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Abstract: The paper presents a generalization of a data
mining method for the extraction of classification rules for
classification of sequences of events, which is called dis-
criminant chronicles mining. The generalization is moti-
vated by the objective to extract classification rules from
crystal growth data, for which the original method needs
to be extended to events with vectors of attributes and to
real-valued attributes. The paper elaborates incorporat-
ing both extensions into the theoretical fundamentals of
the original method, and describes a corresponding mod-
ification of a system for discriminant chronicles mining,
which has been developed three years ago to implement
the original method. Finally, an application of the gener-
alized method, using the modified system for discriminant
chronicles mining, to data from the growth of GaAs crys-
tals by vertical gradient freeze method is briefly sketched.

1 Introduction

This paper deals with data mining of crystal growth data,
obtained either experimentally or from simulations. Such
data records the crystal growth process, its performance,
and conditions in the melt, such as temperatures in various
control points or the power of heaters, or parameters of the
magnetic fields influencing melt convection [6, 7]. In par-
ticular, we consider the common situation that the perfor-
mance data indicates whether the crystal growth process
can be classified as satisfactory according to a given crite-
ria , e.g., according to the shape or position of the solid/liq-
uid interface. Hence, the primary data mining approach to
that data is the extraction of classification rules.

Although a plethora of methods for classification rules
extraction exist [10, 11], most of them cannot be used for
our data. The reason is that crystal growth proceeds se-
quentially, hence, the data is inheretly sequential. There-
fore, we have chosen a specific rules extraction method
extracting classification rules for the classification of se-
quences of events, which was proposed in [3]. It is called
“discriminant chronicles mining” because it was originally
developed for events described with attributes conveying a
temporal meaning. However, it cannot be directly applied
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to crystal growth data, due to the following two restric-
tions:

(i) The events in [3] are described with scalar values of
the temporal attribute. On the other hand, members of
sequences of crystal growth data, which we will for
simplicity also call events, are described with vectors
of attribute values.

(ii) The temporal attribute describing events in [3] has a
finite number of values, thus it can be represented
by a finite subset of integers. On the other hand,
attributes describing events in sequences of crystal
growth data are real-valued.

Therefore, we have extended the method from [3] to
sequences of events described by real-valued vector at-
tributes. This extension is the main contribution of the
paper.

The next section briefly recalls the original method pro-
posed in [3]. Its extension removing the restrictions i and ii
above is described in Section 3. Finally, an application of
the proposed method to crystal growth data is sketched in
Section 4.

2 Classification Rules Extraction with
Discriminant Chronicles

Let E be a finite set, the elements of which are called event
types, and let T be an arbitrary subset of the extended reals,
T⊂ R̄. For a multiset of m event types, the rather unusual
notation {{e1, . . . ,em}} has been introduced in [3], and a
couple (e, t) ∈ E×T is called event.

Assume further that some ordering is imposed to the
event types in the application domain. In [3], where tem-
poral relationships are investigated, a total ordering corre-
sponding to their order of occurrence is considered. For
the rules extraction method proposed in Section 3), how-
ever, the weaker concept of a partial ordering ≺ will be
sufficient, with a semantics tailored to a partiucular appli-
cation (see Section 4 for the real-world application con-
sidered in this paper). For e1,e2 ∈ E, t−, t+ ∈ R̄ such
that e1 ≺ e2, t− ≤ t+, a temporal constraint is a tuple
(e1,e2, t−, t+), also denoted e1[t−, t+]e2. The semantics
of such a temporal constraint is as follows: the difference
between the timestamps t2 of an event (e2, t2) of type e2



and the timestamp t1 of an event (e2, t2) of type e2 ful-
fills t− ≤ t2− t1 ≤ t+. A temporal constraint e1[t−, t+]e2
is called satisfied by a couple of events ((e, t),(e′, t ′)) if
e1 = e,e2 = e′ and t ′− t ∈ [t−, t+]. Because constraining
two events to occur in a fixed interval duration is too strict
for most applications, the simpliest way to represent tem-
poral constraints is by using duration intervals. These in-
tervals can be interpreted as two constraints defining the
lowest and highest accepted duration, respectively.

Using a set E of event types and a set T of tempo-
ral constraints, two complementary concepts can be intro-
duced:
(i) If we are interested in finding events that pairwise

satisfy a given set T of temporal contraints, then
the concept of a simple temporal constraint network
[12], alternatively called simple temporal problem [4]
is useful, which can be defined as the triple

(E,≺,T ), whereT is a set of temporal constraints
e[l,u]e′,such that e,e′ ∈ E,e≺ e′. (1)

(ii) If we are interested in mining temporal constraints
from given sequences of events, then the concept of a
chronicle [3, 9] is useful, which can be defined as the
couple

(E ,T ), where E = {{e1, . . . ,em}},ei ∈ E and
T is a set of temporal constraints e[l,u]e′ such that
(∃i, j = 1, . . . ,m)i 6= j & ei≺ e j & e= ei & e′= e j}.

(2)

A chronicle is a temporal extension of episodes or
partial orders introduced in [8], a type of pattern ded-
icated to summarize sequential data. Chronicles have
proven their usefulness in applications where the tem-
poral dimension is mandatory to differentiate two dif-
ferent behaviors. The first application of them is on
alarm log data in [5] where the temporal distance be-
tween two alarm events is very important.
Observe that the constraint e[−∞,∞]e′ holds for any
e,e′ ∈ E, meaning that this constraint actually does
not constrain anything. In case that no constraint
from T constrains anything, the set T will be de-
noted T∞. Hence, (E ,T∞) is a chronicle for the set of
temporal constraints T∞ of which, it is only required:

(∃i, j = 1, . . . ,m)i 6= j & ei ≺ e j & e = ei & e′ = e j.
(3)

Because the research reported in this paper concerns
data mining, it relies on the latter concept, as well as on
several additional concepts concerning chronicles.

Let m,n ∈ N,2 ≤ m ≤ n,C = ({{e1, . . . ,em}},T ) be a
chronicle and s = ((e1, t1), . . . ,(en, tn)),n ≥ 2, be a se-
quence of events. An occurence of C in s is a subsequence
s̃ = ((e f (1), t f (1)), . . . ,(e f (m), t f (m))) of s such that:
(i) f : m̂→ n̂ is an injective function;

(ii) e′i = e f (i), i = 1, . . . ,m;
(iii) if i 6= j and e′i ≺ e′j, then t f ( j)− t f (i) ∈ [a,b], where

e′i[a,b]e
′
j ∈T .

We say that C occurs in s if there exists at least one
occurrence of C in s.

Let further S be a set of sequences. The support of a
chronicle C in S is the number of sequences from S in
which it occurs:

supp(C,S) = #{s ∈ S|C occurs in s}. (4)

If

supp(C,S)≥ σmin (5)

for a given σmin > 0 or equivalently

supp(C,S)
#S

≥ fmin (6)

for a given fmin = σmin
#S , then C is called frequent in S on

the level fmin.
Finally, let S+ and S− be two disjoint sets of sequences.

The growth rate of C for S+ with respect to S− is defined:

g(C,S) =

{
supp(C,S+)
supp(C,S−) if supp(C,S−)> 0

+∞ if supp(C,S−) = 0.
(7)

If C is frequent and g(C,S) ≥ gmin for a given minimal
growth rate gmin ≥ 1, then C is called discriminant for S+

with respect to S− on the level gmin.
The sequence sets S+ and S− can be viewed as two

classes of their union S = S+ ∪ S−. Hence, the algo-
rithm DCM for discriminant chronicles mining presented
in [3] is actually a sophisticated algorithm for extraction of
classification rules. Before searching frequent chronicles
satisfying some temporal constraints, it searches frequent
chronicles with the set of temporal constraints T∞, which
is equivalent to the extraction of classification rules with-
out temporal constraints. To this end, any rules extraction
algorithm can be used. In the implementation of DCM in
[3], the algorithm Ripper, based on the minimal descrition
length principle, [2] has been employed.

3 Proposed Rules Extraction Method

3.1 Discriminant Multi-dimensional Chronicles

Let d,n ∈ N,d,n ≥ 2. For a set E of event types
with a partial ordering ≺, T ⊂ R̄d and a label set L =
{+,−}, an event is a couple (e, t), where e ∈ E, t ∈ T
and a labelled sequence of events is defined as a tuple
(SID,(e1, t1), . . . ,(en, tn),L), where SID ∈N is a sequence
index, unique among all considered labelled sequences of
events, (e1, t1), . . . ,(en, tn) are events, and L ∈ L.

Let ~a = (a1, . . . ,ad),~b = (b1, . . . ,bd),~c = (c1, . . . ,cd) ∈
Rd

, with bi ≥ ai, i = 1, . . . ,d, and R(~a,~b) = [a1,b1]×



[a2,b2]× . . .× [ad ,bd ]. The relation ~c ⊂= R(~a,~b) ⇐⇒
∀ i ∈ d̂ : ci ∈ [ai,bi] will be called hyperrectangle test.
A hyperrectangle constraint is a tuple (e1,e2,~t1,~t2), also
denoted as e1[[~t1,~t2]]e2 where e1,e2 ∈ E and ~t1,~t2 ∈ R̄d .
A hyperrectangle constraint e1[[~t1,~t2]]e2 is said to be sat-
isfied by a couple of events ((e,~t),(e′,~t ′)) if and only if
e = e1 & e′ = e2 &~t ′−~t ⊂= R(~t1,~t2).

A multi-dimensional chronicle is a couple (E ,T ) such
that E = {{e1,e2, . . . ,en}}, ei ∈ E, i ∈ n̂ is a multiset
of event types and T =m{e1[[~t1,~t2]]e2|e1,e2∈E ,e1≺ e2}
is a set of hyperrectangle constraints. If in particular all its
constraints are e[[(−∞, . . . ,−∞),(∞, . . . ,∞)]]e′, i.e., they
don’t constraint anything, then this T is again denoted
T∞:

T∞ = {e[[(−∞, . . . ,−∞),(∞, . . . ,∞)]]e′|
(∃i, j ∈ m̂) i 6= j & ei ≺ e j & e = ei & e′ = e j}. (8)

Let s = ((e1,~t1), . . . ,(en,~tn)) be a sequence of events,
m ∈ n̂ and C = (E = {{e′1,e′2, . . . ,e′m}},T ) be a multi-
dimensional chronicle. An occurrence of the multi-
dimensional chronicle C in s is a subsequence s̃ =
((e f (1),~t f (1)),(e f (2),~t f (2)), . . . ,(e f (m),~t f (m))), such that f :
m̂ 7−→ n̂ is an injective function, ∀i : e′i = e f (i), and if i 6= j,
then~t f ( j)−~t f (i) ⊂= R(~a,~b) where e′i[[~a,~b]]e

′
j ∈T . A multi-

dimensional chronicle C is said to occur in sequence s if
there exists at least one occurrence of C in s.

The support of a multi-dimensional chronicle C in a se-
quence set S is again defined by 2 like for chronicles in
Section 2. Finally, also the definition of frequent chroni-
cles and chronicles discriminant for one set of sequences
with respect to another transfers to multi-dimensional
chronicles.

3.2 Discriminant Multi-dimensional Chronicles
Mining

The DCM-MD algorithm illustrated in Listing 1 is a modi-
fication of the DCM algorithm for discriminant chronicles
mining proposed in [3]. The main aspects of the modifi-
cation are the data model (substituting scalar integer val-
ues for vectors of real numbers) and a new discriminant
hyperrectangle constraints mining algorithm (a substitu-
tion of an algorithm used for discriminant temporal con-
straints mining proposed in [3]). It operates with multi-
dimensional input data and multi-dimensional chroni-
cles, mining an incomplete set of discriminant multi-
dimensional chronicles, determined by user-supplied ar-
gument values fmin (in the pseudocode as fmin) and gmin
(in the pseudocode as gmin).

The branching statement in Listing 1 containing the
condition

supp(S+,{m,tinf}) > (gmin*supp(S-,{m,tinf}))

is used to check whether given frequent multiset without
further specific hyperrectangle constraints is discriminant

(in the pseudocode, T∞ is represented by the tinf sym-
bol). If the given condition is true, no discriminant tem-
poral constraints are mined using the extractDC(...)
function.

DCM-MD(S+, S-, fmin, gmin):
M := extractMultiSet(S+,fmin). // M is a set of

// frequent multisets
C := emptySet(). // C is a set of resulting

// discriminant multi-dimensional
// chronicles

for (m of M):
if supp(S+,{m,tinf}) > (gmin * supp(S-,{m,tinf})):
C.add({m,tinf}). // adds a discriminant chronicle

// without temporal constraints
else:
for t of extractDC(S+,S-,m,fmin,gmin):
C.add({m,t}). // adds a discriminant chronicle

// with temporal constraints

return C.

Listing 1: DCM-MD pseudocode

The extractMultiSet(...) function extracts a set
of frequent multisets from a given sequence set and user-
supplied minimal support threshold ( fmin). It applies a reg-
ular frequent itemset mining algorithm where an event
type a ∈ E occurring n times in a sequence is encoded
by n items Ia

1 , I
a
2 , . . . , I

a
n . An intermediate frequent itemset

of size m denoted as (Iek
ik
)1≤k≤m is extracted from the sup-

plied sequence set and is further transformed into the re-
sulting multiset. The last phase of the algorithm incorpo-
rates converting each frequent itemset (Iek

ik
)1≤k≤m to a mul-

tiset containing mutually different events ek,k = 1, . . . ,m,
each of them exactly ik times.

The extractDC(...) function is used to mine dis-
criminant hyperrectangle constraints from a given frequent
multiset E = {{a1,a2, . . . ,an}}, disjoint sequence sets S+

and S−, and with user-defined parameters fmin and gmin.
Exact conceptual and implementation details regarding the
extraction of discriminant hyperrectangle constraints are
further elaborated in [1].

4 Application to Crystal Growth Data

The need for affordable high quality semiconducting crys-
tals such as gallium arsenide GaAs is continuously in-
creasing, particularly for the electronic and photovoltaic
applications. Despite GaAs has a number of outstanding
physical properties, its production is hampered by chal-
lenging processes control due to high melting tempera-
tures (1238◦C) and chemically-aggressive environment.
Particularly in-situ measurements of the process variables
(e.g. temperatures, velocities, concentrations etc.) in the
GaAs have high contamination potential and lead to the
low crystal quality. Moreover, in-situ visual observations
of the crystal growth are not possible. Prediction of the po-
sition of the crystallization front, i.e. length of the grown
crystal after usage of certain growth recipe (i.e. temporal



profiles of a power of heaters) is a key information for the
process monitoring.

Here, we considered Vertical Growth Freeze (VGF)
method for the growth of GaAs crystals. VGF growth
method involves the progressive freezing of the lower end
of a melt upward by moving the desired temperature gra-
dient in a furnace via temporal change of heating power.
1-dimensional model of VGF-GaAs growth is shown in
Figure 1.

4.1 Used Data

The above described implementation extending the me-
thod proposed in [3] has been applied to data gathered in
the German Research Foundation (DFG) project “Model-
based control and regulation of the VGF crystal growth
process using distributed parametric methods”. The data
records the position of the solid/liquid interface of GaAs
crystals grown by the vertical gradient freeze (VGF) me-
thod, which involves progressive freezing of the lower end
of a melt upward by moving the temperature gradient in
a furnace, together with the evolution of temperatures in
0th–4th quarter of the GaAs height. They have been ob-
tained by solving the inverse problem for a simplified one
dimensional model of the VGF process for different de-
sired growth rates as described in [7], using as input the
evolution of 2-dimensional vectors describing the heat flux
in and heat flux out (Figure 1). All simulations were per-
formed for 100 times, among which the 5th, 10th, . . . ,
95th, 100th time will in the following serve as milestone
times.

For an application of the method presented in Section 3,
event types and events have been defined as follows. The
2-dimensional inputs of the 500 numeric simulations un-
derlying [7] have been clustered into k = 20 clusters using
the Matlab implementation of the standard k-means clus-
tering algorithm. The centers of the resulting clusters are
listed in Table 1. An event type is now the fact that the
input belongs to a particular cluster. For each numeric
simulation, an event type is recorded at every milestone
time. Consequently, the size of any multiset of event types
from one numeric simulation is at most 20. . An event
is a pair (e,T ), where e is an event type and T ∈ R5 is a
vector of temperatures obtained in the numeric simulation
and at the milestone time when e was recorded, provided
the position of the solid/liquid interface at the end of that
simuation was at least 17.25 cm. There were 255 such
simulations available, thus we have 255 event sequences
of length 20, due to the 20 milestone times. They were
divided into two disjoint sequence sets as follows:

S+ = {((e1,T1), . . . ,(e20,T20)|ei,Ti, i = 1, . . . ,20,
originated in a simulation ending with the position

of the solid/liquid interface >25 cm)} (9)

Table 1: Centers c of the 20 clusters in R2 defining event
types. They were obtained through clustering the first
500 numeric simulations underlying [7] using the k-means
algorithm in Matlab

Cluster c1 c2 Cluster c1 c2
A 13400 8560 K 14300 8720
B 12300 8690 L 11900 8650
C 15200 8840 M 12700 8660
D 13900 8590 N 12100 8670
E 13600 8730 O 13100 8720
F 14900 8800 P 13700 8550
G 13200 8570 Q 14100 8710
H 12900 8590 R 13300 8730
I 13800 8740 S 14600 8760
J 12500 8680 T 12900 8720

S− = {((e1,T1), . . . ,(e20,T20)|ei,Ti, i = 1, . . . ,20,
originated in a simulation ending with the position

of the solid/liquid interface 17.25–25 cm)} (10)

As to the number of sequences in both sets, #S+ =
90,#S− = 165.

Finally, the considered partial ordering≺ of event types
is given by the order of ocurrence of events of those types
in any of the event sequencesin S+ or in S−, i.e.,

e≺ e′ iff (∃((e1,T1), . . . ,(e20,T20) ∈ S+∪S−)

(∃i, j = 1, . . . ,20) i < j & = ei & e′ = e j. (11)

4.2 Experimental Setup

The experimental setup aimed at a chronicle set contain-
ing about 20-30 elements and including both chronicles
discriminant for S+ with respect to S− and chronicles
discriminant for S− with respect to S+. Each chroni-
cle (E ,T ) ∈ C should contain only a minimal number
of T∞ constraints.

Assume that C = (E ,T ) is a chronicle, C is a set
of chronicles and ts ∈ [0,1]. Chronicle specificity denoted
as s(C) is defined as:

s(C) =
#{e[[t, t ′]]e′ ∈T |e[[t, t ′]]e′ 6∈T∞}

#T
.

Chronicle set C specific for a specificity threshold ts de-
noted as s(C, ts) is defined as s(C, ts)= {C|C∈C& s(C)≥
ts}.

The metrics used for evaluating the convenience of pa-
rameters passed to the DC-PBC component are described
in the rest of this paragraph. #M is the size of the set of fre-
quent multisets set as introduced in the pseudocode of the
DCM-MD algorithm in Listing 1. #E is the count of dis-
tinct frequent multisets which occurred in some discrimi-



Figure 1: Illustration explaining the used crystal growth data

nant chronicle of the resulting chronicle set C:

#E= #{E |(∃T – a set of
hyperrecrtangle constraints)(E ,T ) ∈ C}.

maxs(C) = max{s(C)|C ∈ C} is the maximal speci-
ficity value found among the chronicles in C. #s(C, ts)
is the count of chronicles specific for ts found in C.

The following parameters were tuned: fmin imple-
mented by the --fmin parameter representing minimal
support threshold. gmin implemented by the --gmin pa-
rameter representing the minimal growth rate threshold
parameter of the DCM-MD algorithm as introduced in List-
ing 1. min(#E ) implemented by the --mincs param-
eter representing minimal chronicle event multiset size.
max(#E ) implemented by the --maxcs parameter repre-
senting maximal chronicle event multiset size. ts represent-
ing the specificity threshold for a custom tool implemented
for extracting specific discriminant chronicles from a set of
discriminant chronicles.

After evaluating the metrics for each parameter tun-
ing step, the argument values fmin = 0.1, gmin = 5000,
min(#E ) = 2, max(#E ) = 5, ts = 0.7 proved sufficient for
retrieving a set of specific discriminant chronicles with the
desired properties.

4.3 Examples of Extracted Rules

The implementation of generalized DC-PBC available
at github.com/busarade-itat/md-dc-pbc was in-

voked for the data described above with argument values
--mincs 2, --maxcs 5, --fmin 0.1, --gmin 5000.

The resulting set of discriminant chronicles was after-
wards filtered to include only specific discriminant chron-
icles. To this end, a tool chronicle_statgen available
at github.com/busarade-itat was invoked with argu-
ments --minspec 0.7, --vecsize 5.

The final result is presented in Tables 2 and 3, counting
a total of 26 specific discriminant chronicles – 18 of them
discriminant for S+ with respect to S−, the remaining 8
discriminant for S− with respect to S+.

Proposed method enables prediction of the conditions
for reaching targeted crystal length by following the dif-
ferences among segments in temporal profiles of temper-
atures in characteristic points in the GaAs. If the same
approach is further applied on the experimental tempera-
ture profiles measured by thermocouples in heaters (out-
side of the melt and crystal) as in real experiments, it will
be possible to determine moment of reaching desired crys-
tal length without visual observations and GaAs contami-
nation. From that moment on, crystal growth process step
terminates and cooling down of the furnace starts. Such
accurate prediction of the end of solidification step will be
very beneficial for the process economy and the final crys-
tal quality.

https://github.com/busarade-itat/md-dc-pbc
https://github.com/busarade-itat


Table 2: Resulting set of specific chronicles discriminant for S+ with respect to S−, rounded to 3 significant digits
E(C) T(C) supp(C,S+) supp(C,S−)

{{e1 = A,e2 = A,e3 = Q}} {e1[[(−∞,−∞,−∞,−∞,−∞),(−33.7,−51.3,−68.9,−86.7,−105)]]e2,
e1[[(−∞,−∞,−∞,−∞,−∞),(73.4,73.5,73.7,73.8,74.0)]]e3,
e2[[(−∞,−∞,−∞,−∞,−∞),(159,160,161,162,180)]]e3}

23 0

{{e1 = A,e2 = I,e3 = Q}} {e1[[(−∞,−∞,−∞,−∞,−∞),(15.5,17.9,18.0,18.1,18.2)]]e2,
e1[[(43.1,60.6,73.7,73.8,74.0),(∞,∞,∞,∞,∞)]]e3,
e2[[(−∞,−∞,−∞,−∞,−∞),(144,145,146,146,163)]]e3}

10 0

{{e1 = A,e2 = I,e3 = Q}} {e1[[(−∞,−∞,−∞,−∞,−∞),(36.9,37.0,37.1,37.1,37.2)]]e2,
e1[[(43.1,60.6,73.7,73.8,74.0),(∞,∞,∞,∞,∞)]]e3,
e2[[(−∞,−∞,−∞,−∞,−∞),(144,145,146,146,163)]]e3}

13 0

{{e1 = G,e2 = A,e3 = I}} {e1[[(−∞,−∞,−∞,−∞,−∞),(−128,−128,−129,−130,−130)]]e2,
e1[[(55.9,73.8,91.6,109,127),(∞,∞,∞,∞,∞)]]e3,
e2[[(398,412,414,416,418),(∞,∞,∞,∞,∞)]]e3}

13 0

{{e1 = G,e2 = A,e3 = I}} {e1[[(−∞,−∞,−∞,−∞,−∞),(−374,−376,−378,−380,−382)]]e2,
e1[[(−∞,−∞,−∞,−∞,−∞),(88.6,107,125,144,162)]]e3,
e2[[(398,412,414,416,418),(∞,∞,∞,∞,∞)]]e3}

13 0

{{e1 = G,e2 = A,e3 = Q}} {e1[[(139,140,141,142,142),(∞,∞,∞,∞,∞)]]e2,
e1[[(−∞,−∞,−∞,−∞,−∞),(249,268,287,306,325)]]e3,
e2[[(43.5,61.3,73.7,73.8,74.0),(∞,∞,∞,∞,∞)]]e3}

9 0

{{e1 = G,e2 = I,e3 = Q}} {e1[[(104,117,134,151,163),(∞,∞,∞,∞,∞)]]e2,
e1[[(−∞,−∞,−∞,−∞,−∞),(189,205,222,239,256)]]e3,
e2[[(−60.4,−60.5,−60.6,−60.7,−60.8),(∞,∞,∞,∞,∞)]]e3}

18 0

{{e1 = G,e2 = Q,e3 = Q}} {e1[[(−∞,−∞,−∞,−∞,−∞),(249,267,286,305,324)]]e2,
e1[[(60.4,78.3,96.3,114,132),(∞,∞,∞,∞,∞)]]e3,
e2[[(−32.5,−32.5,−32.6,−32.7,−32.7),(−31.8,−31.8,−31.9,−32.0,−32.0)]]e3}

14 0

{{e1 = A,e2 = A}} {e1[[(−135,−135,−136,−137,−137),(−127,−128,−128,−129,−130)]]e2} 38 0

{{e1 = A,e2 = I}} {e1[[(431,451,470,490,510),(∞,∞,∞,∞,∞)]]e2} 12 0

{{e1 = A,e2 = K}} {e1[[(286,305,324,343,362),(∞,∞,∞,∞,∞)]]e2} 30 0

{{e1 = A,e2 = Q}} {e1[[(372,391,411,430,449),(∞,∞,∞,∞,∞)]]e2} 21 0

{{e1 = G,e2 = A}} {e1[[(−∞,−∞,−∞,−∞,−∞),(−375,−377,−379,−381,−383)]]e2} 16 0

{{e1 = G,e2 = G}} {e1[[(−124,−125,−125,−126,−127),(−122,−123,−123,−124,−124)]]e2} 8 0

{{e1 = G,e2 = K}} {e1[[(26.5,43.7,44.6,44.8,45.1),(161,180,198,217,236)]]e2} 17 0

{{e1 = I,e2 = K}} {e1[[(72.5,72.7,72.8,73.0,73.1),(137,144,162,180,198)]]e2} 12 0

{{e1 = I,e2 = Q}} {e1[[(68.6,68.8,68.9,69.1,69.2),(69.0,69.1,69.3,69.4,69.5)]]e2} 7 0

{{e1 = Q,e2 = K}} {e1[[(−27.3,−27.4,−27.4,−27.5,−27.5),(∞,∞,∞,∞,∞)]]e2} 72 0

Table 3: Resulting set of specific chronicles discriminant for S− with respect to S+, rounded to 3 significant digits
E(C) T(C) supp(C,S+) supp(C,S−)

{{e1 = G,e2 = I,e3 = Q}} {e1[[(−∞,−∞,−∞,−∞,−∞),(80.3,80.5,80.6,80.7,80.9)]]e2,
e1[[(−∞,−∞,−∞,−∞,−∞),(50.2,50.2,50.3,50.4,50.5)]]e3,
e2[[(−∞,−∞,−∞,−∞,−∞),(67.4,67.5,67.6,77.0,93.3)]]e3}

0 19

{{e1 = A,e2 = Q}} {e1[[(12.1,12.1,12.1,12.1,12.1),(13.6,13.6,13.6,13.6,13.7)]]e2} 0 13

{{e1 = G,e2 = A}} {e1[[(316,333,351,368,385),(∞,∞,∞,∞,∞)]]e2} 0 16

{{e1 = G,e2 = G}} {e1[[(−121,−122,−122,−123,−123),(∞,∞,∞,∞,∞)]]e2} 0 39

{{e1 = G,e2 = I}} {e1[[(318,334,351,367,384),(∞,∞,∞,∞,∞)]]e2} 0 31

{{e1 = G,e2 = Q}} {e1[[(393,411,429,447,465),(∞,∞,∞,∞,∞)]]e2} 0 18

{{e1 = I,e2 = I}} {e1[[(−30.9,−31.0,−31.0,−31.1,−31.1),(∞,∞,∞,∞,∞)]]e2} 0 37

{{e1 = Q,e2 = Q}} {e1[[(−30.8,−30.8,−30.9,−31.0,−31.0),(−30.1,−30.2,−30.2,−30.3,−30.3)]]e2} 0 14



5 Conclusion

The paper has presented a generalization of the method
for discriminant chronicles mining proposed in [3]. This
generalization has been motivated by the objective to ex-
tract classification rules from crystal growth data, bring-
ing two additional problems not pertaining to the data to
which the original method had been applied: the events
are described with a vector of attributes instead of a sin-
gle scalar attribute, and the attributes are real-valued in-
stead of integer-valued. The theoretical fundamentals of
the method in [3] have been extended to tackle those two
problems and the system for discriminant chronicles min-
ing based on [3] has been adapted to accomodate those
extensions, together with some additional implementation
improvements such as refactoring. As a proof of concept
of the presented generalization, it has been applied, using
the modified system, to real-world data with events char-
acterizing the heat fluxes for the growth of GaAs crystals
by vertical gradient freeze method, and with a vector of 5
attributes recording the temperatures in different heights.
Although most of the hyperrectangles in Tables 2 and 3 are
not very restrictive, the extracted classification rules nev-
ertheless show that the proposed approach allows to as-
sess whether the grown crystal will have a desired length
based solely on the temperature profiles. Regarding fu-
ture research, it would be interesting to assess how small
changes to the mined hyperrectangle constraints affect the
manufacturing process of the VGF-GaAs crystals.

Acknowledgement

The research reported in this paper has been supported by
the Czech Science Foundation (GAČR) grant 18-18080S.
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