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About me

n assistant at ICS, UPJŠ in Košice
n PhD. student of prof. Peter Vojtá š, Prague
n research interests concerns ILP
¨ ordinal classification
¨ fuzzy ILP
¨ Generalized Annotated Programs induction
¨ user preferences, profiles



The presentation

n Inductive Logic Programming (ILP)
¨ (Multi) Relational Data Mining method
¨ Machine Learning + Logic Programming
¨ complex data structures

n medicine, genetics, chemistry, economic ...

n Goals
¨ give basic knowledge on ILP
¨ describe our results in this field



Outlines

n Basic concepts
n ILP techniques
¨ refinement graphs (FOIL)
¨ inverse resolution (CIGOL)
¨ relative least generalization (GOLEM)
¨ inverse entailment (ALEPH)

n Applications
n Future directions of ILP
n Our research



Several forms of reasoning

n (Background) Knowledge
¨ Socrates is a human

n Observations (Examples)
¨ Socrates is mortal

n Theory (Hypothesis)
¨ IF X is a human THEN X is mortal



Several forms of reasoning



Several forms of reasoning

n Deduction (Abduction)
¨ if the theory and background knowledge (examples) 

are true then the examples (background knowledge) 
are also true.

n Induction
¨ an induced theory from given examples and 

background knowledge need not be true in case of 
other examples or background knowledge not used in 
the induction process



General ILP task

n Given
¨ Background Knowledge B
¨ Examples E

n Positive e+

n Negative e- (sometimes not used in the learning process)

n Find
¨ Hypothesis H, such that

n covers all positive examples (completeness)
n covers non of the negative examples (consistency)
n a complete and consistent hypothesis is correct



Normal setting (predictive)

n Representations
¨ example e – definite clause (fact)
¨ background knowledge B – definite program
¨ hypothesis H – definite program

n H covers e w.r.t. B if 
¨ (H ∪ B) |= e



Normal setting (predictive)
n Positive examples

¨ { daughter(mary,ann), daughter(eve,tom) }
n Negative examples

¨ { daughter(tom,ann), daughter(eve,ann) }
n Background Knowledge

¨ { mother(ann,mary), mother(ann,tom), father(tom,eve), 
father(tom,ian), female(ann), female(mary), female(eve), male(ian), 
male(tom), parent(X,Y)←mother(X,Y), parent(X,Y) ← father(X,Y) }

n Hypotheses
¨ { daughter(X,Y) ← female(X), parent(Y,X) }
¨ { daughter(X,Y)←female(X), mother(Y,X);         

daughter(X,Y)←female(X), father(Y,X) }



Non-monotonic setting (descriptive)

n Representations
¨ example e – Herbrand interpretation

n often just positive examples
¨ background knowledge B – definite program
¨ hypothesis H – definite program

n H covers e w.r.t. B if 
¨ H is true in the least Herbrand model M(B∪E)



Non-monotonic setting (descriptive)

n Examples
¨ { mother(lieve,soetkin), father(luc,soetkin), parent(lieve,soetkin), parent(luc,soetkin), 

male(luc), female(lieve), female(soetkin), human(lieve), human(luc), 
human(soetkin) }

¨ { mother(blaguna,sonja), father(veljo,saso), father(veljo,sonja), 
parent(blaguna,saso), parent(blaguna,sonja), parent(veljo,saso), 
parent(veljo,sonja), male(veljo), male(saso), female(blaguna), female(sonja), 
human(veljo), human(saso), human(blaguna), human(sonja) }

n Empty background knowledge
n Hypothesis

¨ { parent(X,Y)←mother(X,Y); parent(X,Y)←father(X,Y); 
mother(X,Y)∨father(X,Y)←parent(X,Y); ←mother(X,Y),father(X,Y); 
human(X)←female(X); human(X)←male(X); female(X)∨male(X)←human(X); 
←female(X),male(X); female(X)←mother(X,Y); male(X)←father(X,Y); 
human(X)←parent(X,Y); human(Y)←parent(X,Y); ←parent(X,X) }



Non-monotonic setting (descriptive)

n Examples
¨ { class(fix), worn(gear), worn(chain) }
¨ { class(sendback), worn(engine), worn(chain) }
¨ { class(sendback) ,worn(wheel) }
¨ { class(ok) }

n Background knowledge
¨ { replaceable(gear), replaceable(chain), 

not_replaceable(engine), not_replaceable(wheel) }
n Hypothesis
¨ { class(sendback)←worn(X), not_replaceable(X) }



Non-monotonic setting (descriptive)

n Positive examples
¨ { daughter(mary,ann), daughter(eve,tom) }

n Negative examples
¨ { daughter(tom,ann), daughter(eve,ann) }

n Background Knowledge
¨ { mother(ann,mary), mother(ann,tom), father(tom,eve), 

father(tom,ian), female(ann), female(mary), female(eve), male(ian), 
male(tom), parent(X,Y)←mother(X,Y), parent(X,Y) ← father(X,Y) }

n Hypotheses
¨ { daughter(X,Y) ← female(X), parent(Y,X) }
¨ { ←daughter(X,Y), mother(X,Y); female(X)←daughter(X,Y); 

mother(X,Y)∨father(X,Y)←parent(X,Y) }



Predictive vs. Descriptive ILP
n Predictive

¨ Learn a reason why positives are positives and negatives are 
negatives

¨ You know what You are looking for, but you don’t know what it 
looks like.

¨ Separate examples and background knowledge
¨ often used

n Descriptive
¨ Find something interesting about the data
¨ You don’t know what You are looking for
¨ all background knowledge about an example is incorporated in 

this example



Completeness and Consistency



Specialisation vs. Generalization

n C |= D
¨ D is a specialisation of C
¨ C is a generalization of D

n if C |≠ e then D |≠ e
n if D |= e then C |= e



The general ILP algorithm
n Input: E+, E-, B
n Output: H

n begin
¨ initialize H
¨ repeat

n if H is not consistent specialize it
n if H is not complete generalize it

¨ until H is not correct
¨ output H

n end



Subsumption Theorem

n cover relation “|=“
¨ hard to implement
¨ not decidable
¨ need a framework to solve this problem

n subsumption
¨ a clause C subsumes a clause D (C≥D) if (∃θ) Cθ ⊆ D

n C=p(X)←q(a),r(Y) = {p(X),¬q(a),¬r(Y)} ≥
{p(b),¬q(a),¬r(c),¬s(Z)} = p(b)←q(a),r(c),s(Z)=D                      
for θ={ X/b, Y/c}

¨ if C ≥ D then C |= D (the converse does not hold)
n C=P(f(X))←P(X), D=P(f2(X))←P(X)



Subsumption Theorem
n SLD-refutation theorem

¨ Let Σ is a set of Horn clauses. Then Σ is unsatisfiable iff Σ |-sr □ .

n SLD-Subsumption theorem
¨ Let Σ is a set of Horn clauses and C a Horn clause. Then Σ |= C 

iff Σ |-sd C.

n SLD-refutation theorem and SLD-Subsumption theorem 
are equivalent.

n Σ |- sr C if there exists an SLD-resolution of C from Σ.
n Σ |-sd C if there exists an SLD-resolution of a clause D 

from Σ such that D≥C (D subsumes C)



Hypothesis space
n Space of (all) Horn clauses H
¨ ordered by subsumption

n for every finite set S⊆H there exists a greatest 
specialisation of S in H

n for every finite set S⊆H there exists a least 
generalisation of S in H

n H ordered by ≥ is a lattice
¨ ⊥ - bottom element
¨ T – top element



Hypothesis space



Hypothesis space

n Large space of all hypotheses
¨ need for a space of acceptable hypotheses

n language bias

n Refinement operator ρ:H→H
¨ determine the hypothesis space (refinement graph)
¨ specialisation operator 

n ρ(C)=D, C |= D
¨ applies a substitution θ to C
¨ adds literal to the body of C

¨ generalisation operator
n ρ(C)=D, D |= C

¨ applies an inverse substitution θ-1 to C
¨ removes literal from the body of C



Outlines

n Basic concepts
n ILP techniques
¨ refinement graphs (FOIL)
¨ inverse resolution (CIGOL)
¨ relative least generalization (GOLEM)
¨ inverse entailment (ALEPH)

n Applications
n Future directions of ILP
n Our research



Searching refinement graphs

n top-down searching of refinement graph
n starting with T= □
n depth-first search
n implemented in system FOIL



Searching refinement graphs



Inverse resolution
n bottom-up approach
n applying inverse resolution to clauses

¨ V-operators
n absorption
n identification

¨ W-operators
n intra-construction
n inter-construction

n predicate invention
n not deterministic
n implemented in system CIGOL



Inverse resolution

q ← A p ← q,B q ← B  p ← A,q q ← C 

p ← A,B p ← A,B  p ← A,C 

p ← A,q q ← B p ← r,B r ← A        q ← r,C

p ← A,B p ← A,B  q ← A,C 

absorption                              intra-construction

identification                            inter-construction



Inverse resolution



Relative least generalization

n H ∪ B |= e
n Let H consist of single clause C
n C ∪ B |= e  ⇒ C |= B → e
n if e – atom, B – atoms then e ← B is a Horn clause

n C≥BD if C≥(D∪{¬L1, ..., ¬Ln})
n LGS((D1∪{¬L1, ..., ¬Ln}), ..., (Dm∪{¬L1, ..., ¬Ln}) is an 

RLGSB of {D1, ..., Dm} relative to B={L1, ..., Ln} in H

n bottom-up approach
¨ searches correct LGRSB of positive examples

n implemented in system GOLEM



Relative least generalization

n RLGSB(daughter(mary,ann),daughter(eve,tom)) for 
B={female(mary), parent(ann,mary), female(eve), 
parent(tom,eve), female(ann)} is

n daughter(Vm,e,Va,t) ← parent(ann,mary), parent(tom,eve), 
female(mary), female(eve), female(ann),parent(Va,t,Vm,e), 
female(Vm,e), female(Vm,a), female(Va,e).
¨ if C\{L} covers at least as many positive examples and at most 

as many negative examples as C then the literal L is irrelevant
n after removing irrelevant literals we get 

daughter(Vm,e,Va,t) ← parent(Va,t,Vm,e), female(Vm,e), so 
daughter(X,Y) ← parent(Y,X), female(X)



Inverse entailment
n H ∪ B |= e

n Let H consist of single clause C
n C ∪ B |= e  ⇒ B ∪ ¬e |= ¬C
n ¬⊥ is a (possibly infinite) conjunction of ground literals which are 

true in every model of B ∪ ¬e
n B ∪ ¬e |= ¬⊥
n ¬C is true in all models of B∪¬e ⇒ ¬C contains a subset of ¬⊥
n B ∪ ¬e |= ¬⊥ |= ¬C ⇒ C |= ⊥

n top-down approach
¨ searches for clauses which subsumes ⊥
¨ ability to have rules in background knowledge

n implemented in system ALEPH
¨ language declarations



Inverse entailment

n ⊥daughter(mary,ann) = daughter(A, B) :- mother(B, A), 
female(B), female(A), parent(B, A).

n ⊥daughter(eve,tom) = daughter(A, B) :- father(B, A), 
female(A), male(B), parent(B, A).

n H = { daughter(A, B) :- female(A), parent(B, A). }



Outlines

n Basic concepts
n ILP techniques
¨ refinement graphs (FOIL)
¨ inverse resolution (CIGOL)
¨ relative least generalization (GOLEM)
¨ inverse entailment (ALEPH)

n Applications
n Future directions of ILP
n Our research



East-West trains

n what makes a train to go eastward?



Biology, Chemistry, ...

n what makes a molecule to be mutagenetic?



Other applications

n Engineering
¨ finite element mesh design
¨ detecting a traffic problem

n Natural language processing
¨ learning language grammars
¨ speech tagging
¨ text categorisation

n Life Sciences
¨ 3D protein structure
¨ predicting carcinogenicity



Outlines

n Basic concepts
n ILP techniques
¨ refinement graphs (FOIL)
¨ inverse resolution (CIGOL)
¨ relative least generalization (GOLEM)
¨ inverse entailment (ALEPH)

n Applications
n Future directions of ILP
n Our research



Imperfection, imprecision

n Bayesian nets
n Probabilistic reasoning
n Fuzzy logic



Large data sets

n use of a power of databases
n distributed mining
n efficient choice of training set



Semantic web

n XML, ...
n description logic, RDF



Outlines

n Basic concepts
n ILP techniques
¨ refinement graphs (FOIL)
¨ inverse resolution (CIGOL)
¨ relative least generalization (GOLEM)
¨ inverse entailment (ALEPH)

n Applications
n Future directions of ILP
n Our research



Inductive Generalized Annotated 
Programming
n A:ρ(µ1, … , µk) ← B1:µ1 & ... & Bk:µk
n the first approach to induce GAP programs
n convenient for ordinal classification problems
n equivalent to fuzzy logic programs
n better representation of the real-world as 

probabilistic ILP approaches
n multiple use of classical ILP system ALEPH with 

orderings in the background knowledge
n succesfully used in a Slovak project NAZOU
¨ learning user preferences



Inductive Generalized Annotated 
Programming



Inductive Generalized Annotated 
Programming

A Hotel is appropriate for Conference with truth value at least 1 IF its 
price is cheap with truth value at least 0.7 and is located near the 
conference with truth value at least 0.7
A Hotel is appropriate for Conference with truth value at least 0.7 IF its 
price is cheap with truth value at least 0.7 and is located near the 
conference with truth value at least 0.4
A Hotel is appropriate for Conference with truth value at least 0.4 IF its 
price is cheap with truth value at least 0.4 and is located near the 
conference with truth value at least 0.4
Every Hotel is appropriate for Conference with truth value at least 0.1.

Results of our algorithm:

cheap(A,X) :- le(X,Y), cheap(A,Y).
near(A,B,X) :- le(X,Y), near(A,B,Y).

le(0.1,0.4). le(0.4,0.7). le(0.7,1.0).

attribute values ordering
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