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1 Introduction

The mixture theory has many interesting applications. Let us give an incom-
plete list of them:

• modelling biological systems,

• designing and interpreting electrophoresis experiments,

• designing chemical reactors,

• optimizing fuel cells

At least some of these processes are assumed to be fitted to incompressible
model. Contrary to works [Rou06], [Rou05], [Rou07] and [Gla07] we would
rather assume the incompressibility only for the whole mixture. The main
problem is that incompressibility should not be confused with volume ad-
ditivity hypothesis. Let us for example consider water and sugar. We will
agree that both are incompressible substances. Still while mixing the mixture
gets “compressed”. However, once mixed, the mixture may be considered as
incompressible again. Very important role in modelling of the mixture be-
havior plays the electric potential. In biological cells may the electric field
attain intensity 10-100 MV/m. During the electrophoresis may the electric
field cause almost full separation of components.

The model proposed here is based on so called Eckart-Prigogine princi-
ple (see [Pri47] and [Eck40]) introducing barycentric velocity. This principle
allows us to avoid any in principle unmeasurable quantities which rational
thermodynamics cannot avoid. New approach of beyond equilibrium ther-
modynamics is also refered. Mathematical treatment of models with density
non-constant in space is more difficulty and techniques used in [Gla07] to
get convergence of semi-implicit method. The most important difficulty is
obtaining maximum principle. The maximum principles cannot be obtained
on discrete systems but also cannot be obtained aposteriori on fully coupled
equations due to insufficient regularity of density.

2 Deduction of the model

In this section we try to deduce a model of incompressible ionized mixtures
which is mathematically treatable but still captures several physical phenom-
ena. Main improvement in comparison with [Rou06] is removing volume-
additivity hypothesis and the assumption that all species in the mixtures
have the same specific densities. For the sake of simplicity we assume that
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the density of i-th species ρi
the velocity of i-th species vi
the reaction rates vector r
the density ρ
the barycentric velocity v
the vector of mass fractions c
the diffusion flux ji
the free energy ψ
the electrochemical potential µi
the matrix of transport coefficients M ,Λc

the diffusion matrix D
the electro-mobility vector m
the diffusion coefficient Di

the specific charge zi
the trajectory χ
the stress tensor T

the pressure p
the electric potential φ
the stress tensor T

the viscosity ν
the charge density ρq
the permittivity ε
the activity ai
the time step τ
the regularization parameter ε
the test function ϕ
the domain Ω
the time interval I
the time-space cylinder Q = I × Ω
the boundary of the domain times the time interval Σ = I × ∂Ω

Table 1: the nomenclature
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all functions in the model are C∞ . This assumption is quite usual even
when deriving balance equations for single component fluid but may be re-
laxed. For relaxation of the smoothness assumption in single component case
see [Fei03]. The procedure used here suffers several problems that are also
listed. The last but not least goal of this section is to relate the model to
other models used in the literature.

Let us derive the model. First we formulate the continuity equation for
every species:

∂ρi
∂t

+ div(ρivi) = ri (2.1)

Here we denoted by vi the velocity of the species, ρi the density of the species
in the mixture and ri the reaction rate. Let us note that we have that∑L

i=1 ri = 0 by conservation of mass in reactions. In rational thermodynamics
we would proceed by formulating other balance equations for each species (for
this approach see for example [TT60]). Here we proceed by using the concept
of barycentric velocity going back to the work of Eckart and Prigogine. We
introduce the following notation:

• ρ =
∑L

i=1 ρi is the density of the whole mixture,

• ci = ρi
ρ

is the mass fraction of i-th species,

• v =
∑L

i=1 civi is the barycentric velocity,

• ji = ρivi − ρv is the diffusion flux.

From definition we see that
∑L

i=1 ji = 0. By summing the equations (2.1) we
get the the usual continuity equation

∂ρ

∂t
+ div(ρv) = 0 . (2.2)

We shall also rewrite the equation (2.1) to get rid of vi

∂ρci
∂t

+ div(ρciv − ji) = ri . (2.3)

Our main goal is now to find a constitutive equation for ji. We choose it
here as

ji =
L∑
j=1

Mij∇µj .

The quantity µj is the electrochemical potential and is defined as the deriva-
tive of free energy ψ with respect to ci. However, from mathematical point
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of view the electrochemical potentials are not good functions to work with
because it is hard to get some estimates on them. We shall now assume that
ψ = ψ(c, φ) and use the chain rule. We obtain

ji =
L∑
j=1

Mij
∂2ψ

∂c2
j

∇cj +
L∑
j=1

Mij
∂2ψ

∂ci∂φ
∇φ . (2.4)

To simplify the notation we define

Dij = Mij
∂2ψ

∂c2
j

(2.5)

and

mi =
L∑
j=1

Mij
∂2ψ

∂ci∂φ
(2.6)

The matrix M can be chosen according to [dG80] or [GNS04] as

Mij = Dici

(
δij −

Djcj∑L
k=1 Dkck

)

where Di is the diffusion coefficient according to i-th species. Denoting zi
specific charge of i-th species and q =

∑L
i=1 zici we may write a constitutive

relation

ψ(c) =
L∑
i=1

Kci log ci + qφ . (2.7)

Using this relation we deduce

Dij = KDi

(
δij −

Djcj∑L
k=1Dkck

)

and

mi = KDici

(
zi −

∑L
k=1Dkzkck∑L
k=1Dkck

)
.

The incompressibility and the momentum balance we formulate for the
mixture as whole. For deriving of incompressibility condition we define χ(t, x)
by equation

∂χ(t, x)

∂t
= v(t, χ(t, x)) , χ(0, x) = x . (2.8)
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In one component fluid moving by velocity v this has the meaning of change
of variables into Lagrangian coordinates. Incompressibility condition says
that volume is preserved by flow, ie.∫

K

dx =

∫
χ(t,K)

dx =

∫
K

det∇χ(t, x)dx

The condition is equivalent to the condition det∇χ(t, x) = 1. Taking the
time derivative

0 =
∂ det∇χ(t, x)

∂t
= div v det∇χ(t, x)

we conclude that div v = 0. The momentum balance is expressed by well
known Navier-Stokes equation driven by the Lorentz force on the right hand
side.

∂t(ρv) + div(ρv ⊗ v − T) +∇p = ρq∇φ

The last relation we need is the equation for the electric potential. Full
Maxwell equations here reduce to a Poisson equation

−ε∆φ = ρq .

The resulting system is

∂t(ρv) + div(ρv ⊗ v − T) +∇p = ρq∇φ , div v = 0 ,

(2.9a)

∂tρ+ div(ρv) = 0 , (2.9b)

∂tρci + div

(
ρvci −

L∑
j=1

Dij(c)∇cj −mi(c)∇φ

)
= ri(c) , (2.9c)

− div(ε∇φ) = ρq , (2.9d)

where q = c · z is the charge, z are specific charges of constituents and

T = 2ν(c)Dv (2.9e)

is the stress tensor. The boundary conditions are:

v = 0 , (2.9f)

(D(c)∇c+m(c)∇φ)n = 0 , (2.9g)

∂φ

∂n
= (φ− φΣ) (2.9h)
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and the initial conditions are

ρ(0) = ρ0 , (2.9i)

v(0) = v0 , (2.9j)

c(0) = c0 . (2.9k)

Once derived the model let us discuss the relation of the models and other
model used in chemistry. Chemists tend to use another type of variables –
analytic concentrations defined as number of moles divided by volume or
activities. However, models using analytical concentrations are equivalent
to the model described here by the formula ρi = Mic̃i where c̃i are analyt-
ical concentrations and Mi are molar weights. The activities are quantities
defined by formula

ψ(a, φ) =
L∑
i=1

Kai log ai + qφ . (2.10)

The relation between any type of concentrations and activities is a bit ob-
scure, in fact can be precisely written only in terms of implicit functions as
ψ(c, φ) = ψ(a(c), φ). For needs of numerical computations there exists some
approximate formulae defining c = c(a). The reason for introducing activi-
ties was discrepancy between constitutive relation (2.7) and real forms of free
energy. As we saw in (2.4) the form of the model is not affected by choice of
free energy and there is no need to introduce another experimentally hardly
measurable or even unmeasurable quantity called activity.

In chemistry one also often uses modelling assumptions of local chemical
equilibrium and electroneutrality. In mathematical language it means that
the mixture evolves in such way that

ri(c) = 0 and q(c) = 0 . (2.11)

The equations should be interpreted as nonlinear constraints replacing some
equations of (2.3). It is well known even among chemists that such equa-
tions admit non-unique solution, but this fact is quietly ignored as only one
solution is chemically admissible (for example in terms of pH). To the au-
thor’s knowledge the notion of chemical admissibility in not axiomatically
defined and depends only on chemist’s intuition. Our model could be the-
oretically constructed to preserve chemical equilibria and electroneutrality
but the analysis done in section 3 based on positive definiteness of matrix
D would fail. Chemical equilibrium and electroneutrality is in the general
case only description of some stationary state of the equation. We also may

10



give some precise meaning to the notion of chemical admissibility in terms of
stability of the stationary solution.

Let us in short mention other models appeared in literature. Very pop-
ular is the rational thermodynamics for mixtures introduced by [TT60] and
already mentioned here. In spite of their popularity these results in mixture
theory are not as nice as one would await. The best results to the authors
knowledge are [Sam07]. New and promising approach is beyond equilibrium
thermodynamics.Also interesting but mathematically untreatable is model
proposed in [EPM97]. This model replaces the condition

∑L
i=1 ji = 0 by the

the condition

div
L∑
i=1

ji = 0 (2.12)

and defines
ji = Dici∇(µi + p)

with p chosen such that (2.12) holds. It is shown [OE97] that the model is in
some situations more accurate our model with matrix computed in [dG80].
Our model can in compressible case arise also from Boltzmann equation as
shown in [Gio99]. Let us finish this excursion by noting that many more or
less rigorously derived models arise in studies of fuel cells. A good summary
of the models is in [WN04].

The deduchion suffers several problems. Let us look at some of them.
The first one is that the model assumes quietly that no separation of species
takes place. Formally this assumption is inserted in the assumption that vi
is defined on whole Ω. The more practical side of the problem is that if
separation of species takes place, the surface tension has to be considered.
One of possible solutions to such problem may be to introduce the free energy
in the form of ψ = ψ(ρ, c,∇c, φ) as was done in [AF07].

The assumption that the free energy is independent of the density also
is not too realistic. To illustrate this we recall formula for the pressure
compressible case p = ρ2 ∂ψ

∂ρ
. The main reason for omitting the dependency is

that∇ρ which would arise by the chain rule in (2.4) would be untreatable as
there is really no reason for density in weak formulation to be differentiable.

The last objection is against the meaning of χ from (2.8). In single com-
ponent fluid it has χ(·, x) the meaning of trajectory of a material point which
was initially in position x. This notion is at least controversial in mixtures
and we may wonder whether the characterisation of incompressibility by term
div v = 0 is really the thing we need. The only argument we have to advocate
characterising incompressibility by the condition div v = 0 is the fact that if
v ∈ C and div v = 0 we may solve the continuity equation by the function
ρ(t, χ(t, x)) = ρ(0, x) and observe that the fluid really do no get compressed.
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3 Existence proof

We will study the equations (2.9). The data qualification is:

• ν ∈ C1, 0 < νl ≤ ν(c) ≤ νu,

• D ∈ C∞, D positive definite on {x ∈ RL :
∑L

i=1 xi = 0},
∑L

i=1Dij = 0
and for ci ≤ 0 we have Dii(c) > 0 and Dij(c) = 0 for i 6= j,

• m ∈ C∞ and for ci ≤ 0 holds mi(c) = 0.

• r ∈ C bounded and for ci ≤ 0 we have ri(c) ≥ 0,

• ε > 0,

• φΣ ∈ L2 (∂Ω),

We will follow techniques developed by Abels and Feireisl in [AF07]. Con-
trary to the cited article this theses studies the incompressible case and cou-
pling with the electric potential but does not include any gradients in the
free energy. The Nernst-Planck equations are formulated and treated as in
[Rou06].

Now let us define, what a solution means.

Definition 3.1. As a weak solution to the system (2.9) we will call

• ρ ∈ L∞(I × Ω;R),

• v ∈ L2(I;W 1,2
div (Ω;R3)),

• c ∈ L2(I;W 1,2(Ω;RL) ,
∑L

i=1 ci = 1 , ci ≥ 0,

• φ ∈ L∞(I;W 1,2(Ω;RL)

satisfying

1. with every ϕ ∈ W 1,2 (Q), divϕ = 0, ϕ(T ) = 0∫
Q

ρv∂tϕ+ (ρv ⊗ v + T) : ∇ϕdxdt+

∫
Ω

ρ0v0ϕ(0)dx

=

∫
Q

ρq∇φϕdxdt

(3.1)
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2. ρ is a renormalized solution of continuity equation. This means that
for every ϕ ∈ C∞0 ((0, T )× Ω̄) and every b ∈ C0([0;∞)) bounded with

B(ρ) = B(1) +

∫ ρ

1

b(z)

z2
dz

satisfy ∫
Q

(ρB(ρ)∂tϕ+ ρB(ρ)v · ∇ϕ− b(ρ) div vϕ)dxdt = 0 (3.2)

3. the concentrations satisfy with every ϕ ∈ W 1,2 (Q), ϕ(T ) = 0∫
Q

ρci∂tϕ+ (ρciv +
L∑
j=1

Dij(c)∇cj +mi(c)∇φ) · ∇ϕdxdt∫
Ω

ρ(0)c(0)ϕ(0)dx = −
∫
Q

ri(c)ϕdxdt

(3.3)

4. with every ϕ ∈ L1 (I;W 1,2 (Ω))∫
Q

ε∇φ · ∇ϕdxdt+

∫
Σ

ε(φ− φΣ)ϕdxdt =

∫
Q

ρqϕdxdt (3.4)

Remarque 3.2. The concept of a renormalized solution of the continuity equa-
tion was introduced by DiPerna and Lions in their article [DL89].

For the proof of existence of such solution we will use four approximation
steps:

• regularization of the continuity equation by term ε∆ρ,

• time discretization by Roethe method,

• space discretization of Navier-Stokes and Poisson equations by Galerkin
method,

• decoupling into linear equations.

The proof is organized as follows:

1. The existence for regularized, discretized and decoupled equations is
proved.

2. We prove the maximum principle for continuity equation and the esti-
mates uniform in time.
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3. We use the Shauder’s fixed-point theorem to prove existence of solution
for regularized and discretized system.

4. The rest of apriori estimates are done.

5. The limit passage from discretization gives us the solution of regularized
system.

6. We pass to the limit from the approximation.

For the discretization in space we introduce two sequences of finite di-
mensional spaces

V n
0,div ⊂ C1

0,div (Ω) , V n ⊂ C1 (Ω)

which satisfy
⋃
n V

n
0,div

‖·‖W1,2(Ω) = W 1,2
0,div (Ω) and

⋃
n V

n
‖·‖W1,2(Ω) = W 1,2 (Ω).

For time discretization we introduce the sequence of timesteps τn → 0. We
assume that T

τn
= N(τn) ∈ N. For fixed sequences of spaces V n

0,div and V n the
terms of the sequence τn should be chosen small enough. The exact condition
will arise during the proof and in case of finite element discretization will have
the meaning of the stability condition. We also define retract

K(c)i =
c+
i∑L

j=1 c
+
j

First we approximate the continuity equation to be able to test by solu-
tions themselves. The approximated continuity equation is

∂tρε + div(ρεvε) = ε∆ρε .

The approximation also affects Navier-Stokes and Nernst-Planck equations

∂t(ρεvε) + ε∇ρε∇vε + div (ρvε ⊗ vε − T(cε,Dvε)) +∇pε = ρq(cε)∇φε ,
∂t(ρε(cε)i)− ε(cε)i∆ρε

+ div

(
ρεvε(cε)i −

L∑
j=1

Dij(cε)∇(cε)j −mi(cε)∇φε

)
= ri(cε) .

We also regularize the initial condition. More precisely we introduce sequence
ρ0,ε ∈ W 1,2 (Ω) such that ρ0,ε → ρ0 in L∞as ε → 0. In the limit passage
from the discretized system we will not be able to identify neither the term
ε∇ρε∇vε nor the term ε(cε)i∆ρ. However, the only information we need to
know about the terms in limit passage with ε→ 0 are the apriori estimates.
This motivates the following definition.
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Definition 3.3. As a solution to the approximated problem we will call

• vε, cε and φε as in definition 3.1,

• ρ ∈ L∞ (Q) ∩ L2 (I;W 1,2 (Ω)),

• f 1
ε , f

2
ε ∈ L1,

√
ε ‖f 1

ε ‖L1(Ω) +
√
ε ‖f 2

ε ‖L1(Ω) ≤ C

satisfying (3.4) and

−
∫
Q

ρε
∂ϕ

∂t
dxdt−

∫
Q

ρεvε∇ϕdxdt+ ε

∫
Q

∇ρε · ∇ϕdxdt =

∫
Ω

ρ0v0ϕ(0)dx ,

∫
Q

ρεvε∂tϕ+ (ρεvε ⊗ vε + T(cεDvε) : ∇ϕdxdt+ ε

∫
Q

f 1
εϕdxdt

=

∫
Ω

ρ0v0ϕ(0)dx−
∫
Q

ρεq(cε)∇φεϕdxdt ,

∫
Q

ρ(cε)i∂tϕdxdt

+

∫
Q

(ρ(cε)ivε +
L∑
j=1

Dij(cε)∇(cε)j +mi(cε)∇φε + ε(cε)i∇ρ) · ∇ϕdxdt

+

∫
Ω

εf 2
εϕdx−

∫
Ω

ρ(0)c(0)ϕ(0)dx =

∫
Q

ri(cε)ϕdxdt

with every ϕ ∈ C∞0
(
[0, T )× Ω

)
.

Next we discretize in time by implicit method. Because we need some
version of maximum principles, we should not discretize Nernst-Planck and
continuity equations in space. The other two equations we discretize also in
space to make them better treatable.

Definition 3.4. As a solution to discretized problem we will call

• ρkε,n ∈ W 1,2 (Ω),

• vkε,n ∈ V n
0,div,

• ckε,n ∈ (W 1,2 (Ω))L,
∑L

i=1(ck+1
ε,n )i = 1,

• φkε,n ∈ V n
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defined by relations:

ρ0
ε,n = ρ0,ε ,

v0
ε,n = PV n0,div

v0 ,

c0
ε,n = c0 ,

(3.5a)

∫
Ω

ε∇φ0
ε,n · ∇ϕ4dx−

∫
∂Ω

(φ0
ε,n − φΣ)ϕ4dx =

∫
Ω

ρ0
ε,nq(K(c0

ε,n))ϕ4dx , (3.5b)

∫
Ω

ρk+1
ε,n v

k+1
ε,n − ρkε,nvkε,n
τn

· ϕ1dx−
∫

Ω

ρk+1
ε,n v

k+1
ε,n ⊗ vk+1

ε,n · ∇ϕ1dx

+ ε

∫
Ω

∇ρk+1
ε,n · ∇vk+1

ε,n ϕ1dx

∫
Ω

T(K(cn+1
ε,n ),Dvn+1

ε,n ) · ∇ϕdx

=

∫
Ω

ρk+1
ε,n q(K(cn+1)ε,n)∇φn+1

ε,n · ϕ1dx ,

(3.5c)

∫
Ω

ρk+1
ε,n − ρkε,n
τn

ϕ2dx−
∫

Ω

ρk+1
ε,n v

k+1
ε,n · ∇ϕ2dx+ ε

∫
Ω

∇ρk+1
ε,n · ∇ϕ2dx = 0 ,

(3.5d)

∫
Ω

ρkε,n
(ck+1
ε,n )i − (ckε,n)i

τn
ϕ3dx+

∫
Ω

ρk+1
ε,n v

k+1
ε,n · ∇(ck+1

ε,n )iϕ3dx

+

∫
Ω

(Dij(K(ck+1
ε,n ))∇(ck+1

ε,n )j +mi(K(ck+1
ε,n ))∇φk+1

ε,n · ∇ϕ3dx

=

∫
Ω

ri(K(ck+1
ε,n ))ϕ3d ,

(3.5e)

∫
Ω

ε∇φk+1
ε,n · ∇ϕ4dx−

∫
∂Ω

ε(φk+1
ε,n − φΣ)ϕ4dx =

∫
Ω

ρk+1
ε,n q(K(ck+1

ε,n ))ϕ4dx

(3.5f)

for k = 0, . . . , N(τn)− 1 and every ϕ1 ∈ V n
0,div, ϕ2 ∈ W 1,2 (Ω), ϕ3 ∈ W 1,2 (Ω)

andϕ4 ∈ V n.

The existence of an approximated solution will be proved by Shauder’s
fixed-point theorem. In the practice of numerical computation, the coupling
will be done at each timestep separately before computing the next timestep.
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For purposes of the analysis we need some bounds uniform in time. For
simplicity of obtaining such bounds we first solve the decoupled equations
in all timesteps and then we couple them simultaneously in all timesteps.
This presents no further difficulty because for fixed τn there is only a finite
number of timesteps.

Definition 3.5. As a solution to the decoupled problem with“old”quantities
ṽ and c̃ we will call

• ρkε,n,ṽ,c̃ ∈ W 1,2 (Ω),

• vkε,n,ṽ,c̃ ∈ V n
0,div,

• ckε,n,ṽ,c̃ ∈ (W 1,2 (Ω))L,
∑L

i=1 ci = 1

• φkε,n,ṽ,c̃ ∈ V n

indexed by k = 0, . . . , N(τn) and satisfying

ρ0
ε,n,ṽ,c̃ = ρO,ε ,

v0
ε,n,ṽ,c̃ = PV n0,divv0 ,

c0
ε,n,ṽ,c̃ = c0 ,

(3.6a)

∫
Ω

ε∇φ0
ε,n,ṽ,c̃ · ∇ϕ4dx−

∫
∂Ω

(φ0
ε,n,ṽ,c̃ − φΣ)ϕ4dx =

∫
Ω

ρ0
ε,n,ṽ,c̃q(K(c̃0))ϕ4dx ,

(3.6b)

∫
Ω

ρk+1
ε,n,ṽ,c̃v

k+1
ε,n,ṽ,c̃ − ρkε,n,ṽ,c̃vkε,n,ṽ,c̃

τn
· ϕ1dx−

∫
Ω

ρk+1
ε,n,ṽ,c̃ṽ

k+1 ⊗ vk+1
ε,n,ṽ,c̃ · ∇ϕ1dx

+

∫
Ω

∇ρk+1
ε,n,ṽ,c̃ · ∇vk+1

ε,n,ṽ,c̃ϕ1dx+

∫
Ω

T(K(c̃k+1),Dvk+1
ε,n,ṽ,c̃) · ∇ϕdx

=

∫
Ω

ρk+1
ε,n,ṽ,c̃q(K(c̃k+1))∇φk+1

ε,n,ṽ,c̃ · ϕ1dx

(3.6c)

∫
Ω

ρk+1
ε,n,ṽ,c̃ − ρkε,n,c̃,ṽ

τn
ϕ2dx−

∫
Ω

ρk+1
ε,n,ṽ,c̃ṽ

k+1 · ∇ϕ2dx+

∫
Ω

∇ρk+1
ε,n,ṽ,c̃ · ∇ϕ2dx = 0

(3.6d)
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∫
Ω

ρkε,n,ṽ,c̃
(ck+1
ε,n,ṽ,c̃)i − (ckε,n,ṽ,c̃)i

τn
ϕ3dx+

∫
Ω

ρk+1
ε,n,ṽ,c̃v

k+1
ε,n,ṽ,c̃ · ∇(ck+1

ε,n,ṽ,c̃)iϕ3dx

+

∫
Ω

(Dij(K(c̃k+1))∇(ck+1
ε,n,ṽ,c̃)j +mi(K(c̃k+1))∇φk+1

ε,n,ṽ,c̃ · ∇ϕ3dx

=

∫
Ω

ri(K(c̃k+1))ϕ3dx

(3.6e)

∫
Ω

ε∇φk+1
ε,n,ṽ,c̃ · ∇ϕ4dx−

∫
∂Ω

(φk+1
ε,n,ṽ,c̃ − φΣ)ϕ4dx =

∫
Ω

ρk+1
ε,n,ṽ,c̃q(K(c̃k+1))ϕ4dx

(3.6f)

for k = 0, . . . , N(τn) and every ϕ1 ∈ V n
0,div, ϕ2 ∈ W 1,2 (Ω), ϕ3 ∈ W 1,2 (Ω) and

ϕ4 ∈ V n.

Lemma 3.6. Let supk
∥∥ṽk∥∥

V n
≤ K,

∑L
i=1(c0)i = 1 and ρm ≤ ρ0,ε ≤ ρM .

Then there exists τ̃(n, ε) depending on K and the choice of spaces V n
0,div and

V n. such that if τn ≤ τ̃(n) then there exists a solution to decoupled problem
as defined in definition 3.5.

Proof. We could prove the existence of solution by simple using the Lax-
Milgram lemma. However, by this way we would not obtain uniform bound
on ‖∇ρ‖L2(Ω) needed for estimate of τ̃(n). That why we prove the existence
using the Galerkin approximation. For the Galerkin approximation we need
finite dimensional spaces generated by eigenfunctions of the Laplace operator
to be able to test by ∆ρ. The existence of Galerkin approximations is done
by Lax-Milgramm lemma with bi-linear form

a1(ρ, ϕ2) =

∫
Ω

ρ

τ
ϕ2dx−

∫
Ω

ρṽ · ∇ϕ2dx+ ε

∫
Ω

∇ρ · ∇ϕ1dx

which satisfies

a1(ρ, ρ) ≥ 1

τ
‖ρ‖2

L2(Ω) + ε ‖∇ρ‖2
L2(Ω)

because of the computation∫
Ω

ρv · ∇ρdx =
1

2

∫
Ω

v · ∇ρ2dx = 0 .

The crucial estimate we need is obtained by testing the continuity equation
by ∆ρk+1 (we for sake of simplicity omit the other indices). The convective
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term will be handled in the following way∫
Ω

div(ρk+1ṽk+1)∆ρdx ≤ K ‖∇ρ‖L2(Ω)

∥∥∆ρk+1
∥∥
L2(Ω)

≤ ε

2

∥∥∆ρk+1
∥∥
L2(Ω)

+ CεK
2
∥∥∇ρk+1

∥∥2

L2(Ω)
.

We may conclude that

1

2τn
∥∥∇ρk+1

∥∥
L2(Ω)

+
1

2τn
∥∥∇(ρk+1 − ρk)

∥∥
L2(Ω)

+
ε

2
‖∆ρ‖L2(Ω)

≤ CεK
2
∥∥∇ρk+1

∥∥
L2(Ω)

+
1

2τn
∥∥∇ρk∥∥

L2(Ω)

Summing equations and using the discrete Gronwall inequality gives us that
there exists K1 independent of choice of τ < 1

2CεK2 such that
∥∥∇ρk∥∥

L2(Ω)
≤

K1 ‖∇ρ0,ε‖2
L2(Ω). For the Poisson equation we use the Lax-Milgram lemma

in a standard way. For the Navier-Stokes equations we shall use again the
Lax-Milgram lemma together with estimates∫

Ω

ρk+1
ε,n,ṽ,c̃v

τn
· vdx ≥ ρm

τn
‖v‖L2(Ω) ,

−
∫

Ω

ρk+1
ε,n,ṽ,c̃ṽ

k+1 ⊗ v · ∇vdx ≥ −ρMK ‖v‖L2(Ω) ‖∇v‖L2(Ω)

≥ −Cβρ2
MK

2 ‖v‖2
L2(Ω) −

β

2
‖∇v‖2

L2(Ω)

∫
Ω

T(K(c̃k+1),Dv) · ∇vdx ≥ β ‖∇v‖L2(Ω)

∫
Ω

∇ρk+1
ε,n,ṽ,c̃ · ∇vvdx ≥ −

∥∥∇ρk+1
ε,n,ṽ,c̃

∥∥
L2(Ω)

‖∇v‖L2(Ω) ‖v‖V n

≥ −Cβ
∥∥∇ρk+1

ε,n,ṽ,c̃

∥∥2

L2(Ω)
‖v‖2

L2(Ω) −
β

4
‖∇v‖L2(Ω)

where we have used the Korn’s inequality, the minimum principle for the
continuity equation (lemma 3.7) and equivalence of norms on finite dimen-
sional subspace. For satisfying assumptions of the Lax-Milgram lemma we
must choose

τ <
ρm

ρ2
MK

2Cβ + CβK1 ‖∇ρ0,ε‖2
L2(Ω)

≤ ρm

ρ2
MK

2cβ + Cβ
∥∥∇ρk+1

ε,n,ṽ,c̃

∥∥2

L2(Ω)

.
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The treatment of Nernst-Planck equation is more complicated. We first shall
prove that we are allowed to search the solution in form σ :=

∑L
i=1 ci = 1.

By summing all equations for concentrations we get an equation for σ∫
Ω

ρkε,n
σ − 1

τn
ϕ2dx+

∫
Ω

ρk+1
ε,n,ṽ,c̃∇σ · ṽϕ2dx .

We see that the equations admit the solution σ = 1. Now we use the Lax-
Milgramm lemma again. By the relation cL = 1 −

∑L−1
i=1 ci we introduce a

bi-linear form a2 : (Wm)L−1 × (Wm)L−1 → R by formula:

a2(c, ϕ) =
L∑
i=1

( ∫
Ω

ρkε,n
ci
τn
ϕidx+

∫
Ω

ρk+1
ε,n,c̃,ṽv

k+1
ε,n,c̃,ṽ · ∇ciϕidx

+

∫
Ω

(Dij(K(c̃k+1))∇cjdx
)

For the coercivity let us note the following estimates:

L∑
i=1

∫
Ω

ρkε,nṽ,c̃
ci
τn
cidx ≥

ρm
τn
‖c‖2

L2(Ω) ,

L∑
i=1

∫
Ω

ρk+1
ε,n,ṽ,c̃v

k+1
ε,n,ṽ,c̃dx ≥ −

∥∥vk+1
ε,n,ṽ,c̃

∥∥
V n
‖c‖L2(Ω) ‖∇c‖L2(Ω)

≥ −α
4
‖∇c‖2

L2(Ω) − CαK
2
2 ‖c‖

2
L2(Ω) ,

L∑
i=1

∫
Ω

Dij(K(c̃k+1))∇cj∇cidx ≥ α ‖∇c‖2
2

where for estimating the velocity in the convective term we used the lemma
3.8. For using Lax-Milgram lemma we need τ < ρm

CαK2
2
.

Lemma 3.7. Let ρm ≤ ρkε,n ≤ ρM and let ρk+1
ε,n,ṽ,c̃ ∈ W 1,2 (Ω) such that (3.6d)

holds. Moreover let div ṽ = 0. Then ρm ≤ ρk+1 ≤ ρM .

Proof. We rewrite the equation in form∫
Ω

(ρk+1
ε,n,ṽ,c̃ − ρm)− (ρkε,n,ṽ,c̃ − ρm)

τn
ϕ2dx−

∫
Ω

ρk+1
ε,n,ṽ,c̃ṽ

k+1 · ∇ϕ2dx

+ε

∫
Ω

∇(ρk+1
ε,n,ṽ,c̃ − ρm) · ∇ϕ2dx = 0
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and use (ρk+1
ε,n,ṽ,c̃ − ρm)− as a test-function. We get

1

τn
∥∥(ρk+1

ε,n,ṽ,c̃ − ρm)−
∥∥2

2
+
∥∥∇(ρk+1

ε,n,ṽ,c̃ − ρm)−
∥∥2

2
≤ 0 .

While getting the result we shall use that ρkε,n,ṽ,c̃ ≥ ρm and x− = min(x, 0) ≤ 0

to get
∫

Ω
− 1
τn

(ρkε,n,ṽ,c̃ − ρm)(ρk+1
ε,n,ṽ,c̃ − ρm)−dx ≥ 0 and∫

Ω

ṽk+1∇((ρk+1
ε,n,ṽ,c̃ − ρm)−)2dx =

∫
Ω

div ṽk+1((ρk+1
ε,n,ṽ,c̃ − ρm)−)2dx = 0 .

Lemma 3.8. For vk+1
ε,n,ṽ,c̃ and ck+1

ε,n,ṽ,c̃ from definition 3.5 we have∥∥vk+1
ε,n,ṽ,c̃

∥∥
V n

+
∥∥ck+1

ε,n,ṽ,c̃

∥∥
W 1,2(Ω)

≤ K2

where K2 is independent of choice of ṽ and c̃.

Proof. From the lemma 3.7 we have
∥∥ρk+1

ε,n,ṽ,c̃

∥∥
L∞(Ω)

≤ ρM and from the defi-

nition of the retract we conclude ‖K(c̃)‖L∞(Ω) ≤ 1. As a consequence we also

have ∇φk+1
ε,n,ṽ,c̃ uniformly bounded. Next we shall test the continuity equation

by 1
2

∣∣vk+1
ε,n,ṽ,c̃

∣∣2 and compute

ρk+1
ε,n,ṽ,c̃

∣∣vk+1
ε,n,ṽ,c̃

∣∣2 − ρkε,n ∣∣vk+1
ε,n,ṽ,c̃

∣∣2
2τ

=

2ρk+1
ε,n,ṽ,c̃

∣∣vk+1
ε,n,ṽ,c̃

∣∣2 − 2ρkε,nv
k
ε,n · vk+1

ε,n,ṽ,c̃ − ρk+1
ε,n,ṽ,c̃

∣∣vk+1
ε,n,ṽ,c̃

∣∣2 + ρkε,n
∣∣vkε,n∣∣2

2τn

−
ρkε,n

∣∣vk+1
ε,n,ṽ,c̃

∣∣2 − 2ρkε,nv
k
ε,n · vk+1

ε,n,ṽ,c̃ + ρkε,n
∣∣vkε,n∣∣2

2τn
=

2ρk+1
ε,n,ṽ,c̃

∣∣vk+1
ε,n,ṽ,c̃

∣∣2 − 2ρkε,nv
k
ε,n · vk+1

ε,n,ṽ,c̃

2τn

−
ρk+1
ε,n,ṽ,c̃

∣∣vk+1
ε,n,ṽ,c̃

∣∣2 − ρkε,n ∣∣vkε,n∣∣2 + ρk
∣∣vk+1
ε,n,ṽ,c̃ − vkε,n

∣∣2
2τn

So we have the following equality∫
Ω

ρk+1
ε,n,ṽ,c̃

∣∣vk+1
ε,n,ṽ,c̃

∣∣2 − ρkε,nvkε,n · vk+1
ε,n,ṽ,c̃

τn
+ (ρk+1

ε,n,ṽ,c̃v
k+1
ε,n,ṽ,c̃ ⊗ ṽ) · ∇vk+1

ε,n,ṽ,c̃

+ε∇ρk+1
ε,n,ṽ,c̃ · ∇vk+1

ε,n,ṽ,c̃v
k+1
ε,n,ṽ,c̃dx

=

∫
Ω

ρk+1
ε,n,ṽ,c̃

∣∣vk+1
ε,n,ṽ,c̃

∣∣2 − ρkε,n ∣∣vkε,n∣∣2 + ρkε,n
∣∣vk+1
ε,n,ṽ,c̃ − vkε,n

∣∣2
2τn

(3.7)
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Now we just test the Navier-Stokes equation by vk+1
ε,n,ṽ,c̃ and get

∫
Ω

ρk+1
ε,n,ṽ,c̃

∣∣vk+1
ε,n,ṽ,c̃

∣∣2 − ρkε,n ∣∣vkε,n∣∣2 + ρkε,n
∣∣vk+1
ε,n,ṽ,c̃ − vkε,n

∣∣2
2τn

+ T(c̃,Dvk+1)ε,n,ṽ,c̃ : ∇vk+1
ε,n,ṽ,c̃dx =

∫
Ω

ρq(K(c̃))∇φk+1
ε,n,ṽ,c̃ · vk+1

ε,n,ṽ,c̃dx

(3.8)

Using Hölder and discrete Gronwall inequalities concludes the statement
about vk+1

ε,n,ṽ,c̃. For the statement about ck+1
ε,n,ṽ,c̃ we use the same estimates

as while proving lemma 3.6.

Lemma 3.9. There exists τ̃(n) depending on choice of spaces V n, W n such
that if τn ≤ τ̃(n) there exists a solution to the discrete problem as defined in
definition 3.4.

Proof. We use Shauder fixed-point theorem. Using lemma 3.6 with K from
lemma 3.8 we define mapping F : BK ⊂ V m × L2 (Ω)2 → BK which to
(ṽ, c̃, ρ̃) assigns vk+1

ε,n,ṽ,c̃ and ck+1
ε,n,ṽ,c̃ solving the decoupled problem. As we know

from lemma 3.8, we also have ‖F(BK)‖V n×W 1,2(Ω) ≤ K and hence F(B) is
compact. The last thing we need to assure is continuity of F . Let (ṽm, c̃m)→
(ṽ, c̃). We will for simplicity define (vm, cm) := F(ṽm, c̃m). From the same
reason we abbreviate solutions of decoupled continuity equation as ρm and
solutions of decoupled Poisson equation as φm. From apriori bounds already
obtained we may choose subsequences such that

• vm → v in V n
0,div,

• cm ⇀ c weakly in W 1,2 (Ω),

• cm → c strongly in L2 (Ω),

• φm → φ strongly in V n,

• ρm ⇀∗ ρ weakly-* in L∞ (Ω),

• ρm ⇀ ρ in W 1,2 (Ω).

The obtained convergences are enough to converge in equations and obtain
continuity of of the mapping F .

Lemma 3.10. Let (ckε,n)i ≥ 0 almost everywhere and ck+1
ε,n from the definition

3.4. Then (ck+1
ε,n )i ≥ 0 almost everywhere.
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Proof. The proof of this goes in lines of proof of maximum principle for
elliptic partial differential equations done in the book [GT01]. As the theorem
8.1 of [GT01] is not directly applicable to our problem the proof will be
rewritten here. For the contradiction let us assume that m = essinfΩ(ck+1

ε,n )i <
0. Let us take arbitrary r ∈ (m, 0) and test the equation by ((ck+1

ε,n )i − r)−.
Some terms in the equation have the right sign sign and we may forget them:∫

Ω

−ρkε,n(ckε,n)i

τn
((ck+1

ε,n )i − r)−dx ≥ 0 ,

∫
Ω

mi(c
k+1
ε,n )∇φk+1

ε,n · ∇((ck+1
ε,n )i − r)−dx = 0 ,∫

Ω

ri(c
k+1
ε,n )((ck+1

ε,n )i − r)−dx ≤ 0 .

We may estimate the norm
∥∥(ck+1

ε,n − k)−i
∥∥
W 1,2(Ω)

: by the time derivative and

the diffusive term:∫
Ω

ρkε,n
(ck+1
ε,n )i

τ
((ck+1

ε,n )i − r)−dx

=

∫
Ω

ρkε,n
((ck+1

ε,n )i − r)−

τn
((ck+1

ε,n )i − r)−dx+

∫
Ω

ρkε,n
r

τn
((ck+1

ε,n )i − r)dx

≥ C
∥∥((ck+1

ε,n )i − r)−
∥∥
L2(Ω)

,

∫
Ω

L∑
j=1

(Dij(c
k+1
ε,n )∇(ck+1

ε,n )j)∇((ck+1
ε,n )i − r)−dx ≥ C

∥∥∇((ck+1
ε,n )i − r)−)

∥∥
L2(Ω)

.

Finally the only term for estimating is the convective term:∥∥((ck+1
ε,n )i − r)−

∥∥2

W 1,2(Ω)
≤ C

∫
Ω

ρk+1
ε,n v

k+1
ε,n · ∇(ck+1

ε,n )i((c
k+1
ε,n )i − r)−dx

≤
∫
∇((ck+1

ε,n )i−r)− 6=0

ρk+1
ε,n v

k+1
ε,n · ∇((ck+1

ε,n )i − r)−((ck+1
ε,n )i − r)−dx

≤ C1

∥∥(ck+1
ε,n )i − r)−

∥∥
L2({∇((ck+1

ε,n )i−r)− 6=0})

∥∥(ck+1
ε,n )i − r)−

∥∥
W 1,2(Ω)

.

Because
∥∥(ck+1

ε,n )i − r)−
∥∥
W 1,2(Ω)

6= 0 we may divide by it and get∥∥((ck+1
ε,n )i − r)−

∥∥
W 1,2(Ω)

≤ C
∥∥(ck+1

ε,n )i − r)−
∥∥
L2({∇((ck+1

ε,n )i−r)− 6=0})

≤
∣∣{∇((ck+1

ε,n )i − r)− 6= 0}
∣∣ ∥∥((ck+1

ε,n )i − r)−
∥∥
L2(Ω)
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and conclude that
∣∣{∇((ck+1

ε,n )i − r)− 6= 0}
∣∣ ≥ C independently of choice r.

This tells us that (ck+1
ε,n )i attains its maximum on set of nonzero measure. By

lemma 7.7 of [GT01] we have on this set ∇(ck+1
ε,n )i = 0. Now we arrive to

contradiction with fact that
∣∣{∇((ck+1

ε,n )i − r)− 6= 0}
∣∣ ≥ C if r → m.

Now we construct piecewise constant approximations of the solution. Now
let us define fn,ε(t) = fkε,n for t ∈ ((k − 1)τ ; kτ ], where f is selected from
ρ, v, c, φ. Moreover we need some notation: ∆+

τ f(t) = f(t + τ) − f(t),

∆−τ f(t) = f(t)−f(t−τ), Tτf(t) = f(t−τ), ∂±t,τf(t) = ∆±τ f(t)
τ

. We define also
ṽε,n, c̃ε,n, ρ̃vε,n and ρ̃cε,n as linear approximations of corresponding quantities.

Lemma 3.11. We have the following bounds:

• ‖ρε,n‖L∞(Q) + ε
1
2 ‖∇ρε,n‖L2(Q) ≤ C,

• ‖vε,n‖L∞(I;L2(Ω)) + ‖∇vε,n‖L2(Q) ≤ C,

• ‖cε,n‖L∞(Q) + ‖∇cε,n‖L2(Q) ≤ C,

• ‖φε,n‖L∞(I;W 1,2(Ω)) ≤ C,

• ‖c̃ε,n‖L∞(Q) + ‖c̃ε,n‖L2(I;W 1,2(Ω)) +
√
τ
∥∥∥∂c̃ε,n∂t

∥∥∥
L2(Q)

≤ C,

• ‖ ˜vε,n‖L∞(∞;L2(Q)) + ‖ṽε,n‖L2(I;W 1,2(Ω)) +
√
τ
∥∥∥∂ṽε,n∂t

∥∥∥
L2(Q)

≤ C.

Proof. The estimate ‖ρε,n‖L∞(Q) is a direct consequence of lemma 3.7. The

bound on ‖cε,n‖L∞(Q) is obtained from lemma 3.10 and the fact that we

constructed concentrations in such way that
∑L

i=1(cε,n)i = 1. Now we are
able to deduce the bound on φε,n. Bounds ‖v‖L∞(∞;L2(Q)), ‖v‖L2(I;W 1,2(Ω))

and
√
τ
∥∥∂v
∂t

∥∥
L2(Q)

are obtained from equality 3.8 using Hölder, Young and

discrete Gronwall inequalities. Testing the continuity equation by ρε,n, using∫
Ω

ρε,nvε,n · ∇ρε,ndx =
1

2

∫
Ω

vε,n · ∇ρ2
ε,ndx = 0

and L∞bounds on ρ we get ε
1
2 ‖∇ρε,n‖L2(Q) ≤ C. For the last estimates let

us test the discretized Nernst-Planck equation by ck+1
ε,m to get:

ρm
∥∥ck+1

ε,n

∥∥
L2(Ω)

+ ρm
∥∥ck+1

ε,n − ckε,n
∥∥
L2(Ω)

− ρM
∥∥ckε,n∥∥L2(Ω)

2τn
+ α

∥∥∇ck+1
ε,n

∥∥
L2(Ω)

≤
∫

Ω

ρk+1
ε,n v

k+1
ε,n c

k+1
ε,n · ∇ck+1

ε,n +m(ck+1
ε,n )∇φk+1

ε,n · ∇ck+1
ε,n + r(ck+1

ε,n )ck+1
ε,n dx .
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Using Hölder and Young inequalities together with already known estimates

gives us bounds on ‖∇cε,n‖L2(Q) and
√
τ
∥∥∥∂c̃ε,n∂t

∥∥∥
L2(Q)

.

Now let us derive relations satisfied by the approximations. First we work
a bit with the Nernst-Planck equation. If we test the continuity equation with
(ck+1
ε,n )iϕ we get∫

Ω

ρk+1
ε,n (ck+1

ε,n )i − ρkε,n(ck+1
ε )i

τn
ϕdx

−
∫

Ω

ρk+1
ε,n v

k+1
ε,n · ∇(ck+1

ε,n )iϕdx−
∫

Ω

ρk+1
ε,n (ck+1

ε )iv
k+1
ε · ∇ϕdx

+

∫
Ω

ε∇ρk+1
ε,n · ∇(ck+1

ε,n )iϕdx+

∫
Ω

ε∇ρk+1
ε,n (ck+1

ε,n )i · ∇ϕdx = 0 .

Inserting this into Nernst-Planck equations we obtain∫
Ω

ρk+1
ε,n (ck+1

ε,n )i − ρkε,n(ckε,n)i

τn
ϕ3dx−

∫
Ω

ρk+1
ε,n v

k+1
ε,n (ck+1

ε,n )i∇ϕ3dx

+

∫
Ω

ε∇ρk+1
ε,n · ∇(ck+1

ε,n )iϕdx+

∫
Ω

ε∇ρk+1
ε,n (ck+1

ε,n )i · ∇ϕdx

+

∫
Ω

(Dij(c
k+1
ε,n )∇(ck+1

ε,n )j +mi(c
k+1
ε,n )∇φk+1

ε,n · ∇ϕ3dx

=

∫
Ω

ri(K(ck+1))ϕ3dx .

To get the relations for interpolants we test the equations by
∫ (k+1)τn

kτn
ϕdt

with ϕ chosen such that ϕ(T ) = 0 and do summation by parts. denoting by
(·, ·) the L2scalar product we get:

− (ρε,nvε,n, ∂
+
t,τϕ)Q − (ρ0,εv0, ϕ(0))Ω − (ρε,nvε,n ⊗ vε,n − T(cε,n,Dvε,n),∇ϕ)Q

+ ε(∇ρε,n · ∇vε,n, ϕ)Q = (ρε,nq(cε,n)∇φε,n, ϕ)Q ,

(ρε,n, ∂
+
t,τϕ)Q + (ρ0,ε, ϕ(0))Ω + (ρε,nvε,n,∇ϕ)Q = ε(∇ρε,n,∇ϕn)Q ,

− (ρε,n(cε,n)i, ∂
+
t,τϕ)Q − (ρ0,ε(c0)i, ϕ(0))Ω

+ (ρε,n(cε,n)ivε,n +
L∑
j=1

Dij(cε,n)∇(cε,n)j +mi(cε,n)∇φε,n,∇ϕ)Q

+ ε(∇ρε,n · ∇cε,n, ϕ)Q + ε(cε,n∇ρε,n)Q = −(ri(cε,n), ϕ)Q ,

(∇φε,n,∇ϕ)Q + (φε,n − φσ)Q = (ρε,nq(cε,n), ϕ)Q .
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Lemma 3.12. For linear approximations we have the following bounds:

•
∥∥ρ̃vε,n∥∥L2(W 2,2∗) ≤ C

•
∥∥ρ̃cε,n∥∥L2(W 2,2∗) ≤ C

• ‖ρ̃ε,n‖L2(W 1,2∗) ≤ C

Proof. The proof of the lemma consist just of using the Hölder inequalities
in weak formulations of the equations.

Lemma 3.13. There exists at least one approximated weak solution to the
problem (2.9) as defined in the definition 3.3. Moreover estimates from the
lemma 3.11 still hold.

Proof. In the previous we constructed the approximate solutions ρε,n, vε,n,
cε,n and φε,n. By apriori estimates we may choose convergent subsequences:

• ρε,n ⇀∗ ρ in L∞ (Q),

• ρε,n ⇀ ρ in L2 (I;W 1,2 (Ω)),

• ∇ρε,n∇vε,n ⇀ f1 in L1 (Q),

• ∇ρε,n∇cε,n ⇀ f2 in L1 (Q),

• vε,n ⇀∗ v in L∞ (I;L2 (Ω)),

• vε,n ⇀ v in L2 (I;W 1,2 (Ω)),

• cε,n ⇀∗ c in L∞ (Q),

• cε,n ⇀ c in L2 (I;W 1,2 (Ω)),

• φε,n ⇀∗ φ in L∞ (I;W 1,2 (Ω)),

• ρ̃vε,n ⇀ ρ̃v in L2 (Q),

• ρ̃cε,n ⇀ ρ̃c in L2 (Q).

Moreover because

‖Tτcε,n − cε,n‖2 = τ

∥∥∥∥∂c̃ε,n∂t

∥∥∥∥
2

and

‖Tτvε,n − vε,n‖2 = τ

∥∥∥∥∂ṽε,n∂t

∥∥∥∥
2

we have convergences of the shifted quantities
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• Tτvε,n ⇀∗ v in L∞ (I;L2 (Ω)),

• Tτvε,n ⇀ v in L2 (I;W 1,2 (Ω)),

• Tτcε,n ⇀∗ c in L∞ (Q),

• Tτcε,n ⇀ c in L2 (I;W 1,2 (Ω)).

Using the Aubin-Lions lemma we get

• ρε,n → ρ in L2 (Q),

• ρ̃vε,n → ρ̃v in L2
(
W 1,2∗),

• ρ̃cε,n → ρ̃c in L2
(
W 1,2∗).

By uniqueness of the distributional limit (because cε,nϕ ∈ L2 (W 1,2) for ϕ ∈
C∞0 ((0, T ) × Ω)) we get ρ̃v = ρv and ρ̃c = ρc. For strong convergence of
concentrations we compute

‖cε,n − c‖2
2 ≤ C

∫
Ω

ρε,n(cε,n − c)2dx

=

∫
Ω

ρε,ncε,n(cε,n − c)dx−
∫

Ω

ρε,ncε,ncdx+

∫
Ω

ρnc2dx→ 0

To converge we also need the strong convergence in the gradient of φ. From
equation for electric potential we have:

‖∇φε,n −∇φ‖2 = (ρε,nq(cε,n), φε,n − φ) + (∇φ,∇φε,n −∇φ)→ 0 .

Having these convergences in hand we see that limit functions satisfy equa-
tions (2.9). Also because cε,n converge strongly in L2 (Q), we may select a
subsequence converging pointwise and pass to limit in the constraint cε,n ≥ 0.
Finally the statements about norms are direct consequence of lowersemicon-
tinuity of norm.

Theorem 3.14. There exists at least one weak solution to the problem (2.9).

Proof. The proof of this theorem is based on the same convergences as the
proof of lemma 3.13. The main difference is that now ρε → ρ only in
L2
(
I; (W 1,2 (Ω))

∗)
. Moreover we have from apriori bounds that

• ε∇ρε → 0 strongly in L2 (Q)

• ε∇f 1
ε → 0 strongly in L1 (Q)

• ε∇f 2
ε → 0 strongly in L1 (Q)

The solution of continuity equation is also a renormalized solution because
v ∈ L2 (I;W 1,2 (Ω)) has automatically the renormalisation property as was
proved in [DL89].
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4 conclusion

The goal of the work was to remove not too realistic assumption that all
species have the same mass densities and also remove volume additivity
hypothesis from the works [Rou06], [Rou05] and [Rou07]. This goal was
archived in sections 2 and 3. The proof presented in the section 3 is not
usable for numerical purposes. It uses several limit passages to deal at least
partly with maximum principles. One still could read a few ansatzes for
numerical computation from it. One could get the conditions on timesteps,
the regularization term in continuity equation and corresponding term in
Navier-Stokes equation and the fact that for the density and concentrations
one should have much richer spaces than for other variables. Up to author’s
knowledge the result presented in the thesis is new although it assembles in
right way the techniques from articles [AF07] and [Rou07].
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