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Abstract
A (𝑘, 𝑔)-graph Γ, 𝑘 ≥ 2, 𝑔 ≥ 3, is 𝑘-regular of girth 𝑔. We refer to the complete set of possible orders of connected
(𝑘, 𝑔)-graphs for each pair of parameters (𝑘, 𝑔) as the spectrum of orders of (𝑘, 𝑔)-graphs; or the (𝑘, 𝑔)-spectrum. The
smallest member of the (𝑘, 𝑔)-spectrum is the order 𝑛(𝑘, 𝑔) of a smallest (𝑘, 𝑔)-graph; called a (𝑘, 𝑔)-cage. Determining
the complete spectrum of orders of connected (𝑘, 𝑔)-graphs for a specific pair (𝑘, 𝑔) is extremely difficult as it requires
(among other things) determining the cage order 𝑛(𝑘, 𝑔), which is a notoriously hard problem. This paper provides an
algorithmic approach for producing (𝑘, 𝑔)-graphs of larger orders from smaller (𝑘, 𝑔)-graphs in a manner allowing for
repeated applications. We use this approach to determine/estimate the smallest member 𝑁(𝑘, 𝑔) of a (𝑘, 𝑔)-spectrum having
the property that starting from 𝑁(𝑘, 𝑔) all (even; in case of odd 𝑘) 𝑛 ≥ 𝑁(𝑘, 𝑔) belong to the (𝑘, 𝑔)-spectrum; i.e., for all
(even) 𝑛 ≥ 𝑁(𝑘, 𝑔), there exists a (𝑘, 𝑔)-graph of order 𝑛.
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1. Introduction
The girth of a (finite) graph Γ is the length of a smallest
cycle in Γ; we will always assume that our graphs contain
at least some cycles and are connected; they are not trees
or forests. A (𝑘, 𝑔)-graph Γ, 𝑘 ≥ 2, 𝑔 ≥ 3, is a connected
𝑘-regular of girth 𝑔. A (𝑘, 𝑔)-graph Γ of minimum order
𝑛(𝑘, 𝑔) is called a (𝑘, 𝑔)-cage, and the problem of finding
the (𝑘, 𝑔)-cages and establishing their orders is called the
Cage Problem. It is well known that for any given pair of
parameters (𝑘, 𝑔), there are infinitely many connected
(𝑘, 𝑔)-graphs [1], which results in an infinite set of orders
of (𝑘, 𝑔)-graphs for each pair (𝑘, 𝑔). More precisely, the
results obtained in [1] not only establish the existence
of a (𝑘, 𝑔)-graph of order ≤ 4

∑︀𝑔−2
𝑡=1 (𝑘 − 1)𝑡, for every

𝑘 ≥ 2, 𝑔 ≥ 3, but assert the fact that (𝑘, 𝑔)-graphs exist
for all larger orders as well (for all even larger orders in
case of odd 𝑘). Unfortunately, the arguments used in [1]
are probabilistic and non-constructive.

The complete set of orders of connected (𝑘, 𝑔)-graphs
for a pair of parameters (𝑘, 𝑔) will be referred to as the
spectrum of orders of (𝑘, 𝑔)-graphs; or the (𝑘, 𝑔)-spectrum.
Clearly, the smallest element in the (𝑘, 𝑔)-spectrum for
a specific pair 𝑘, 𝑔 is the order 𝑛(𝑘, 𝑔) of the (𝑘, 𝑔)-cage,
and any member of the (𝑘, 𝑔)-spectrum is the order of
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some connected (𝑘, 𝑔)-graph. Furthermore, in view of
the results in [1], each (𝑘, 𝑔)-spectrum contains a small-
est positive integer 𝑁(𝑘, 𝑔) such that all (even, in case of
odd 𝑘) integers 𝑛 ≥ 𝑁(𝑘, 𝑔) are contained in the spectrum.
It is important to note that the number𝑁(𝑘, 𝑔) is not nec-
essarily equal to the order 𝑛(𝑘, 𝑔) of a cage. Specifically,
it is well-known that while 𝑛(3, 8) = 30, there exists no
(3, 8)-graph of order 32, and thus 𝑁(3, 8) ≥ 34 [3].

The problem of determining the entire (𝑘, 𝑔)-spectra
for specific parameter pairs (𝑘, 𝑔) was probably for the
first time earnestly approached in [3]. Since the prob-
lem of determining the cage orders 𝑛(𝑘, 𝑔) is already
famously difficult (and solved only for limited sets of
parameter pairs), it is clear that one cannot reasonably
expect to establish the (𝑘, 𝑔)-spectra for all pairs (𝑘, 𝑔).
For example, the results obtained in [3] include the de-
termination of the (𝑘, 𝑔)-spectra for the pairs (2, 𝑔) for
𝑔 ≥ 3, and (𝑘, 3) and (𝑘, 4) for 𝑘 ≥ 3.

In determining the complete spectra of orders of (𝑘, 𝑔)-
graphs, one usually starts from a Moore graph or a cage
and proceeds to construct larger (𝑘, 𝑔)-graphs using var-
ious construction methods. These methods include exci-
sion/addition methods (removal/addition of vertices or
edges), voltage graph construction, and others; combined
with extensive computer searches. The methods used in
[3] include a recursive construction approach based on
adding vertices generalizing one of the constructions
used in [4] for constructing two (3, 5)-graphs of order
12 from the Petersen graph (shown in Figure 1 and 2).

Since the method described in [4] used for constructing
two (3, 5)-graphs of order 12 from the Petersen graph
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is also the basis of most of the methods presented in
here, we include brief descriptions of the constructions.
It is interesting to point out that the two constructed
(3, 5)-graphs of order 12 are the only (3, 5)-graphs of
this order.

The first (3, 5)-graph of order 12 (seen in Figure 1)
was constructed from the Petersen graph by selecting a 6-
cycle (depicted by vertices 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6), delet-
ing the three red edges, and adding two vertices of degree
3 to the 6 vertices of the original 6-cycle. By attaching
each of the two vertices to one of the end-points of each
of the remaining 3 edges of the original 6-cycle, a (3, 5)-
graph of order 12, which contains no cycle of length less
than 5 is obtained (see Figure 1).

Figure 1: (3, 5)-Graph of order 12 (right) obtained from the
Petersen graph (left)

The second (3, 5)-graph of order 12 (seen in Figure
2) was again constructed from the Petersen graph by
selecting a 6-cycle (depicted in red), choosing any two
opposing edges of the 6-cycle, subdividing them via in-
troducing a new vertex to each of the selected edges and
thereafter joining the two new vertices via an edge.

Figure 2: (3, 5)-Graph of order 12 (right) obtained from the
Petersen graph (left)

Since determining the entire spectrum of orders of
(𝑘, 𝑔)-graphs for a specific pair (𝑘, 𝑔) would also mean
determining the cage order 𝑛(𝑘, 𝑔), instead of attempt-
ing to determine the entire spectra, we focus on finding
(upper bounds on) the numbers 𝑁(𝑘, 𝑔) for specific pa-
rameter pairs (𝑘, 𝑔). Our approach is algorithmic in the
sense that we try to design methods that produce larger
(𝑘, 𝑔)-graphs from smaller (𝑘, 𝑔)-graphs in a manner al-
lowing for repeated application.

The paper is organized as follows: Section 2 contains
some basic additive properties of (𝑘, 𝑔)-spectra, Section
3 introduces constructions based on adding vertices us-

ing cycles, and in Section 4 we summarize the usage of
the results and constructions of Sections 2 and 3 in an
algorithmic way.

2. Additive Properties of
(𝑘, 𝑔)-Spectra

In this section, we present recursive techniques for build-
ing series of (𝑘, 𝑔)-graphs from a given starting (𝑘, 𝑔)-
graph that will provide us with a better understanding
of the properties of the (𝑘, 𝑔)-spectra.

We begin by introducing a simple construction that
will allow us to combine existing (𝑘, 𝑔)-graphs into a
larger (𝑘, 𝑔)-graph.

Lemma 1. Assume that 𝑘 ≥ 3, 𝑔 ≥ 3, and let Γ1,Γ2

be two (𝑘, 𝑔)-graphs of orders 𝑚 and 𝑛, respectively, with
the additional property that at least one of the two graphs
contains an edge not contained in a 𝑔-cycle or contains two
distinct 𝑔-cycles that differ in at least one edge. Then there
exists a (𝑘, 𝑔)-graph Γ of order 𝑚+ 𝑛.

Proof. Without loss of generality, we may assume that
Γ1 contains an edge not contained in a 𝑔-cycle or or con-
tains two distinct 𝑔-cycles that differ in at least one edge.
In the first case, let 𝑢𝑣 be an edge of Γ1 that is not con-
tained in a 𝑔-cycle, and in the second case, let 𝑢𝑣 be any
edge of Γ1 contained in at most one of the two distinct
𝑔-cycles. Further, let 𝑢′𝑣′ be any edge of Γ2. Construct Γ
to be the graph with vertex set 𝑉 (Γ1)∪𝑉 (Γ2) and edge
set 𝑉 (Γ1) ∪ 𝑉 (Γ2) minus the selected edges 𝑢𝑣, 𝑢′𝑣′,
which are replaced by the edges 𝑢𝑣′ and 𝑢′𝑣. Clearly,
Γ is a 𝑘-regular graph, and to prove the theorem, we
just need to prove that the girth of Γ is 𝑔. Because of
our choice of the edge 𝑢𝑣, it is easy to see that Γ con-
tains at least one 𝑔-cycle (originally contained in Γ1).
Thus, to finish the proof, we need to show that Γ does
not contain cycles shorter than 𝑔. Suppose, by means
of contradiction, that Γ does contain a cycle 𝒞 of length
smaller than 𝑔. Since both graphs Γ1 and Γ2 are of girth
𝑔, any such cycle must contain both of the added edges
𝑢𝑣′, 𝑢′𝑣, and must be of the form 𝑢, 𝑣′, 𝑢2

1, 𝑢
2
2, . . . , 𝑢

2
𝑟 =

𝑢′, 𝑣, 𝑢1
1, 𝑢

1
2, . . . , 𝑢

1
𝑠 = 𝑢, with any two consecutive ver-

tices adjacent, and the vertices with superscript 𝑖 con-
tained in Γ𝑖. To obtain the desired contradiction, note
that the vertices 𝑢, 𝑣, 𝑢1

1, 𝑢
1
2, . . . , 𝑢

1
𝑠 = 𝑢 necessarily

form a cycle in Γ1; which is of girth 𝑔. Hence, 𝑠+1 ≥ 𝑔,
and by a symmetric argument, 𝑟 + 1 ≥ 𝑔 as well. It fol-
lows that the length of 𝒞 is at least 2𝑔 + 2 which clearly
contradicts the assumption that 𝒞 is of length smaller
than 𝑔.

Corollary 2. Let 𝑘 ≥ 3 and 𝑔 ≥ 3. The (𝑘, 𝑔)-spectrum
contains all positive integral multiples of 𝑛(𝑘, 𝑔).



Proof. Since 𝑘 ≥ 3 and 𝑔 ≥ 3, it is easy to see that
𝑛(𝑘, 𝑔) > 𝑔 + 1, and therefore any (𝑘, 𝑔)-graph must
either contain an edge that does not belong to any 𝑔-cycle
or contains two distinct 𝑔-cycles. Let Γ1 be a (𝑘, 𝑔)-cage
of order 𝑛(𝑘, 𝑔). Since the order of Γ1 is 𝑛(𝑘, 𝑔), Γ1

either contains an edge that does not belong to any 𝑔-
cycle or it contains two distinct cycles. Thus, based on
Lemma 1, it can be used to construct a sequenceΓ𝑖, 𝑖 ∈ N,
defined recursively via constructing Γ𝑖+1 by combining
Γ1 and Γ𝑖, for all 𝑖 ≥ 2. Due to Lemma 1, all the graphs
Γ𝑖 are (𝑘, 𝑔)-graphs of orders 𝑖 · 𝑛(𝑘, 𝑔), 𝑖 ∈ N.

Corollary 3. Let 𝑘 ≥ 3 and 𝑔 ≥ 3.
If 𝑘 is even and there exists an 𝑁 such that all the con-

secutive integers 𝑁,𝑁 + 1, 𝑁 + 2, . . . , 𝑁 + 𝑛(𝑘, 𝑔)− 1
belong to the (𝑘, 𝑔)-spectrum, then all 𝑛 ≥ 𝑁 belong to
this spectrum, and 𝑁 ≥ 𝑁(𝑘, 𝑔).

If 𝑘 is odd and there exists an even 𝑁 such that all
the consecutive even integers 𝑁,𝑁 + 2, 𝑁 + 4, . . . , 𝑁 +
𝑛(𝑘, 𝑔) − 2 belong to the (𝑘, 𝑔)-spectrum, then all even
𝑛 ≥ 𝑁 belong to this spectrum, and 𝑁 ≥ 𝑁(𝑘, 𝑔).

Proof. In case of even 𝑘, all the graphs Γ𝑖 constructed
in the proof of Corollary 2 either contain an edge that
does not belong to any 𝑔-cycle or contain two distinct
𝑔-cycles. Since 𝑁,𝑁 + 1, 𝑁 + 2, . . . , 𝑁 + 𝑛(𝑘, 𝑔)− 1
belong to the (𝑘, 𝑔)-spectrum, there exist (𝑘, 𝑔)-graphs
Δ𝑗 , 𝑁 ≤ 𝑗 ≤ 𝑁 +𝑛(𝑘, 𝑔)− 1, of orders 𝑁,𝑁 +1, 𝑁 +
2, . . . , 𝑁 + 𝑛(𝑘, 𝑔) − 1, respectively. Using Lemma 1
to combine the graphs Δ𝑗 with the graphs Γ𝑖 yields the
desired family of (𝑘, 𝑔)-graphs whose orders cover all
positive integers greater than or equal to 𝑁 .

If 𝑘 is odd, the order of any (𝑘, 𝑔)-graph is even, while
the rest of the proof follows essentially along the same
line as the case of even 𝑘.

3. Adding Vertices Using Cycles
In this section, we introduce recursive constructions of
(𝑘, 𝑔)-graphs assuming the existence of an additional
cycle of certain length greater than 𝑔 in the starting graph.
We first illustrate our approach by (re)determining the
order spectrum of the (3, 5)-graphs (already achieved in
[3]).

Lemma 4. Let Γ be a (3, 5)-graph of order 𝑛 containing
a 6-cycle. Then there exists a (3, 5)-graph of order 𝑛+ 2
that also contains a 6-cycle.

Proof. Let 𝒞 be a 6-cycle in Γ consisting of the ver-
tices 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, with any two consecutive
vertices adjacent. To construct the (3, 5) graph Γ*

from Γ, remove the three edges 𝑢2𝑢3, 𝑢4𝑢5, and
𝑢6𝑢1, and add two new vertices 𝑣1, 𝑣2 together with
six new edges 𝑢2𝑣1, 𝑢4𝑣1, 𝑢6𝑣1, 𝑢1𝑣2, 𝑢3𝑣2 and 𝑢5𝑣2.

Clearly, Γ* is 3-regular, and contains a 6-cycle, e.g.,
𝑣1, 𝑢6, 𝑢5, 𝑣2, 𝑢3, 𝑢4, 𝑣1. It remains to prove that Γ*

does not contain cycles shorter than 5. To see that, note
first that since the girth of Γ is 5, and the vertices 𝑢2, 𝑢3

are adjacent in Γ, after removing their shared edge, they
must be of distance at least 4 (as otherwise we would
have a 3- or a 4-cycle in Γ). As no path between these
two vertices of length shorter than 3 has been added into
Γ*, it is easy to see that the distance between 𝑢2 and
𝑢3 in Γ* is still at least 3. The same is true for the pairs
𝑢4, 𝑢5 and 𝑢6, 𝑢1, and even more importantly, the length
of any path between any two neighbors of 𝑣1 not using
𝑣1 is at least 3, as their distance in Γ was originally 2.
The same holds for any two neighbors of 𝑣2. By means
of contradiction, assume now that Γ* contains a cycle of
length shorter than 5. Any such cycle must contain at
least one of the new vertices 𝑣1, 𝑣2. Should such cycle
contain both vertices 𝑣1 and 𝑣2, since they are of distance
3, it would have to be at least a 6-cycle. If it contained just
one of them, it would also have to contain its neighbors,
but any two neighbors of any of the vertices 𝑣1, 𝑣2 are
of distance at least 3 and hence the length of such cycle
would have to be at least 5. Hence, Γ* contains no cycles
shorter than 5 and the proof is complete.

Corollary 5. The spectrum of orders of (3, 5)-graphs is
the set of all even integers greater than or equal to 10.

Proof. Start with the Petersen graph. It contains a 6-cycle
(see, for example, the outer 6-cycle in Figure 1). Add the
vertices 𝑣1, 𝑣2 and the six new edges as described in
Lemma 4. Choose one of the two new 6-cycles, and note
that it only contains two of the three original edges of
the 6-cycle in the Petersen, and so no further change of
the selected 6-cycle will affect the fact that the third edge
originally contained in the 6-cycle of the Petersen graph
is (and will remain) contained in a 5-cycle. By always
adding new vertices to 6-cycles added in the previous
step, we will construct an infinite sequence of (3, 5)-
graphs (all containing at least one 5-cycle and at least
one 6-cycle) of orders 10, 12, 14, 16, . . ..

Interestingly, even though the above construction can-
not be used in case of (3, 6)-graphs as it may occasionally
create a 5-cycle, there are cases where applying the con-
struction to a specific 6-cycle in a (3, 6)-graph of order
𝑛 yields a (3, 6)-graph of order 𝑛 + 2. One such case
appears when one attaches two vertices to a 6-cycle in
the Heawood graph. See Figure 3.

Although the construction described in Lemma 4 can
be generalized into infinitely many new (similar) lemmas,
we only introduce two such generalizations. The reason
for not trying to present all such lemmas is the fact that
in general we do not have such a convenient starting
point as is the Petersen graph in Corollary 5, and hence



Figure 3: Example of (3, 6)-Graph of order 16 (right) obtained
from the Heawood graph (left)

we cannot use the forthcoming lemmas to obtain results
of similar strength to those of Corollary 5. Even though
these lemmas do allow one to add two vertices to an
existing (3, 𝑔)- or (4, 𝑔)-graph in a way resulting in a
larger (3, 𝑔)- or (4, 𝑔)-graph, finding graphs satisfying
the required properties is hard, and one does not have
any guarantee that the process of adding two vertices
can be recursively repeated. Therefore, these lemmas
are best seen as starting points for computer assisted
constructions.

Lemma 6. Let 𝑔 ≥ 8 be even, and let Γ be a (3, 𝑔)-graph
of order 𝑛 containing a cycle 𝒞 of length at least ( 3𝑔

2
− 3)

which contains edges 𝑢1𝑢2, 𝑢3𝑢4, and 𝑢5𝑢6 such that
the distances between the pair of vertices 𝑢1, 𝑢6, the pair
of vertices 𝑢2, 𝑢3 and the pair of vertices 𝑢4, 𝑢5 in Γ are
at least 𝑔

2
− 2 and the distances between any two of the

vertices𝑢1, 𝑢3, 𝑢5 and the distances between any two of the
vertices 𝑢2, 𝑢4, 𝑢6 in the graph Γ−𝑢1𝑢2 −𝑢3𝑢4 −𝑢5𝑢6

(Γ with three edges removed) are at least 𝑔−2. In addition,
let Γ contain at least one 𝑔-cycle that does not contain
any of the edges 𝑢1𝑢2, 𝑢3𝑢4, or 𝑢5𝑢6. Then there exists a
(3, 𝑔)-graph Γ* of order 𝑛+ 2.

Proof. As stated already, this lemma is an analogue of
Lemma 4. Let 𝒞 be a cycle in Γ of length at least ( 3𝑔

2
−3),

and let 𝑢1𝑢2, 𝑢3𝑢4 and 𝑢5𝑢6 be edges of 𝒞 with the
properties described in the lemma. The desired graph Γ*

can then be constructed from Γ by removing the edges
𝑢1𝑢2, 𝑢3𝑢4 and 𝑢5𝑢6, and adding new vertices 𝑣1 and
𝑣2 with 𝑣1 adjacent to the vertices 𝑢1, 𝑢3 and 𝑢5 and
𝑣2 adjacent to the vertices 𝑢2, 𝑢4 and 𝑢6 (in the same
manner as in the proof of Lemma 4). We leave it to the
reader to verify that since Γ is of girth 𝑔, Γ* contains no
cycles shorter than 𝑔 and contains at least one 𝑔-cycle
(the 𝑔-cycle not containing the three removed edges).

We feel obliged to note here that the existence of the

desired ( 3𝑔
2

− 3) cycle in a (3, 𝑔)-cage is not guaran-
teed. For example, if the Tutte-Coxeter graph, the (3, 8)-
cage of order 30, contained cycles with the properties
described in Lemma 6, it would imply the existence of
a (3, 8)-graph of order 32. However, as already pointed
out in the Introduction, it is well known that no such
graph exists.

In particular, since the Tutte-Coxeter graph is the
point-line incidence graph of a generalized quadrangle of
order 2, it is bipartite, and therefore contains no 9-cycles,
while the minimal length of the cycle 𝒞 required in the
lemma is at least ( 3·8

2
− 3) = 9. On the other hand, the

existence of a (3, 8)-graph of order 34 containing a 9-
cycle of the desired properties would yield a (3, 8)-graph
of order 36 and might be the beginning of the continuous
part of the (3, 8)-spectrum (i.e., it might be the case that
𝑁(3, 8) = 34). At this point, we have not yet determined
whether such graph on 34 vertices exists.

We conclude the section with one more analogue of
Lemma 4.

Lemma 7. Let 𝑔 ≥ 8 be even, and let Γ be a (4, 𝑔)-graph
of order 𝑛 containing a cycle 𝒞 of length at least (2𝑔 − 2)
which contains edges 𝑢1𝑢2, 𝑢3𝑢4, 𝑢5𝑢6, and 𝑢7𝑢8 such
that the distances between the pair of vertices 𝑢1, 𝑢8, the
pair of vertices 𝑢2, 𝑢3, the pair of vertices 𝑢4, 𝑢5 and the
pair of vertices 𝑢6, 𝑢7 in Γ are at least 𝑔

2
− 2 and the dis-

tances between any two of the vertices 𝑢1, 𝑢3, 𝑢5, 𝑢7 and
the distances between any two of the vertices 𝑢2, 𝑢4, 𝑢6, 𝑢8

in the graph Γ− 𝑢1𝑢2 − 𝑢3𝑢4 − 𝑢5𝑢6 − 𝑢7𝑢8 (Γ with
four edges removed) are at least 𝑔 − 2. In addition, let Γ
contain at least one 𝑔-cycle that does not contain any of
the edges 𝑢1𝑢2, 𝑢3𝑢4, 𝑢5𝑢6, or 𝑢7𝑢8. Then there exists a
(4, 𝑔)-graph Γ* of order 𝑛+ 2.

Proof. We leave it to the reader to verify that the graph
Γ* constructed from Γ described in the lemma via the
removal of the edges 𝑢1𝑢2, 𝑢3𝑢4, 𝑢5𝑢6, 𝑢7𝑢8, and
adding vertices 𝑣1, 𝑣2 adjacent to 𝑢1, 𝑢3, 𝑢5, 𝑢7 and
𝑢2, 𝑢4, 𝑢6, 𝑢8 respectively, is a (4, 𝑔)-graph.

4. Algorithmic Approach to
Determining the (𝑘, 𝑔)-Spectra

Let us begin the section by combining the approaches
introduced in Sections 2 and 3. Recall that for any pair
of positive integers 𝑚 and 𝑛, the gcd(𝑚,𝑛) is a sum
of integral multiples of 𝑚 and 𝑛, and moreover, there
exists an integer 𝑁 such that all integral multiples of
gcd(𝑚,𝑛) greater than or equal to 𝑁 · gcd(𝑚,𝑛) are
sums of positive integral multiples of 𝑚 and 𝑛. Hence,
in case of even 𝑘 and any 𝑔 ≥ 3, the existence of (𝑘, 𝑔)-
graphs of relatively prime orders 𝑚 and 𝑛 yields, via
using Lemma 1, the existence of 𝑁(𝑘, 𝑔) as defined in



the Introduction (and proved to exist in [1]). Similarly,
in case of odd 𝑘 and any 𝑔 ≥ 3, the existence of (𝑘, 𝑔)-
graphs of orders 2𝑚 and 2𝑛, with 𝑚 and 𝑛 relatively
prime, yields by Lemma 1 the existence of 𝑁(𝑘, 𝑔) again.

Since gcd(𝑛, 𝑛+1) = 1 and gcd(2𝑛, 2𝑛+2) = 2, Sec-
tion 3 provides one with the possibility of constructing
consecutive pairs of even orders yielding the existence
of 𝑁(𝑘, 𝑔). The only drawback of using the lemmas con-
tained in Section 3 is the requirement of using graphs con-
taining the specific cycles of length greater than 𝑔. Since
no universal constructions of such graphs are known,
one has to rely on computer searches.

In this section, we present an algorithm for searching
for graphs described in the previous sections. We imple-
mented our algorithm (Algorithm 1) in the system for
discrete computational algebra - GAP version 4.12.2 and
used two packages: DIGRAPHS and GRAPE.

The input for our algorithm is the graph object from
GRAPE package. In a for-cycle, we go through all com-
binations of three edges, which we will later remove.
We store the edges in a removedEdges variable. The
names of vertices of those edges are saved in variable
verticesToReconnect as we will need their names
to connect them with the new two vertices. In the
next step we remove the edges in removedEdges with
the function RemoveEdges() and obtain a new graph
object (graphWithoutEdges). Then, we add the two
new vertices with AddVertices(), which returns a
graph object (graphWithVertices). To obtain all pos-
sible cubic graphs in this iteration through combina-
tions of edges, we connect the two new vertices with
vertices in verticesToReconnect with the function
ConnectVertices(). The functions RemoveEdges()
, AddVertices() and ConnectVertices() use com-
mands from the DIGRAPHS package. We store all graphs
with the same girth as the original graph in variable
graphsWithCorrectGirth. If the list of graphs with
required girth is not empty, we check for isomorphic
graphs and keep only non isomorphic ones. The function
returns a list of non isomorphic graphs with the excess 2.

Using Algorithm 1, starting from the Petersen graph,
we found 2 graphs with two additional vertices, 8 graphs
with four additional vertices, and 48 graphs with six
additional vertices. Starting from the McGee graph, we
found 1 graph with one additional vertex, 1 graph with
four additional vertices, and 6 graphs with six additional
vertices. For the (3, 11)-cage, we found 2 graphs with
two additional vertices.

5. Conclusion
In conclusion, let us point out that the above computer
implementation of our algorithms has been developed in
parallel and somewhat independently of our theoretical
results. That did not leave enough time for us to take full

Algorithm 1 Remove3EdgesAdd2Vertices(graph)
for all combinations of 3 edges as 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝐸𝑑𝑔𝑒𝑠
do

verticesToReconnect = Flat(removedEdges)
graphWithoutEdges = RemoveEdges(graph, re-
movedEdges)
graphWithVertices = AddVer-
tices(graphWithoutEdges, 2)
possibleGraphs = ConnectVer-
tices(graphWithVertices, verticesToReconnect)

graphsWithCorrectGirth = Check-
Girth(possibleGraphs, Girth(graph))
if graphsWithCorrectGirth not empty then

newGraphs = GetUnisomorphic-
Graphs(graphsWithCorrectGirth)

end if
end for
return newGraphs

advantage of these programs. Thus the above summary
of results obtained using our programs should be seen as
just examples of the use of our techniques. For example,
as stated in the previous section, in order to obtain a
characterization of the order spectrum of (3, 8)-graphs,
we would need to find a smallest (3, 8)-graph containing
a 9-cycle (which must be of order at least 34). As this
does not seem to be out of reach, a more persistent use
of these programs might eventually lead to new results.
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