
Tomáš Horváth

INTRODUCTION TO DATA MINING

Lecture 1

Supervised Learning

Institute of Computer Science, Faculty od Science
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Instances and labels

• Instances are represented by their attributes

x = (x1, . . . , xk) ∈ X , X = X1 × · · · × Xk

• An instance belongs to a class or have a value. An instance a
class or a value of which is known is called labeled

(x, y) ∈ X × L

• Assume that labels are assigned according to some unknown
pattern called labeling function

l : X → L, l(x) = y

• if L ⊂ Z1 then l is a classification function (classifier)
• if L ⊂ R then l is a regression function (regressor)

1
Important is, that we deal with discrete labels in case of classification.
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Example
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Train set and Modeling

The problem: The labeling function l is unknown.

• Good news: Even if l is not known, we have observed a sample of
instances with their labels. Such a set of instances is called the
training sample

Str = {(x, y)|x ∈ X , y ∈ L}

which can be considered as an explicit definition of l.

The solution: Try somehow, using Str, to model l by a mapping

m : X → L, m(x) = ŷ

such that m is as close to l as possible.
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Example
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The quality and the parameters of m

How do we express m?

• m is given by its type and parameters Θ
• let’s focus on linear models

• mΘ(x = (x1, . . . , xk)) = θ0 + θ1x1 + · · ·+ θkxk
• Θ = (θ0, θ1, . . . , θk)

How to measure if m approximates l well?

• empirical error1

err(mΘ,Str) =
∑

(x,y)∈Str
lr(y,m

Θ(x)) =
∑

(x,y)∈Str
(y −mΘ(x))2

Modeling means2 to choose a type of m and to find its parameters Θ
such that err(mΘ,Str) is minimal.

• least squares estimates (LSE)

1
lr(y,mΘ(x)) is a regression loss function.

2
There are also some other issues important while we are modeling, we’ll explain them later.
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Finding Θ analytically (1/2)

Let’s mΘ(x = (x1)) = θ0 + θ1x1

• find Θ = (θ0, θ1) such that

err(mΘ,Str) =
∑

(x,y)∈Str
(y − θ0 − θ1x1))2

is minimal.

• closed form solution

θ1 =

∑
(x,y)∈Str(x1 − x1)(y − y)∑

(x,y)∈Str(x1 − x1)2

θ0 = y − θ1x1

• x1, y denote the average values of x1 and y over Str, respectively
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Finding Θ analytically (2/2)

Proof:

∂err

∂θ0
(mΘ,Str) =

∑
(x,y)∈Str

−2 (y − (θ0 − θ1x1)) = 0

=⇒ |Str| θ0 =
∑

(x,y)∈Str
(y − θ1x1) =⇒ θ0 = y − θ1x1

err(mΘ,Str) =
∑

(x,y)∈Str
(y − (y − θ1x1)− θ1x1))2

∂err

∂θ1
(mΘ,Str) =

∑
(x,y)∈Str

−2 (y − y − θ1(x1 − x1))(x1 − x1) = 0

=⇒ θ1 =

∑
(x,y)∈Str(x1 − x1)(y − y)∑

(x,y)∈Str(x1 − x1)2
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A generative model (1/2)

Let’s mΘ(x = (x1)) = θ0 + θ1x1

• mΘ approximates l with an error ε, i.e. y = l(x) = mΘ(x) + ε
• assume ε ∼ N(0, σ2), thus, p(y|x) ∼ N(θ0 + θ1x1, σ

2)

How is the data generated?

• assume the instances (x, y) are “sampled” independently

• the likelihood1 of this sampling given some parameters
Θ = (θ0, θ1) is

LStr(Θ) =
∏

(x,y)∈Str
p(x, y|Θ) =

∏
(x,y)∈Str

p(y|x,Θ)p(x,Θ)

Modeling means to choose a type of m and to find its parameters Θ
such that LStr(Θ) is maximal.

• maximum likelihood estimates (MLE)

1i.e. the probability of the data (Str)
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A generative model (2/2)

∏
(x,y)∈Str

p(x, y) =
∏

(x,y)∈Str
p(y|x)p(x) =

∏
(x,y)∈Str

p(y|x)
∏

(x,y)∈Str
p(x)

since p(x) doesn’t depends on Θ, it’s enough to maximize the
conditional likelihood

Lcond
Str (Θ) =

∏
(x,y)∈Str

p(y|x) =
∏

(x,y)∈Str

1√
2πσ

e−
(y−mΘ(x))2

2σ2

this is equivalent to maximize the conditional log-likelihood

ln Lcond
Str (Θ) =

∑
(x,y)∈Str

ln
( 1√

2πσ
e−

(y−mΘ(x))2

2σ2

)
∝

∑
(x,y)∈Str

(y −mΘ(x))2

under the assumption of normality, MLE are the LSE
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Gradient descent optimization

for more variables closed form solutions are bothersome

• How to find a minimum of an “objective” function f(Θ)?
• assume f is differentiable and convex

Gradient descent

input: f, α, stopping criteria
initialize Θ (not with zeros)
repeat

Θ← Θ− α ∂f
∂Θ(Θ)

until approximate minimum is reached
return Θ

stopping criteria

• |Θold −Θ| < ε

• maximum number of iterations reached

• a combination of both
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Stochastic gradient descent optimization

if f can be written as

f(Θ) =

n∑
i=1

fi(Θ)

Stochastic gradient descent (SGD)

input: fi, α, stopping criteria
initialize Θ
repeat

for all i in random order do
Θ← Θ− α∂fi

∂Θ (Θ)
end for

until approximate minimum is reached
return Θ

α is a hyper-parameter of the “learning” algorithm
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Prediction

The aim is not to describe the data but rather to predict labels on yet
unseen instances.

• generalization error for regression1

err(mΘ) = E(x,y){lr(y,mΘ(x))} =

∫
X

∫
L

lr(y,m
Θ(x))p(x, y) dydx

• generalization error for classification2

err(mΘ) = E(x,y){lc(y,mΘ(x))} =

∫
X

∑
c∈L

lc(c,m
Θ(x))p(x, y = c) dydx

Bayes predictor minimizes the generalization error

mB = arg min
mΘ

err(mΘ)

1
E(x,y){lr(y,mΘ(x))} is an expectation of the regression loss over X × L.

2
lc(y,mΘ(x)) is called classification loss and can be defined e.g. as

lc(y,mΘ(x)) = 1− δ(y = mΘ(x)), with δ being a usual truth-indicator function.
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Regularization

The aim is to achieve low generalization error of the model

• it means, describe the available data1 as well as possible

• but also, don’t fit the model to the noise in the data

• i.e. try to get a smooth model

regularized linear regression

• the objective function2 to optimize (minimize) is

f(Θ) =
∑

(x,y)∈Str
(y −mΘ(x))2

︸ ︷︷ ︸
empirical error

+ λ‖Θ‖2︸ ︷︷ ︸
regularization term

1
Keep in mind that the available data is only the train set.

2
λ is a hyper-parameter, while Θ is a parameter!
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Example
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The quality of a model

According to Θ, we can have many different models mΘ.

• Which model is the best one?

• Which properties a good model should have?
• We need some quality indicators for a model. . .

One model could be trained using many different training samples.

• What would the results be in case of using Str2 or any other
training sample instead of Str1?
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Bias and Variance

Bias

• measures, how mΘ,Str1 ,mΘ,Str2 , . . . ,mΘ,Strm differs from l

• determines, how generic the model mΘ is

Variance

• measures, how mΘ,Str1 ,mΘ,Str2 , . . . ,mΘ,Strm differs frome each
other

• determines, how stable the model mΘ is
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Underfitting vs. Overfitting

Bias
bias2

mΘ(x) = ( l(x)− EStr{mΘ,Str(x)} )2

Variance

variancemΘ(x) = EStr{ (mΘ,Str(x)− EStr{mΘ,Str(x)} )2}

EStr{X } is an expected value of X over all training samples.

Underfitting

• when the model has high bias and low variance, i.e. is too general

Overfitting

• when the model has low bias and high variance, i.e. is too specific
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The bias-variance tradeoff

Usually, the bias decreases with the complexity of the model, while
variance increases with the complexity of the model. Thus, we need to
find a tradeoff model, which is not too general nor too specific.

1

1
image source: http://scott.fortmann-roe.com/
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Error

What happens if we sum up the bias and the variance?1

bias2
mΘ(x) + variancemΘ(x) =

= (l(x)− EStr{ŷ})2 + EStr{( ŷ − EStr{ŷ})2}
= (l(x)− EStr{ŷ})2 + EStr{( ŷ − EStr{ŷ})2}

+ 2 · (l(x)− EStr{ŷ})(EStr{ŷ} − EStr{ŷ})
= (l(x)− EStr{ŷ})2 + EStr{( ŷ − EStr{ŷ})2}

+ 2 · (l(x)− EStr{ŷ})EStr{(EStr{ŷ} − ŷ)}
= EStr{(l(x)− EStr{ŷ})2}+ EStr{(EStr{ŷ} − ŷ)2}}

+ EStr{2 · (l(x)− EStr{ŷ})(EStr{ŷ} − ŷ)}
= EStr{(l(x)− EStr{ŷ}+ EStr{ŷ} − ŷ)2}}
= EStr{(l(x)− ŷ)2}

We get the expected squared error of the model over all training
samples w.r.t. the labeling.

1
We will denote mΘ,Str (x) as ŷ for better readability on the next slides.
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Noise in sampling

The error introduced on the previous slide deals with the labeling l.

• However, the precise values of l are unknown.
• We should consider to use the observed labels from the training

sample.

As we have seen, observations are usually noisy, i.e. y = l(x) + ε for all
(x, y) ∈ Str, where Str is an arbitrary sample of instances.

• there can be more instances with same attribute values but
different labels

• note, that we don’t care about where the noise came from
• non-perfect measuring devices, human factor, etc.

noise(x) = E(x,y){ (y − l(x))2 }
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Noise in sampling

Usually, we assume a normally distributed sampling error ε ∼ N (0, 1)

• thus, E(x,y){y} = l(x)

Let’s rewrite the equations introduces before as

bias2
mΘ(x) = ( E(x,y){y} − EStr{ŷ} )2

variancemΘ(x) = EStr{ ( ŷ − EStr{ŷ} )2}

noise(x) = E(x,y){ (y − E(x,y){y})2 }

and sum them up

bias2
mΘ(x) + variancemΘ(x)︸ ︷︷ ︸

EStr{(E(x,y){y}−ŷ)2}

+noise(x)
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Expected squared error

EStr{(E(x,y){y} − ŷ)2}+ E(x,y){(y − E(x,y){y})2}
= E(x,y){(y − E(x,y){y})2 }+ EStr{(E(x,y){y} − ŷ)2}

+ EStr{ 2 · (E(x,y){y} − E(x,y){y})(E(x,y){y} − ŷ)}
= EStr{E(x,y){(y − E(x,y){y})2}}+ EStr{E(x,y){(E(x,y){y} − ŷ)2}

+ EStr{E(x,y){2 · (y − E(x,y){y})(E(x,y){y} − ŷ)}}
= EStr{E(x,y){(y − E(x,y){y}+ E(x,y){y} − ŷ)2}}
= EStr{E(x,y){(y − ŷ)2}}

We get the expected squared error of the model over all training
samples and all instances w.r.t. the observed labeling.

• known labels for observed instances
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Test set, RMSE and MAE

In practice, we train a model mΘ on a train set Str and test its error
on a so-called test sample Ste defined as

Ste ⊂ X × L \ Str

Root mean squared error (regression)

rmse(mΘ,Str(x),Ste) =

√∑
(x,y)∈Ste(m

Θ,Str(x)− y)2

|Ste|

Mean absolute error (classification)

mae(mΘ,Str(x),Ste) =

∑
(x,y)∈Ste I(mΘ,Str(x) 6= y)

|Ste|

where I(·) = 1 if the condition (·) holds, otherwise I(·) = 0.
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Bias-variance, test set, train set, . . .

1

1
image from Google images.
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Cross-validation

A small complication: As usual, we have only one training and one test
set on the input! Moreover, the labels of instances in the test set are
“hidden”1 to the model.

• Question: How can we get the model with the least expected
error?
• which means evaluating over all training samples and all

instances. . .

• Answer: Try to simulate learning over “more” training sets and
“more” instances.
• which means creating more training sets (with lower sizes) from the

original one. . .
• this process is called cross-validation

1
The test set should be usually used for the final evaluation of the model but not for tuning

it (selection of a best technique or good parameters, etc.)

Introduction to Data Mining Supervised Learning 26/34



k-fold Cross-validation

One possible alternative1:

1 Split (systematically or randomly) the training sample Str to k
parts of similar size

Str =
⋃
k

Strk

2 choose those hyper-parameters Ξ such that2

Ξ = argmin
mΞ

{
1

k

k∑
i=1

err(mΘ,Ξ,
⋃

1≤j≤k,j 6=i Strj ,Stri )

}

• Stri is called validation fold.

3 “re-learn” the final mΘ using Ξ on the whole training set Str

1
Ξ denotes the hyper-parameters of the model.

2
m

Θ,Ξ,
⋃

1≤j≤k,j 6=i S
tr
j denotes a model whose parameters Θ were learned using

hyper-parameters Ξ on the sample
⋃

1≤j≤k,j 6=i S
tr
j .
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Bayes Classifier

Let’s have C1, . . . , CK mutually exclusive and exhaustive classes

prior probability P (Ci)

• probability that an arbitrary instance is labeled with class Ci

likelihood P (x|Ci)

• probability that an arbitrary instance belonging to class Ci is
associated with the instance x

evidence P (x)

• probability that the instance x is seen regardless of its class

posterior probability P (Ci|x)

• probability that the instance x is labeled with class Ci

P (Ci|x) =
P (x|Ci)P (Ci)

P (x)

for x predict Ci for which P (Ci|x) is maximal
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Discriminant function

in case of K classes, classification can be seen as an implementation of
K discriminant functions g1(x), . . . , gK(x) such that

• for x predict Ci for which gi(x) is maximal

binary classification

• K = 2, i.e. labels of instances belong to L = {0, 1}
• e.g. g1(x) = P (x|C1)P (C1) and g2(x) = P (x|C2)P (C2)

• a single discriminant is enough

g(x) = g1(x)− g2(x)

• for x predict C1 if g(x) > 0, and predict C2 if g(x) < 0

decision boundary

• separates the feature space into decision regions

• g(x) = 0 for any x lying on the decision boundary
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Example

one dimensional feature space, two classes

• assume equal priors, i.e. P (C1) = P (C2)

• assume normal likelihoods, i.e. P (x|Ci) = N (µi, σ
2
i )

• assume equal standard deviations, i.e. σ2
1 = σ2

2

• gi(x) = logP (x|Ci) + logP (Ci)

gi(x) = −1

2
log 2π︸ ︷︷ ︸

constant

−log σi︸ ︷︷ ︸
equal variances

− (x− µi)2

2σ2
i︸︷︷︸

equal variances

+logP (Ci)︸ ︷︷ ︸
equal priors

= −(x− µi)2

• we use the estimates mi for µi, i.e. gi(x) = −(x−mi)
2

• assign x to the class Ci with the nearest mean mi

• decision boundary, where g1(x) = g2(x), i.e. x = m1+m2
2
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Linear classifier

linear discriminant function – a hyperplane
• g(x) = g1(x)− g2(x) = (wT

1 x + w10)− (wT
2 x + w20)

g(x) = (w1 −w2)Tx + (w10 − w20) = wTx + w0

• assign x to the class C1 if g(x) > 0, and to C2 if g(x) < 0
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Linear classifier – properties

Let x1,x2 be two points on the hyperplane

• g(x1) = wTx1 +w0 = 0 = wTx2 +w0 = g(x2) =⇒ wT (x1−x2) = 0

• w is orthogonal to the hyperplane, i.e. defines its direction

Let xp be the projection of x on the hyperplane, i.e. g(xp) = 0

• x = xp + r w
||w|| , where r is the distance of x from the hyperplane

• g(x) = g(xp + r w
||w|| ) = wT (xp + r w

||w|| ) + w0 = wTxp + w0︸ ︷︷ ︸
g(xp)=0

+rw
Tw

||w||

• g(x) = r||w|| =⇒ r = g(x)
||w||

Let x = 0

• g(x) = wTx + w0 =⇒ g(x)

||w||︸ ︷︷ ︸
r0

=
wTx

||w||︸ ︷︷ ︸
0

+ w0
||w|| =⇒ r0 = w0

||w||

• w0 defines the distance of the hyperplane from the origin

Introduction to Data Mining Supervised Learning 32/34



Logistic regression (1/2)

Can be the probability P (C = 1|x) approximated by a linear function?

• P (C = 0|x) = 1− P (C = 1|x) in a binary case

• find parameters w, w0 such that P (C = 1|x) = (wTx + w0) + ε
• problem: a simple regression model can predict values outside the

interval1 [0, 1]

• solution: use a sigmoid logistic function s(t) = 1
1+e−t

• logistic regression model

P (C = 1|x) = s(wTx + w0) + ε =
1

1 + e−(wTx+w0)
+ ε

1
Probabilities should lie between 0 and 1.
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Logistic regression (2/2)

Maximum lilelihood estimate

• instances (xi, ci) ∈ Str in a training set, where ci ∈ {0, 1}
• Bernoulli distribution for binary targets

• conditional likelihood with Θ = (w, wo)

Lcond
Str (Θ) =

∏
(xi,ci)∈Str

p(C = ci|xi) =

=
∏

(xi,ci)∈Str
p(C = 1|xi)

ci (1− p(C = 1|xi))
(1−ci)

• conditional log-likelihood ln Lcond
Str (Θ) to maximize is∑

(xi,ci)∈Str

(
ci ln

( 1

1 + e−(wTx+w0)

)
+ (1− ci) ln

(
1− 1

1 + e−(wTx+w0)

))
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Thanks for your attention



Questions?

Tomas.Horvath@upjs.sk

http://www.ics.upjs.sk/~horvath

http://www.ics.upjs.sk/~horvath

