
{

pc(d1, . . . , dn) ∈ BL |
d1 ∈ D1, . . . , dn ∈ Dn and p(d1, . . . , dn) is defined in f

}
.

If e ∈ Cf and f (e) = 1 then e is called a positive example of a
concept Cf denoted by e+.
If e ∈ Cf and f (e) = 0 then e is called a negative example of a
concept Cf denoted by e−.
an example set E = E+ ∪ E−, where E+ =

{
e+

}
and

E− =
{

e−
}
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Background knowledge and hypothesis

Let f be a Herbrand interpretation of the language L.

The background knowledge β =
{

C | where C ∈ BL or C is a
Horn clause

}
.

The hypothesis is defined as Σ =
{

pc(x11, . . . , x1n)←
pβ1(y11, . . . , y1k ), . . . , pβm(ym1, . . . , yml) | xi j , yr s are variables or
constants of the language L, pc is the concept predicate, pβi

are predicates of the language L
}

.
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Rule covering

Let e ∈ Cf , C ∈ Σ and β be background knowledge.

The covering of an example e ∈ Cf by a rule C w.r.t.
background knowldge β is defined as a function
covers : Σ× β × Cf 7→ true, false as follows:

covers(C, β, e) =

{
true if C ∪ β |= e
false if C ∪ β 2 e
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Hypothesis covering

Let e ∈ Cf , Σ be a hypothesis and β be background knowledge.

The covering of an example e ∈ Cf by a hypothesis Σ w.r.t.
background knowldge β is defined as a function
covers : Σ× β × Cf 7→ true, false as follows:

covers(Σ, β, e) =

{
true if (∃C ∈ Σ) C ∪ β |= e
false if (∀C ∈ Σ) C ∪ β 2 e
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Inductive Logic Programming task

Given are E+, E− and β. The task is to find a hypothesis Σ,
such that the following conditions hold:

completeness
(∀e+ ∈ E+) covers(Σ, β, e+) = true

consistency
(∀e− ∈ E−) covers(Σ, β, e−) = false
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Specialization

If a rule C ∈ Σ is not consistent we have to weaken it, i.e. find a
rule D what is specific according to C. This process is called
specialization.

The specialization operator is a function υ : Σ 7→ Σ, where Σ is
a set of Horn clauses

applies some substitution θ to a clause
adds a literal to the body of a clause
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Generalization

If a rule C ∈ Σ is not complete we have to strengthen it, i.e. find
a rule D what is general according to C. This process is called
generalization.

The generalization operator is a function υ : Σ 7→ Σ, where Σ is
a set of Horn clauses

applies some inverse substitution θ−1 to a clause
removes a literal from the body of a clause
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Theorem

Relation of specialization and generalization to covering

Let e ∈ E be an example and C, D be a Horn clauses. Let C be
an arbitrary specialization of D and D an arbitrary
generalization of C. Then

If D 2 e then C 2 e
If C |= e then D |= e
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Hypothesis space

A hypothesis space is the set of all Horn clauses.

An acceptable hypothesis space for a given example set E and
background knowledge β is the set of all Horn clauses created
from the predicates in E , and β.
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Ordering on hypothesis space

As an ordering on hypothesis space we use subsumption.

Let C be a Horn clause and S be a set of Horn clauses.
If C � D for all D ∈ S then C is a generalization of S under
subsumption.
If for all generalization C′ of S under subsumption holds
that C′ � C then C is the least generalization of S under
subsumption.

If D � C for all D ∈ S then C is a specialization of S under
subsumption.
If for all specializations C′ of S under subsumption holds
that C � C′ then C is the greatest specialization of S under
subsumption.
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Theorems

Let H be the set of all Horn clauses. > denote the most general
clause of H and ⊥ denote the most specific clause of H.

Existence of least generalizations on hypothesis space

For every finite subset S of H there exists the least
generalization of S under subsumption.

Existence of greatest specialization on hypothesis space

For every finite subset S of H there exists the greatest
specialization of S under subsumption.

The hypothesis space H ordered by subsumption is a lattice.
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Recommended reading

J. W. Lloyd: Foundations of Logic Programming. Springer,
Berlin, 1987.

An introduction to crisp Logic Programming.
S-H. Nienhuys-Cheng, R. de Wolf: Foundations of
Inductive Logic Programming. Springer, Berlin, 1997.

Theoretical basis of classical Inductive logic programming
Basics from Logic Programming
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Drawbacks of Crisp framework

In a standard logical framework information are absolutely true
or false.

In real-world application information are often
Imperfect (imprecise, uncertain, vague, noisy, ...)

"Toyotas are probably better cars as Opels", "Hollywood
stars are mainly lean", etc.

Expressed in natural language with linguistic hedges
"Very young girl", "Not too big building", "Middle aged", "Low
price", etc.

Aggregated in accordance with their importance
"Managers prefer hotels near to business center while the
cheapest hotels which are more far from the city center are
better for students", etc.

We need a framework to represent and deal with
imperfect information.
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Fuzzy framework

Unable to represent and deal with imperfect information.
More truth values (from interval [0, 1]) representing the
belief that an individual being to a concept.
Representation of concepts of natural language (with
linguistic hedges).

Expression of preferences of information by aggregation
function.

goodhotelformanager =
2.near + cheap

3
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Conjunctor

Function C : [0, 1]2 7→ [0, 1] is called conjunctor if
C(1, 1) = 1
C(0, 1) = 0
C(1, 0) = 0
C(0, 0) = 0
∀r > 0 : C(1, r) > 0
C is left continuous in second parameter

Variables of conjunctor we denote C(b, r)
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Implicator

Function I : [0, 1]2 7→ [0, 1] is called implicator if
C(1, 1) = 1
C(0, 1) = 1
C(1, 0) = 0
C(0, 0) = 1
∀h < 1 : I(1, h) < 1
I is right continuous in second parameter

Variables of implicator we denote I(b, h)
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Properties of conjunctors and implicators

property a(C, I)
(∀b, h, r ∈ [0, 1]) I(b, h) ≥ r iff C(b, r) ≤ h
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Properties of conjunctors and implicators

property φ1(I)
φ1(I) iff I is non-increasing in the first and non-decreasing
in the second coordinate.

property φ2(C, I)
(∀b, h ∈ [0, 1]) C(b, I(b, h)) ≤ h

property φ3(C, I)
(∀b, r ∈ [0, 1]) I(b, C(b, r)) ≥ r
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Properties of conjunctors and implicators

relation between a and φ2, φ3

a(C, I) iff (φ2(C, I) and φ3(C, I))
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Residuality

If C(b, r) ≤ h only if I(b, h) ≥ r then we call the tuple ( C and I)
residual

The residual conjunctor to implicator I is
CI(b, r) = inf

{
h : I(b, h) ≥ r

}
The residual implicator to conjunctor C is
IC(b, h) = sup

{
r : C(b, r) ≤ h

}
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Properties of residual operators

property 1

Let I be an implicator. Then CI(b, r) is a conjunctor.

property 2

Let C be a conjunctor. Then IC(b, h) is an implicator.

property 3
Let I be an implicator and C be a conjunctor. Then the tuples
(CI , I) and (IC , C) are residual.
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Language

Our language consist of
Attributes A1, . . . ,Am ∈ A with domains D1, . . . ,Dm ∈ D.
For each attribute Ai we have

Variables VAi

Constants CAi

Functions f (A1, . . . ,An) ∈ F
Predicates p(A1, . . . ,Ao) ∈ P

p(A1, . . . ,Ao) : DA1 × . . .×DAo 7→ [0, 1]
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Language

Our language have finitely many
Conjunctions ∧1, . . . ,∧k

Disjunctions ∨1, . . . ,∨l

Implications→1, . . . ,→m

Aggregations @1, . . . ,@n

A combination of ∧,∨and@ is again an aggregation.
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Truth values and connectives

The set of truth values is the set of real numbers from the unit
interval [0,1]
The truth functions of the operators are

Conjunctors ∧•1, . . . ,∧•k
Disjunctors ∨•1, . . . ,∨•l
Implicators→•1, . . . ,→•m
Aggregators @•1, . . . ,@

•
n

assume @•(0, . . . , 0) = 0 and @•(1, . . . , 1) = 1

Assume ∧•,∨•and@• are left continuous.
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Classical operators

Let x the truth value of an event X and y the truth value of
an event Y . (if X and Y are disjunctive)

Lukasiewicz
∧•L(x , y) = max{0, x + y − 1}
∨•L(x , y) = min{1, x + y}
→•

L (x , y) = min{1, 1− x + y}
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Classical operators

Let x the truth value of an event X and y the truth value of
an event Y .

Godel (if X and Y are inclusive)
∧•G(x , y) = min{x , y}
∨•G(x , y) = max{x , y}

→•
G (x , y) =

{
y , x > y
1, else
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Classical operators

Let x the truth value of an event X and y the truth value of
an event Y .

Product (if X and Y are independent)
∧•P(x , y) = x .y
∨•P(x , y) = x + y − x .y
→•

P (x , y) = min{1, y
x }
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Comparison of classical conjunctors
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Comparison of classical disjunctors
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Comparison of classical implicators
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Fuzzy structures

Let BL be the Herbrand base.
A mapping f : BL 7→ [0, 1] is said to be a fuzzy Herbrand
interpretation
f can be extended to f all formulas along the complexity of
formula using the truth function of connectives
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Fuzzy theories

Let BL be the Herbrand base.
A graded formula (ϕ.x) is true in an interpretation f
(f |=FLP ϕ.x) if f (ϕ) ≥ x
f is a model of a theory P if for all formulas ϕ ∈ dom(P) we
have f (ϕ) ≥ P(ϕ)
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Fuzzy modus ponens

The procedural semantics is based on the backward usage of
fuzzy modus ponens

(B.b),(H←IB.r)
(H.CI(b,r)) , where CI is the residual conjunctor to

implicator←I

if the body holds with grade b and the rule holds with grade
r then the truth of the head of the rule is equal to CI(b, r)
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Fuzzy modus ponens

Soundness of fuzzy modus ponens

Fuzzy modus ponens is a sound rule, i.e. if f (B) ≥ b and
f (H ←I B) ≥ r then f (H) ≥ CI(b, r).
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Proof of soundness of fuzzy modus ponens

From premises of the theorem we have
f (B) ≥ b
f (B →I H) = I(f (B), f (H)) ≥ r

So,
C(b, r) ≤ C(f (B), f (B →I H))

Since C = CI and the property φ2(C, I) holds, we get
CI(f (B), f (B →I H)) = CI(f (B), I(f (B), f (H))) = CI(b, I(b, h) ≤
f (H)

We see, that CI(b, r) is the largest sound evaluation of modus
ponens.
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Declarations

fact is a graded atom (B.b), where b ∈ [0, 1]

body is of the form B = @(B1, . . . , Bn)

rule is a graded implication (H ← @(B1, . . . , Bn).r), where
r ∈ [0, 1]

H ← @(B1, . . . , Bn) is the logical part of the rule
r ∈ [0, 1] is the quantitative part of the rule

A finite set P of positively graded rules and facts is said to
be a fuzzy logic program if there are no two rules (facts)
with the same logical parts and different quantitative parts
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Correct answer

A pair (x ;ϑ) consisting of a real number 0 < x ≤ 1 and a
substitution ϑ is a correct answer for a program P and a query
"?− A” if for arbitrary interpretation f , which is a model of P, we
have f (∀(Aϑ)) ≥ x .
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Computation rules

We define the 1. admissible rule as follows:
From ((XAmY ); υ) infer ((XC(B, r)Y )θ; υ ◦ θ) if

Am is an atom (called the selected atom)
θ is an mgu of Am and H
P(H ← B) = r and B is a (nonempty) body
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Computation rules

We define the 2. admissible rule as follows
From (XAmY ) infer (X0Y ) if in an aggregation an
argument is missing
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Computation rules

We define the 3. admissible rule as follows
From ((XAmY ); υ) infer ((XrY )θ; υ ◦ θ) if

Am is an atom (called the selected atom)
θ is an mgu of Am and A
P(A) = r (i.e. A is a fact)

Tomáš Horváth, ICS, UPJŠ Košice Basics of Knowledge Systems



Introduction
Logic Programming

Fuzzy logic programming
Conclusions

Motivation on fuzzy logic programming
Deduction in FLP
Induction of FLP

Computation rules

We define the 4. admissible rule as follows
If the word does not contain any predicate symbols rewrite
all connectives ( ∨’s, ∧’s and @’s) to ∨•, ∧• and @•. As this
word contains only some additional C’s and reals evaluate
it (of course the substitution remains untouched).
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Computed answer

A pair (r ; θ) consisting of a (rational) number r and a
substitution θ is said to be a computed answer for a program P
and a goal "?− A" if there is a sequence G0, . . . , Gn such that

every Gi is a pair consisting of a word and a substitution
G0 = (A, id)

every Gi+1 is inferred from Gi by one of the inference rules
(we do not forget the usual Prolog renaming of variables
along derivation)
Gn = (r , θ′) and θ = θ’ restricted to variables of A
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Soundness of Fuzzy Logic Programming

Soundness of the semantics
Every computed answer for a definite fuzzy logic program P
and goal "?− A" is a correct answer.
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Proof of soundness of fuzzy logic programming

Take a goal A with a computation of length k + 1 starting with a
rule P(A← B) = r . Suppose that the result holds for all
computed answers due to computations of length ≤ k . For
each atom D from the body B there is a computation of length
≤ k , hence computed answer d ≤ f (D) in every model of P.
But then f (B) ≥ b, where b is the computed answer for the
whole body. This is because conjunctions, disjunctions and
aggregations are monotone in both coordinates. Hence, f being
a model of P means f (A← B) ≥ P(A← B) = r and by the
soundness of modus ponens we get f (A) ≥ C(b, r).
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The TP operator

FP = {f | f : BP 7→ [0, 1]}
FP is a lattice with coordinatewise lattice ordering
define the operator TP : FP 7→ FP as follows

TP(f )(A) = max{sup{Ci(f (B), r) | (A← iB.r) is a ground
instance of a rule in the program P}, sup{b | (A.b) is a ground
instance of a fact in the program P}}.
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The fixpoint theorem
Assume that all implications fulfill properties φ1− φ3.
Moreover, assume that all C’s, ∧’s, ∨’s and @’s are lower
semicontinuous. Then

TP is continuous (i.e. TP preserves joins of upward
directed sets of interpretations)
f is a model of P iff TP(f ) ≤ f (hence the minimal fixpoint of
TP is a model of P)
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Proof of the fixpoint theorem

The continuity of TP is straightforward, using mootonicity and
lower continuity of all connectives in the body and conjunctors
evaluating fuzzy modus ponens.
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Proof of the fixpoint theorem

The second part of the theorem we prove as follows: Denote
→•i = Ii . Assume that f is a model of P. For an H ←i B a ground
instance of some C ∈ dom(P) we would like to show that
f (H) ≥ Ci(f (B), P(C)).
We have
f (H ←i B) ≥ f (C) ≥ P(C),
the first inequality holds because H ←i B is a ground instance
of C, the second, because f is a model of P.
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Proof of the fixpoint theorem

By (φ1 − φ2) we have
Ci(f (B), P(C)) ≤ Ci(f (B), f (H ←i B)) =
Ci(f (B), Ii(f (B), f (H))) ≤ f (H).
Now assume TP(f ) ≤ f . It sufficies for all ground instances
H ←i B of C to show f (H ←i B) ≥ P(C). But
f (H) ≥ TP(f )(H) ≥ Ci(f (B), P(C))
gives (by φ1 and the above)
f (H ←i B) = Ii(f (B), f (H)) ≥ Ii(f (B), Ci(f (B), P(C))) ≥ P(C).
The last inequality is φ3.
Hence the fixpoint theorem works even without any further
assumptions on conjunctors (definitely they must not be
commutative and associative).
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Completeness of fuzzy logic programs

Assume that all implications fulfill properties φ1− φ3.
Moreover, assume that all C’s, ∧’s, ∨’s and @’s are lower
semicontinuous. Then for every correct answer (x ;ϑ) for P and
"?− A" and for every ε > 0 there is a computed answer (r , θ) for
P and "?− A" such that x − ε < r and ϑ = θγ (for some γ)
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Proof of completeness of fuzzy logic programs

The previous theorem practically states the completeness for
ground instances of atoms, because the correct answer for a
ground query A holds also in the minimal model which is a
countable iteration of the TP operator starting from the
0-interpretation.
Now having a positive ε there is an n such that
T n

P(0)(A) > T ω
P (0)− ε. Looking for the contributions to the

value of T n
P(0)(A), there one also greater than T ω

P (0)− ε, this is
obtained through the application of a rule or a fact, in any case
we can trace the computation backwards. The only difference
from the classical case is that a zero value of an atom can
appear in a nonzero value of a disjunction or aggregation (that
is why we need the admissible rule 2).
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Proof of completeness of fuzzy logic programs

To extend it for general case we can extend the language by
constants cX for every variable and define the truth value of a
formula with cX as the truth value of the formula with universally
quantified variable X , that is as the infimum of truth values on
all constants. Such a structure of the language is again a
model of the theory P, because where in the theory there was a
free variable, truth value is computed as though it was
universally quantified, hence all values on constants are greater
or equal and hence also on cX . Hence, the validity on ground
atoms directly follows from the fixed point theorem and using
the lifting lemma and mgu lemma we obtain the full result.
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Fuzzy logic paradox

Assume A is a proposition with truth values in a structure
f (A) = f (¬A) = 1

2 .
Then the following holds:
f (A ∧ A) = ∧•(f (A), f (A)) = ∧•(f (A), f (¬A)) = f (A ∧ ¬A),
which is never fulfilled in real world applications.
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Fuzzy logic paradox

Our solution to this paradox is that it is wrong to describe
conjunction of A and A and with ¬A with the same conjunction.
Our system offers sound and complete deduction with many
connectives, which can be chosen to fit the real world situation.
In the above case it can look like
1
2 = f (A ∧G A) = ∧•G(f (A), f (A)) > ∧•L(f (A), f (¬A)) =
f (A ∧L ¬A) = 0.
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Examples, Background Knowledge and Hypothesis

A fuzzy example set EF consists of fuzzy facts (i.e. a graded
atoms). Its elements e.α are called graded examples with
grade α.

A fuzzy background knowledge BF is a fuzzy logic program.

A fuzzy hypothesis HF is a set of fuzzy rules.
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Fuzzy Inductive Logic Programming task

Given are EF and BF . The task is to find a fuzzy hypothesis
HF , such that the following conditions hold:

flp-completeness
(∀e.α ∈ EF ) (HF ∪ BF ) |=FLP e.α

flp-consistency
(∀e.α ∈ EF )(∀β > α) (HF ∪ BF ) 2FLP e.β
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Theorem

Generality of FILP
The formal model od fuzzy inductive logic programming task is
a generalization of inductive logic programming task.
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Proof

Reduce the truth value interval [0, 1] ∩Q to
{

0, 1
}

. Thus, the
example set consists of fuzzy examples ei .0 or ei .1 which
correspond to crisp negative and positive examples. In case of
truth values from

{
0, 1

}
fuzzy operators are generalizations of

classical crisp operators, so the fuzzy background knowledge
and the fuzzy hypothesis correspond to crisp background
knowledge and crisp hypothesis.
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Proof

The flp-completeness condition holds, if (H ∪ B)(e) ≥ α for
every e.α ∈ EF . If α = 1 then (H ∪ B)(e) ≥ α = 1 and since the
truth values can be 0 or 1, (H ∪ B)(e) = 1. It means, all positive
examples (e.α = e.1 are entailed by H ∪ B.
The flp-consistency condition holds, if (H ∪ B)(e) < β for every
e.α ∈ E) and β > α. Since the truth values are 0 or 1, if α = 0
the only value for β can be 1, so (H ∪ B) = 0. It means that e
does not belong to the minimal model of H ∪ B, so non of the
negative examples (e.α = e.0) are entailed by (H ∪ B).

So, if a hypothesis is flp-complete (flp-consistent) then it is
complete (consistent), too.
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Generalized Annotated Programs

The language consists of
qualitative part

language of predicate logic
quantitative part

for each predicate p there is a (possibly different) truth
values set TP with ordering ≤p.
consists of annotation terms which are assigned to an
annotation function what are assumed to be total
continuous (hence monotonic) in the sense of lattice theory.
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Generalized Annotated Programs

If A is an atomic formula and α is an annotation term, then A : α
is an annotated atom. If α ∈ [0, 1] then A : α is c-annotated.
When α is a variable, then A : α is v-annotated.
If A : ρ is a possibly complex annotated atom and
B1 : µ1, . . . , Bk : µk are variable-annotated atoms, then
A : ρ(µ1, . . . , µk )← B1 : µ1 ∧ . . . Bk : µk is an annotated clause.

We stress, that atoms in the body of a rule are only v-annotated
and only facts can be c-annotated. We assume that variables in
the annotation of the head also appear as annotations of the
body literals and different literals in the body are annotated with
different variables.
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Generalized Annotated Programs

Let BL be the Herbrand base of the qualitative part of the GAP
language. A mapping f : BL 7→ [0, 1] is said to be a Herbrand
interpretation for annotated logic.
The satisfaction is defined along the complexity of formulas as
in the classical logic.
Suppose f : BL 7→ [0, 1] is an interpretation, µ ∈ [0, 1] and A is
ground atom, then f |=GAP A : µ, i.e. f is a model of A : µ iff
f (A) ≥ µ.

f |=GAP A : ρ(µ1, . . . , µk )← B1 : µ1, . . . , Bk : µk
if for all assignments v of annotation variables we have
f (A) ≥A ρ(v(µ1), . . . , v(µk ))← f (B1) ≥B1 v(µ1) ∧ . . .
. . . ∧ f (Bk ) ≥Bk v(µk )
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Generalized Annotated Programs

FLP and GAP transformations
Assume C = A : ρ← B1 : µ1, . . . , Bk : µk is an annotated
clause. Then flp(C) is the fuzzy rule A← ρ(B1, . . . , Bk ).1, here
ρ is understood as an n-ary aggregator operator.

Assume D = A←i @(B1, . . . , Bn).r is a fuzzy logic program rule.
Then gap(D) is the annotated clause
A : Ci(@(x1, . . . , xn), r)← B1 : x1, . . . , Bn : xn.

Tomáš Horváth, ICS, UPJŠ Košice Basics of Knowledge Systems



Introduction
Logic Programming

Fuzzy logic programming
Conclusions

Motivation on fuzzy logic programming
Deduction in FLP
Induction of FLP

Generalized Annotated Programs

FLP and GAP equivalence
Assume C is an annotated clause, D is a fuzzy logic program
rule and f is a fuzzy Herbrand interpretation. Then

f is a model of C iff f is a model of flp(C).
f is a model of D iff f is a model of gap(D).
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Induction in GAP

A GAP example set EG consists of GAP facts (i.e. a graded
atoms). Its elements e.α are called graded examples with
grade α.

A GAP background knowledge BG is a generalized annotated
logic program.

A GAP hypothesis HG is a set of generalized annotated
program rules.
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Inductive Generalized Annotated Programming task

Given are EG and BG. The task is to find a GAP hypothesis
HG, such that the following conditions hold:

gap-completeness
(∀e.α ∈ EG) (HG ∪ BG) |=GAP e.α

gap-consistency
(∀e.α ∈ EG)(∀β > α) (HG ∪ BG) 2GAP e.β
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Observation

Fuzzy ILP and IGAP transformation
The Fuzzy Inductive Logic Programming task can be
transformed to Inductive Generalized Annotated Program task.

The Inductive Generalized Annotated Program task can be
transformed to Fuzzy Inductive Logic Programming task.
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Truth completion on examples

Let EG =
{

e.α|α ∈ [0, 1]
}

be an annotated example set.

For a β ∈ [0, 1] we divide EG into two parts

EGβ+
=

{
e.α|α ≥ β

}
EGβ−

=
{

e.α|α < β
}

The sets EGβ+
and EGβ−

correspond to positive and negative
example sets (as in classical meaning) relevant to the grade β.
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Truth completion on background knowledge

Every fact pi(x1, . . . , xn) : α in the background knowledge we
transform to classical, two-valued form pi(x1, . . . , xn, α).

For every predicate symbol pi we add to background
knowledge

monotonicity rules
pi(xi 1, . . . , xi ik , υ) ← ≤pi (υ, δ), pi(xi 1, . . . , xi ik , δ)

ordering relations
≤pi (α1, α2),≤pi (α2, α3), . . .
. . . ≤pi (αki−2 , αki−1),≤pi (αki−1 , αki)

where
{
α1, . . . , αi

}
is the set of distinct truth values

appearing in the annotations of the predicate pi .
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Solving IGAP via classical ILP

Input: EG and BG

Output: HG vspace0.3cm The IGAP algorithm
initialize hypothesis HG = ∅
make truth completion on BG

for every β ∈ TVEG =
{
α1, . . . , αk

}
\
{
α1

}
, where TVEG is

the set of distinct truth values in the annotations of
examples do the following:

make truth completion on EG relevant to β
compute with classical two-valued ILP the hypothesys Hβ

on truth completed examples and background knowledge.
Transform Hβ to annotated form HG

β

HG = HG ∪ HG
β
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Theorem

gap-consistency of IGAP algorithm

Given annotated background knowledge and annotated
example set. The IGAP algorithm finds a gap-consistent
annotated hypothesis.
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Proof

Let E , B and H be annotated example set, background
knowledge and hypothesis. The gap-consistency condition
requires that for every e : α ∈ E the following holds
(∀β > α)(H ∪ B) 2GAP e : β, so the minimal model MH∪B of
H ∪ B can not assign a truth value β (higher than α) to example
e : α. By contradiction, assume that our algorithm assigns a
truth value β higher than α to an example e : α. From the
construction of positive and negative example sets in our
algorithm, and from the classical consistency of ILP (the
hypothesis can not cover negative examples) it is clear that an
example e : α can be covered only with a hypothesis of the
truth value δ ≤ α. So, it is not possible that minimal model
MH∪B assigns truth value β to example e : α.
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Corollary

flp-consistency and gap-consistency relation

Given fuzzy background knowledge BF and fuzzy example set
EF . Let us transform the EF and BF to annotated example set
EA and annotated background knowledge BA. Let compute
with IGAP algorithm an annotated hypothesis HA and transform
it to fuzzy hypothesis HF . Then HF is flp-consistent.
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Systems. 124, 3 (2004), p: 361-370

Contains all themes of the deductive part of fuzzy logic
programming covered by the subject.

H. T. Nguyen, E. A. Walker: A First Course in Fuzzy Logic.
Chapman and Hall/CRC, USA, 2006.

An introduction to the theory of fuzzy sets.
T. Horváth, P. Vojtáš: Fuzzy induction via generalized
annotated programs. In: 8th International Conference on
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A Fuzzy Inductive Logic Programming approach covered by
the subject.
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Expert systems
Similarities and the problem of fuzzy unification
Fuzzy databases
Fuzzy resolution
Fuzzy logic programming abduction
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Computing with words
Multi-criterial decision making
Semantic web applications

Flexible search
User preferences

Fuzzy data mining
Hard task because of many (possible unknown) operators
and many truth values

Use of fuzzy logic in areas with many imperfect information
Medicine, Genetics, Economics, ...
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