
Katedra informatiky
Fakulta Matematiky, Fyziky a Informatiky

Univerzita Komenského, Bratislava

Locating a Black Hole without the Knowledge of
Incoming Link

(ŠVK 2009)

Peter Glaus

Advisor:
doc. RNDr. Rastislav Královič, PhD. Bratislava, 2009

Abstract

We study a group of mobile agents operating on an arbitrary unknown
distributed system. One of the nodes of the distributed system is extremely
harmful and destroys any incoming agent without notification. The task of
exploring the distributed system and locating the harmful node, Black hole
search, has been studied with various modifications.

We are studying the effects of the knowledge of incoming link on the size
of the optimal solution. When an agent enters a node, the information which
port leads back can be given to it. We refer to this as to the knowledge of
incoming link. In previous research, it was always assumed that the agent
is given this information.

In this paper we study arbitrary, unknown distributed systems without
the knowledge of incoming link. Agents are asynchronous and they com-
municate via whiteboards. We present a lower bound on the size of the
optimal solution, proving that at least ∆2+∆

2 + 1 agents are necessary to
locate the black hole. We provide an algorithm for black hole search with-
out the knowledge of incoming link as well. We prove that this algorithm is
correct, and that it uses ∆2+∆

2 + 1 agents, thus providing optimal solution.

Keywords: distributed system, mobile agents, faulty node, black hole
search, knowledge of incoming link

Contents

1 Introduction 2
1.1 Black Hole Search . 2
1.2 Aim of this Work . 2
1.3 Related Work . 3

2 Definitions 5
2.1 Computational Model . 5
2.2 The Problem . 6

3 The Knowledge of Incoming Link 8
3.1 Proposed Model . 8
3.2 Lower Bound on the Size of the Optimal Solution 10

4 Size-Optimal Algorithm 13
4.1 Algorithm . 13
4.2 Correctness . 19
4.3 Upper Bound on the Size of the Optimal Solution 23

Conclusion 25

Bibliography 26

1

Chapter 1

Introduction

1.1 Black Hole Search

Special part of theoretical computer science concerning multi-processor or
network environments is the field of Distributed algorithms. Distributed
algorithms can be studied trough very intriguing agent-based model. In this
model, distributed system can be regarded as a kind of maze consisting of
nodes connected with passages and in this maze is a group of autonomous
mobile agents trying to fulfill a given task. In real world, the nodes would be
computers in a computer network and the agents would be represented as
processes executed on these computers, the task might be finding the best
routing path.

Agent-based distributed algorithms have been widely studied. Problems
such as graph exploration, finding shortest paths, finding a spanning tree,
gathering of agents, leader election and other were already tackled. There
are many modifications of these tasks based on agents’ knowledge and prop-
erties of the distributed system. In most cases though, distributed system is
considered non-faulty. We focus our study on distributed systems containing
a black hole.

Black hole is a harmful node, which destroys all agents that enter it. It
is indistinguishable from the outside and once agent enters, it is unable to
send a message or warn other agents. Black Hole Search is a task in which
the agents have to create a map of the distributed system with the location
of the black hole pointed out.

1.2 Aim of this Work

The Black Hole Search Problem (Bhs) is the problem of finding an algorithm
for the agents to fulfill the Black Hole Search. The solution to this problem
and its efficiency can vary a lot and are dependent on the distributed system
and the agent model properties. In unoriented arbitrary unknown graphs

2

CHAPTER 1. INTRODUCTION 3

the optimal algorithm needs ∆ + 1 agents in the worst case[6], whereas in
oriented graph scenario, the number of necessary agents can be up to 2∆[3].
In this work we want to study this gap by proposing a new model which has
some restrictions similar to the oriented graph scenario.

In all previous studies of Bhs, it was anticipated that when an agent
enters a node, it automatically knows from which link it entered the node.
We call this information the knowledge of the incoming link. This informa-
tion is not inherently present in all distributed systems. For instance, one
can think of a software agent that starts its execution on a host without any
information about the incoming port.

We study the effects of the knowledge of incoming link on unoriented
arbitrary unknown distributed systems. We show that without this knowl-
edge, the problem solution needs more agents to work correctly. We show
that there are Θ(n2) agents needed for algorithm that solves Bhs on arbi-
trary unknown graphs, more precisely n2+n

2 + 1 agents are necessary and
sufficient.

1.3 Related Work

First studies of Bhs where focused on asynchronous distributed systems
with ring networks with use of whiteboard communication [5]. They proved
that in such conditions two agents are sufficient and the black hole can be
located in O(n log n) steps.

Important results about influence of prior knowledge of the network can
be found in [6]. In case of no prior knowledge, the size of the optimal solution
is ∆+1 agents and cost is O(n2) steps. When using a sense of direction, only
2 agents are necessary and they can find the black hole in O(n2) steps. With
the knowledge of map of the distributed system, 2 agents are necessary, the
cost of the solution is reduced to O(n log n) steps.

In [4] authors show that for graphs such as hypercubes, cube-connected-
cycles, tori and other a solution with cost of O(n) steps exists. It was
proved later that with the consideration of the graph diameter, the cost of
the solution can be improved for arbitrary graphs with known topology to
O(n + d log d)[8, 9].

The Black hole search problem with agents not starting in the home
base, but rather scattered in the graph was considered as well. Results can
be found in [7, 1, 10].

Agents working in synchronous mode are more powerful than asyn-
chronous one. In this work, only asynchronous agents are taken into ac-
count. The Black hole search problem on synchronous distributed systems
is no longer focused on finding a universal optimal solution, rather on find-
ing the optimal traversal for a particular graph. Such variations of Bhs
problem can be found in [11, 2, 12].

CHAPTER 1. INTRODUCTION 4

All previously mentioned results use a simple technique called Cautious
walk which reduces the number of agents that enter the black hole. When
entering an unknown port, an agent marks it as dangerous and if it does
not die in the black hole, it immediately returns back and marks the port
as safe. No other agent enters a dangerous port, because it might possibly
lead into the black hole. When considering oriented graphs, this technique
is not available, and up to 2∆ agents may be needed [3].

Chapter 2

Definitions

2.1 Computational Model

We start by defining properties of the computational model that are similar
in most of the Bhs studies and will be used in this work as well. The
model consists of a distributed system, which can be simply described as
a graph, a group of agents acting based on an algorithm and one or more
black holes, which are harmful nodes. Roughly said, our goal is to design
such algorithm for the agents, that the agents together fulfill a predefined
task, exact definition is stated below.

Distributed System

Distributed system is a graph G = (V,E) with its port labeling. We mostly
denote vertices as nodes and edges as links. The size of the distributed
system is the number of the nodes of the graph n = |V |.

We also use the term port, which denotes the places where a link is
connected to a node. Link (u, v) has two ports, one is in the node u and the
other is in the node v.

The graphs we use are simple, without double edges or loops of type
(u, u). As we consider only about undirected graphs the link (u, v) is the
same as (v, u). We expect the graph to be biconnected, otherwise finding
the black hole might be impossible[6].

The use of the port labeling is necessary for the purpose of clarity.

Agents

A group of agents is initially placed in a random node of the distributed sys-
tem. The node where the agents are at the beginning is called home base.
The agents are autonomous and proceed according to the same algorithm.
We focus on the asynchronous agents only. In general, the agents are un-
aware of each other, although they can communicate by means of messages

5

CHAPTER 2. DEFINITIONS 6

or by changing state of a node either using whiteboards or tokens.
An agent’s behavior can be divided into basic steps. In one step agent

checks the state of a current node, chooses some action, modifies the state of
the node or communicates and, at last, it performs the action. The action
can be either entering a specific port of the node, staying in the current node
and waiting for some event to happen or finishing.

Agents have to fulfill a specific task, in our case it is to find a black hole.
By finding a black hole we mean that agents that decide to take the action
finish should have full map of the graph with the position of the black hole
marked down, we will call this task black hole search.

Black Hole

There is a harmful node in the distributed system. Every agent that enters a
port of a link leading to such node can be considered dead or not functional
any more. Once agent enters it, there are no means of communication with
other agents. The distributed system itself carries no information whether
link leads into such harmful node or not. We denote such node as a black
hole. Number of links leading into the black hole — the degree of the black
hole is denoted ∆. Throughout this work we focus on distributed systems
with one black hole only, even though modes with multiple black holes can
be considered as well.

For agents that did not enter the black hole we say that they are alive.
On the other hand, we will use the term dead or we say that agent died
when it entered the black hole.

2.2 The Problem

Agents’ task is to explore the graph and locate the black hole. All agents act
according to the predefined algorithm. We say that the algorithm ends when
all the remaining agents take action finish. We use the following definition
when considering the correctness of the algorithm:

Definition 1 (Correctness). The algorithm is correct if for any distributed
system the algorithm ends with at least one agent alive and all surviving
agents have a correct map of the distributed system with correctly marked
location of the black hole.

The problem of finding such algorithm is denoted as Black hole search
problem.

Solution Evaluation

To allow us comparison of the solutions for Bhs we have to be able to
measure the efficiency of algorithms. The first measure of the efficiency

CHAPTER 2. DEFINITIONS 7

is the number of agents needed by the algorithm to work correctly and is
denoted as the size of the solution.

The second measure, the cost of the solution, is the number of steps
that agents make in total before finishing the task. The size is much more
important than the cost and thus the focus is on using the optimal number
of agents first and then improving the number of steps made by the agents.

When considering the size of an algorithm on a specific distributed sys-
tem, we can simply look at the number of agents that enter the black hole
in the worst case for that particular distributed system. We can expect the
number of agents needed by the algorithm as the number of agents that die
in the worst case plus one, otherwise it could be improved.

We express both the size and the cost in terms of n — size of distributed
system and its other properties such as ∆ or diameter d. Unless the port
labeling of the graph has some exact property1, it is used only for clarity,
thus we will be considering how does algorithm behave on a specific graph
instead of the distributed system.

Adversary

When evaluating solutions, we always consider the worst case scenario. In-
stead of referring to the worst case we use the concept of adversary. Adver-
sary is a kind of powerful opponent, his goal is to either make the algorithm
fail the task or to work least efficiently as possible.

Firstly, when the agents are not able to distinguish between two ports,
then the adversary can decide where these ports lead to, possibly make them
lead to the black hole. Secondly, adversary can slow down agents traveling
trough some link so agent waiting for them is not able to decide whether
they fell into the black hole or not.

For more detail we advice the reader to [6, 5].

1e.g. sense of direction

Chapter 3

The Knowledge of Incoming
Link

All previously stated results and studies assumed that when an agent enters
a new node, the agent automatically knows what port did it enter through.
We refer to this as to the knowledge of incoming link.

Main focus of this work is on the effects of the knowledge of incoming
link, more precisely on how lack of this knowledge affects Bhs problem
solution.

3.1 Proposed Model

We study Bhs problem in the following scenario:

Definition 2 (Black Hole Search Problem without the Knowledge of In-
coming Link). Asynchronous autonomous agents operate on a distributed
system consisting of arbitrary graph and its port labeling. One node of the
graph is very harmful — a black hole. Agents work according to a predefined
algorithm. At the beginning, they are all stationed in one node — the home
base. Their task is to perform the Black hole search.

Agents’ only prior knowledge of the distributed system is the number of
nodes n and the maximal degree of the black hole ∆. They communicate by
means of whiteboards, which are located in every node. Moreover, the agents
have no knowledge of incoming link: when they enter a new node they do
not have the information what port leads into the previous node.

All agents and nodes have their identifiers. Asynchronous agents with
the use of whiteboards can easily assign identifiers to themselves and to the
nodes as well, thus this variation can be done without loss of generality.

It can be observed that our modification makes agents less powerful and
that the size of the optimal solution will be at least ∆ + 1 and the cost will

8

CHAPTER 3. THE KNOWLEDGE OF INCOMING LINK 9

be O(n2). We start by examining basic properties of this model and the
effect of our modification on the size of the solution.

Number of Agents Needed

First observation of the newly proposed model is that the Cautious walk
is no longer possible in its original form. If the agent is not able to decide
which port it should use to get back, then it is not necessarily able to get
back and withdraw the warning. The cautious walk is a mechanism that
ensures that maximally one agent travels trough an edge leading into the
black hole and thus only ∆ agents die.

(a) (b)

Figure 3.1: Two example graphs.

In the Fig. 3.1(a) the node v1 is the home base. The question is, how
many agents have to leave the node v2 so at least one gets back into the
home base. We know that the node v2 can have n outgoing ports and thus
if we send one agent trough each port then at least one will get back into
the home base. This leads us to a rough estimation that if we send n agents
into the node v2 then at least one will return.

The agents do not have a map and can not distinguish a port leading to
v2 from a port leading to the black hole and thus we need to send n agents
trough the both ports, to make sure that n agents get to v2 and at least one
returns.

It might seem that the model is very similar to the oriented graph sce-
nario, where edges have orientation and it is never possible to get back using
the same edge. Luckily it is not quite so. If at least one agent returns from
v2, we might be able to distinguish which port leads into still unknown node
and which one into the safe node v2. It is simply accomplished by writing
on the whiteboard which port did agents use when they left.

Let us consider example on the Fig. 3.1(b). We see that by using the
previous reasoning, in order to decide which port is leading into the next
node on the right, we need to send n agents trough each. Thus we send
approximately n∆ agents into the black hole.

CHAPTER 3. THE KNOWLEDGE OF INCOMING LINK 10

We proposed very rough estimates for the number of agents that can
die in the studied model. We can see that designing a graph where more
than ∆ agents die is quite easy. In the second example, it is noticeable that
n∆ agents is more than necessary. With this in mind we present the lower
bound on the number of agents needed for finding a black hole.

3.2 Lower Bound on the Size of the Optimal So-
lution

Figure 3.2: Worst case scenario: Glb

We show that any algorithm solving Bhs for an arbitrary unknown graph
needs at least ∆2+∆

2 + 1 agents to solve Bhs on the graph Glb shown on the
Fig. 3.2.

Let us consider the Fig. 3.3(b). Agents start in the home base v1.
They see two indistinguishable edges. The algorithm has to send a number
of agents through each edge and then other agents wait until some agents
come back. If the algorithm sends a different number of agents through each
edge, the adversary can make sure that more agents walk through the edge
a1 and thus end up in the black hole. This means that an efficient algorithm
has to send the same number of agents through the both edges a1 and b1.

It can be seen, that there have to be at least ∆ agents walking through
the edge b1. If the algorithm sends only k < ∆ agents, the adversary can
make sure that none of the agents returns to the home base and thus the
algorithm fails. There are ∆ edges leading out of v2. Without loss of gen-
erality it can be assumed that no two agents use the same edge, one agent
uses the edge a2 and the other k − 1 agents use the edges c1 . . . ck−1, they
get into the nodes u1 . . . uk−1 and from these they use edges leading into the
black hole. All k agents die in the black hole and no agent returns.

For the graph H1, there have to be at least ∆ agents using the edge
b1 and thus also ∆ agents using the edge a1. When considering the Fig.
3.3(a) and the graph G1 it can be observed that for agents waiting in the
home base, the graphs G1 and H1 are indistinguishable. This means that
the algorithm has to act in the same way in both cases, thus also in the
graph G1 there have to be at least ∆ agents traveling through the edges a1

and b1.

CHAPTER 3. THE KNOWLEDGE OF INCOMING LINK 11

(a) G1 (b) H1

(c) G2 (d) H2

Figure 3.3: Indistinguishable graphs.

A very similar situation can be seen in the Fig. 3.3(d). As stated be-
fore, the adversary can make sure that there are at least ∆ agents traveling
through the edge a1. Now the edge b1 is known to be safe and agents can
freely move into the node v2. Let us assume that the algorithm now knows
that a1 leads into the black hole so we do not have to take it into account.
Once again there are two indistinguishable edges a2, b2 and there is no point
for sending more agents into one of them.

Similarly as in the graph H1, to make sure that at least one agent gets
back into the node v2 we need at least ∆−1 agents in the node v3. Otherwise
all agents that went into v3 can end up in the black hole. With the knowledge
of v1 and v2, the graph G2 from the Fig. 3.3(c) is indistinguishable from
the graph H2. This implies that the algorithm, which solves Bhs for an
arbitrary unknown graph, will in the worst case send ∆ agents through the
edge a1 and ∆− 1 agents through the edge a2 in both, G2 and H2.

Extending the previous argument on graphs G3 . . . G∆, where G∆ is
similar to Glb we can prove that for i ∈ {1, . . . , ∆} there are ∆− i+1 agents
traveling through an edge ai and thus dying in the black hole. Following
theorem is thus implied.

Theorem 1 (Lower Bound on the Size of the Optimal Solution). Any al-
gorithm solving Bhs problem for an arbitrary unknown graph without the

CHAPTER 3. THE KNOWLEDGE OF INCOMING LINK 12

knowledge of incoming link needs at least ∆2+∆
2 + 1 agents.

Chapter 4

Size-Optimal Algorithm

Before we describe the algorithm that uses the optimal number of agents, let
us look again at the example 3.1(a). There are some ideas left undiscussed
and further investigation leads us to the optimal solution.

In the previous chapter, we discussed that if we send n agents into the
node v2 then one will come back, if we design the algorithm in such way that
no more than one agent will enter two ports of v2. The question is whether
we really need n agents. The fact that some agents do not leave trough the
returning port does not mean that they are dead and useless. Some of them
might come back. If ∆ − 1 ports eventually lead into the black hole, we
could expect that all agents leaving trough these ports would die, but the
rest could come back.

The second idea that should be considered are the conditions under which
we actually need to send more than one agent trough an unknown port in
the first place. The thing is that we need some agents to come back, thus
they can not fall into the black hole. If the home base would have ∆ + k
ports then it might be enough to send one agent trough each. Maybe ∆ of
them would fall into the black hole but the rest k of them would be perfectly
safe because the black hole has only ∆ links leading into it.

We clarify these conjectures while describing the algorithm and proving
its correctness.

4.1 Algorithm

We propose the following algorithm for solving the Bhs problem on a dis-
tributed system without the knowledge of incoming link.

General Ideas of the Algorithm

All ports are classified into four categories, similar to those used in the
cautious walk, with one extra. Unmarked ports are called unknown. When

13

CHAPTER 4. SIZE-OPTIMAL ALGORITHM 14

one or more agents have entered a port, it is marked as dangerous. If a port
is dangerous and it is known that at least one of the agents that entered
such port has been alive afterwards, then the port can be marked as safe.
When a link has both ports safe, then the link is safe as well and both ports
of the link are marked as explored. Furthermore, for both explored ports the
nodes to which they lead are known and are written on the whiteboard.

One or more nodes of the graph that are connected by safe links are
called safe component. Safe component which contains the home base is
called main safe component (Msc).

Every agent searching the graph has a counter of steps it has made.
Every time an agent is going to use a port, it leaves a message on the
whiteboard stating the port’s label, agent’s ID and the current state of its
counter and it increases its counter as well. Each agent keeps track of how
many steps have other agents done. When an agent A enters a node, it looks
on the whiteboard and for every agent B that left a message, it updates its
information about B’s number of steps. An agent always remembers the
complete list of agents that visited the current node. The list of counters,
known map of the distributed system and a list of agents that entered a
dangerous port are kept in the home base as well.

The lists are used as follows. An agent that enters a node u first compares
its list of agents in the previous node with the list of agents that left the
node u. By comparing the state of their counters, the agent can immediately
find out, whether any of the agents went through the same link and it knows
by which port as well. If there was such agent, it marks the port explored,
goes back to mark the other port as well and returns to the node u.

Second thing an agent has to do when it enters a new node u is to
compare its list of all agents and maxima of their counters to the list of
agents that left u. If there is a port marked as dangerous and it knows that
one of the agents that entered it stayed alive afterwards then it marks this
port safe and enters it.

After these two checks, the agent proceeds with its own exploration.

Now we can state rules for the agents, which they obey at all circum-
stances. We will prove the correctness of this algorithm in the next section.

1. When an agent is in a node that is not part of Msc, it will never enter
a dangerous port.

2. When an agent is in a node, it will always make a move, unless the
problem is solved or all ports are dangerous. If all ports are dangerous
the agent will wait until one of the ports is made safe and then proceeds
with the exploration.

3. When agent is in Msc it can enter a dangerous port under following
conditions:

CHAPTER 4. SIZE-OPTIMAL ALGORITHM 15

• There are no unknown or safe ports in Msc.

• The size of Msc is less than n− 1.

• There are k dangerous ports leading out of Msc and k ≤ ∆.

• There are less than ∆ − k + 2 agents, that entered the port it
wants to enter.

This condition ensures that if there are k ≤ ∆ dangerous ports at a
certain time, then there will be no more than ∆−k+2 agents entering
any of the dangerous ports. Of course, if in some previous state there
where k′ dangerous ports where k′ < k then there might be some ports
that were used by ∆− k′ + 2 agents which is more than ∆− k + 2. In
this case, however, no more agents will enter these ports.

4. An agent has to enter a port when it wants to mark it as safe.

5. An agent moves through an unknown port from node u to node v,
upon arrival to the node v it checks its list of agents that visited the
node u and compares it with the whiteboard. If it finds out that some
agent previously traveled from v through port p and came to u then
it has to mark the port p and the whole link as safe1.

From these rules it follows that when an agent is not able to reach the
home base by a safe path, it does not enter any dangerous ports. The agent
does not stop exploring. If all ports are dangerous it waits until some port is
marked safe. When the agent discovers that some port/link can be marked
as safe, then it is its duty to do so.

More Detailed Description

Agents collect information about Msc in the home base. There is a map
of Msc with all outgoing ports. For every dangerous port, there is a list of
agents that entered this port. List of agents with last known values of their
counters is kept in the home base as well. Except form this, all nodes of
Msc are labeled and will have marked port that leads to the home base.

The algorithm can be divided into three main parts based on where the
agent is and what has it done. First part is for agents stationed in Msc,
without any mission. Second part is used when agent is outside of Msc.
Last part is designed for an agent that has just returned to Msc.

In the procedure Explore, procedure Search is used to search for a
next node with an unknown port. All nodes connected by safe and explored
ports can be considered as a subgraph in which agents move as in a directed
graph. Dangerous ports are being ignored. Ports marked as safe are di-
rected edges, because on the other side of the link it is not clear which port

1By marking a link safe we always mean marking its ports as explored as well.

CHAPTER 4. SIZE-OPTIMAL ALGORITHM 16

Procedure 1 Leave MSC
1: return to home base

update lists and map
2: if size(MSC)= n− 1 then
3: if #DANGEROUS ≤ ∆ then
4: Finish
5: else
6: add MY (ID) to waiting list

sleep until wake up
goto 1

7: end if
8: end if
9: if (∃p) AND (p is dangerous) AND

(∃A) AND (A entered p) AND (counterAtPort(A,p)< counterMax(A))
then

10: mark p as safe
Explore(p)

11: end if
12: if (∃p) AND (p is unknown) then
13: mark p as dangerous

Explore(p)
14: else if (∃p) AND (p is safe) then
15: Explore(p)
16: else
17: if (∃p) AND (p is dangerous) AND (#DANGEROUS < ∆) AND

(#ENTERED AGENTS(p) < ∆−#DANGEROUS + 2) then
18: Explore(p)
19: end if
20: end if
21: add MY (ID) to waiting list

sleep until wake up
22: goto 1

leads back through that link. Explored ports, with their safe links can be
considered as two symmetric directed links.

For such graph a basic algorithm for exploration of directed graphs can
be used, which is the main part of the procedure Search. Apart from that,
agent always looks for ports that could be made explored or safe, similarly
to the initial checks of the procedure Explore.

Procedure Return is automatically initiated once an agent returns to
Msc.

CHAPTER 4. SIZE-OPTIMAL ALGORITHM 17

Procedure 2 Explore
1: u← current node
2: u′ ← previous node
3: if (∃A) AND (A in u) AND (A in u′) AND

(counterAtPort(A,lastPort(A,u))+1 = counterAtPort(A,lastPort(A,u′)))
AND
(lastPort(A,u) is dangerous OR safe) then

4: q ← lastPort(A,u)
mark q as explored
enter q
mark lastPort(MY (ID),u′) as explored
enter lastPort(MY (ID),u′)

5: end if
6: if (∃A) AND (A in u) AND (lastPort(A,u) is dangerous

(counterAtPort(A,lastPort(A,u))<maxCounter(A)) then
7: p← lastPort(A,u)

mark p as safe
Explore(p)

8: end if
9: if (∃p) AND (p is unknown) then

10: mark p as dangerous
Explore(p)

11: else if (∃p) AND ((p is safe) OR (p is explored)) then
12: Search()
13: else
14: add MY (ID) to waiting list

sleep until wake up
15: end if

CHAPTER 4. SIZE-OPTIMAL ALGORITHM 18

Procedure 3 Return
1: u← current node
2: u′ ← previous node
3: if (∃A) AND (A in u) AND (A in u′) AND

(counterAtPort(A,lastPort(A,u))+1 =counterAtPort(A,lastPort(A,u′)))
AND
(lastPort(A,u) is dangerous OR safe) then

4: q ← lastPort(A,u)
mark q as explored
enter q
mark lastPort(MY (ID),u′) as explored
enter lastPort(MY (ID),u′)

5: end if
6: find Home Base

update lists and map
write down Wake up

7: if size(MSC)= n− 1 then
8: if #DANGEROUS < ∆ then
9: Finish

10: else
11: add MY (ID) to waiting list

sleep until wake up
goto 7

12: end if
13: end if
14: determine outgoing port p previously used
15: if p is dangerous then
16: mark p as safe
17: end if
18: locate p

write down destination of p
Explore(p)

CHAPTER 4. SIZE-OPTIMAL ALGORITHM 19

4.2 Correctness

First we state some supporting lemmas and then prove that Msc will keep
expanding until the whole graph except the black hole is explored.

Lemma 1. When an agent A is not in Msc and A is in a node vD with
all ports marked as dangerous, one of the ports will be eventually marked as
explored.

Proof. The node vD is not the home base, thus there is an agent A0 that
entered this node as first using the link l0. That means that it read an
empty whiteboard, wrote down its ID, port by which it left and the state
of its counter on the whiteboard. All the agents that enter after the agent
A0 will read its message on the whiteboard.

Now all ports are marked as dangerous thus there exists an agent Ax

that left through the link l0. When the agent Ax arrives to the other end of
the link l0, it finds out that the agent A0 was there just before the node vD

and thus it can identify a port of the link l0. He marks the port as explored
and goes back to vD and marks the other port as explored as well, thus
one of the dangerous ports has been marked explored and the agent A can
leave.

The use of the first agent A0 in the previous proof has its reason. By
picking the first agent it is clear that the agent Ax read the both messages
from A0. Important fact is that before Ax performs any other action and
thus risks falling into the black hole it has to make l0 safe. This lemma can
be expanded for more than one node.

Corollary 1. When an agent is not in Msc and it is in a safe compo-
nent with all outgoing ports marked as dangerous, one of the ports will be
eventually marked as explored.

Proof. Once again, there was an agent A0 entering one of the nodes of the
safe component from outside of the safe component as first, by the link l0.
Thus there is an agent that left the safe component through the link l0 and
will mark it safe.

Lemma 2. A link that has both ports safe will be marked as safe, and the
ports as explored. Furthermore, it will be marked safe by one of the agents
that marked its ports safe.

Proof. Link l has ports p and p′, one of the ports had to be marked safe
first, let us assume, that it was the port p. If the port p is safe, it means
that an agent A1 traveled already through it. Then second agent A2 with
the knowledge that A1 survived, marked it safe and traveled through it as
well.

CHAPTER 4. SIZE-OPTIMAL ALGORITHM 20

Agent B2 that is going to mark the port p′ as safe can do it only after
A2 does. This means that A1 has already emerged from the link l and thus
B2 reads its messages on the whiteboard. When B2 emerges on the other
side of the link l it finds previous message of A1 and knows that it can mark
the whole link safe and its ports as explored.

In the following lemma we focus on the agents exploring outside of Msc.
These agents are not allowed to enter any dangerous ports. We show that
there are always enough agents outside, so that at least one does not die in
the black hole. Right now we will expect that there are enough agents in the
main safe component and that it is always possible to send out more agents
if needed. The actual number of agents that are really needed is shown in
the section 4.3.

Lemma 3. For Msc of size smaller than n − 1 the following statement
holds. When there are no more agents that could leave Msc according to
the third rule, then at least one of the agents outside of Msc does not enter
the black hole.

Proof. The fact that no more agents could leave Msc can only mean that
all k outgoing ports of Msc are dangerous and through each one went at
least ∆ − k + 2 agents if k ≤ ∆ and at least one agent if k > ∆, thus no
more agents are allowed.

Let l be the number of ports leading out of Msc and into the black hole,
we know that l < k unless the size of Msc is n− 1.

When k > ∆, we do not need all k ports being entered by at least one
agent. We expect that we have enough agents, so that there are at least
m ≥ ∆ + 1 outgoing ports that were used by at least one agent. This means
that at least m− l agents survived after leaving Msc. There are ∆− l ports
leading into the black hole from outside of Msc and thus maximally ∆− l
agents can enter these ports and die. Thus we get that at least (m−l)−(∆−l)
agents in total will survive outside Msc. As we mentioned, m ≥ ∆ + 1 and
thus m−∆ ≥ 1, which means that at least one agent survives.

Let us consider k ≤ ∆. We can expect that all allowed agents entered
a port meaning that at least ∆− k + 2 agents entered each port. If l ports
were dangerous then (k − l)× (∆− k + 2) is the number of agents that got
out of Msc and not into the black hole. From these agents, only ∆− l will
die in the black hole outside Msc. Thus the number of surviving agents can
be expressed:

#s = (k − l)× (∆− k + 2)− (∆− l)
= k∆− k2 + 2k − l∆ + lk − 2l −∆ + 2
= −k2 + k∆ + 2k −∆ + l × (k −∆− 1)

We know that ∆ and k are fixed and that coefficient of l: (k − ∆ − 1) is
negative, so #s drops with raising l. Number of ports leading from Msc

CHAPTER 4. SIZE-OPTIMAL ALGORITHM 21

into the black hole is bounded by the number of all outgoing ports, l < k.
Thus the smallest number of agents survive when l = k − 1:

#s = (ks − l)× (∆− k + 2)− (∆− l)
= (k − (k − 1))× (∆− k + 2)− (∆− (k − 1))
= 1

Which again means that at least one agent outside Msc survives.

Lemma 4. For Msc of size smaller than n − 1 the following statement
holds. When there are no more agents that could leave Msc according to
the third rule, then at least one of the agents that left Msc returns back into
Msc.

Proof. What we are going to show is that one of the surviving agents will
eventually enter a port leading back to Msc and thus it returns.

From the Lemma 3 we know that at least one of the agents that left Msc
survives. Agents work in such way that they always enter some port, unless
all are dangerous in which case they wait. Lemma 1 further tells us that
even though an agent does not enter a dangerous port and waits, it does not
get stuck somewhere either. From these three statements it is quite clear
that the agent never really stops moving, once it leaves Msc.

There are only n nodes and thus less than n2 links between them. Every
link has two ports and every port can have four states. Thus there is a finite
number of ports outside Msc and they have only finite number of states
together.

We will show that agents not only never stop exploration, but when they
move through the graph, the states of the ports are always being changed.
This means that either an agent itself changes a state of a port or it gets
into a situation in which the state of a port will be inevitably changed by
some other agent.

Agents can encounter the following situations:

1. When an agent is in a node with an unknown port then it enters it
and changes its state to dangerous.

2. If there are only dangerous ports, then the agent waits until one of the
ports is made explored, we proved in the Lemma 1 that it will happen.

3. If there are only dangerous, safe and explored ports in a node the agent
searches the subgraph of such nodes using only safe and explored ports.
When the agent finds an unknown port, it stops the search protocol
and enters the port. If there are no reachable unknown ports, then the
agent can wait, because one of the dangerous ports will be changed by
other agent. To prove this, we could use the same reasoning as in the
proof of Lemma 1.

CHAPTER 4. SIZE-OPTIMAL ALGORITHM 22

If surviving agents never stop changing states of the ports outside Msc and
there is only finite number of ports, eventually some agent has to change a
state of a port leading back to Msc, put in different words, the agent will
enter it.

We prove that Msc will be expanding until it contains n− 1 nodes. At
the beginning, only the home base is a part of Msc and it has all ports
marked as unknown. Agents start the exploration by entering these ports.
We now proceed with a general case, there is the main safe component, with
k outgoing ports.

Let us assume that Msc does not expand. Once again we use the fact
that there is only finite number of ports leading out of Msc and they can be
of only 3 different states. If a port would be marked as explored, it means
that Msc is being expanded. The fact that Msc does not expand implies
that there must be a state of Msc that does not change any more.

By state of Msc we will understand state of all outgoing ports, with
additionally, for each safe outgoing port a list of agents that entered it.
When an agent returns to Msc, it leaves it through the safe port, which
it has already used before, in such case the agent will be on the list twice.
Moreover, if an agent is entering outgoing port second time, it knows where
does it lead and it writes the information on the whiteboard in the node of
that port.

It is important to note that if at least n agents enter a safe port, then
there is certainly an agent that entered the link from the other side, because
unknown links are entered first. Thus when an agent comes out of such port
into the node of Msc it does not know by which port it arrived but it either
reads information left by an agent that entered the port twice and is able to
mark the port explored. Or the agent leaves information about itself on the
whiteboard so that the next agent which travels through that port is able
to mark it explored afterwards.

If the number of agents that entered the safe port would be increasing,
Msc would eventually expand, so it has to be stable as well.

There are only two options for the stable state. First one is that there
are agents in Msc but they are all waiting in the home base. This further
means that all outgoing ports are dangerous and no other agents are allowed
to leave through these ports, thus they are waiting. The second option is
that there is no agent in Msc otherwise it would exit and thus change the
stable state.

Both these states would change by any agent returning to Msc. In the
first case, an agent that enters Msc had to leave the Msc before by a port
p. Now that the agent is back in Msc it can, and will, mark the port p as
safe, thus changing the state of Msc, allowing more agents to continue the
exploration.

CHAPTER 4. SIZE-OPTIMAL ALGORITHM 23

In the second case, the fact of an agent returning to Msc changes the
stable state. Even if the state would not be changed directly, the agent had
previously left Msc and traveled through outside of Msc by some path.
Part of this path might have become a part of Msc but there must be one
port which now leads out. This port is either dangerous and the agent can
mark it as safe, or it was marked as safe in the meanwhile. In such case it
will do as mentioned above, leave information about the port’s destination,
add itself into the list and enter it again.

Lemma 4 proves that when the number of nodes of Msc is less than
n − 1 then every time there are no more agents able to leave Msc at least
one agent returns to Msc. We formulate our statement in the following
theorem.

Theorem 2 (Correctness). Agents with their exploration, will expand the
main safe component until it contains n−1 nodes, thus exploring whole graph
except the edges possibly leading into the black hole. By this they finish the
Black hole search.

4.3 Upper Bound on the Size of the Optimal So-
lution

In the proof of the lower bound value we used the graph Glb on the Fig.
3.2. Note that our algorithm uses optimal number of agents to fulfill Bhs
on such graph — ∆2+∆

2 + 1. We do not need to prove this statement for the
purposes of the upper bound proof.

Even more, let us order all ports leading into the black hole based on
the number of agents that used them in descending order, these numbers
make a following sequence: p1 = ∆, p2 = ∆− 1, . . . p∆−1 = 2, p∆ = 1. This
corresponds with the claim from the lower bound proof that for each edge
ai leading into the black hole, there had to be ∆− i + 1 agents that passed
through this edge.

Theorem 3 (Upper Bound on the Size of the Optimal Solution). Algorithm
for the Black hole search problem obeying conditions stated before will succeed
with ∆2+∆

2 + 1 agents in the worst case.

Proof. Consider a sequence of ∆ numbers similar to the one mentioned
before, for i ∈ {1, . . . , ∆}; pi = ∆− i + 1.

Let us consider graph Gub, with the degree of the black hole ∆, where our
algorithm needs more than ∆2+∆

2 + 1 agents to solve Bhs. In other words,
there are at least ∆2+∆

2 + 1 agents that die in the black hole. Now again
we take the numbers of agents that used a port leading into the black hole
and order them in descending order. These numbers form a non-increasing

CHAPTER 4. SIZE-OPTIMAL ALGORITHM 24

sequence of length ∆: q1, q2 . . . , q∆. We stated previously that there are
more agents ending up in the black hole in the graph Gub and thus:

∆∑
i=1

qi >

∆∑
i=1

pi =
∆2 + ∆

2

Both sequences have the same lengths and thus there must exist index j
where qj > pj . We know that qj > pj = ∆− j + 1, and thus qj ≥ ∆− j + 2.
Now we have to consider what does this mean in terms of the rules for our
algorithm.

In the last rule about the number of agents entering a dangerous port
at certain conditions, we state that for k ≤ ∆ maximally ∆ − k + 2 agents
enter. When at least ∆− j + 2 agents enter dangerous ports it means that:

∆− j + 2 ≤ ∆− k + 2
j ≥ k

For all ports corresponding to the numbers q1, . . . qj , there is an agent that
entered these ports last. For this last agent, some conditions must have been
fulfilled. There were no unknown ports in Msc. Number of the nodes in
Msc was less than n − 1, put in other words, there were still some nodes
that were not part of Msc. And at last, there were maximally k dangerous
ports at that moment, where k ≤ j from above stated equation.

Numbers q1, . . . , qj correspond to j different ports leading into the black
hole. If the graph is biconnected then we are missing at least one dangerous
port, that did not lead into the black hole. So the last agent would obvi-
ously have to break one of the conditions by entering the dangerous port,
which leads us to contradiction.

Corollary 2 (Size Optimal Solution). Proposed algorithm provides size op-
timal solution for the Black hole search problem without the knowledge of
incoming link.

Conclusion

In this work, we have studied the Black hole search problem without the
knowledge of incoming link. We have shown that this modification has
effects on the size of the solution.

We provided lower bound on the number of agents that are necessary to
locate the black hole. Any correct algorithm solving the Black hole search
problem without the knowledge of incoming link needs at least ∆2+∆

2 + 1
agents. The algorithm is presented with the proof of correctness, it uses the
optimal number of agents in the worst case. The cost of the algorithm and
bounds on the optimal cost of the solution are left for further investigation.

25

Bibliography

[1] Jérẽmie Chalopin, Shantanu Das, and Nicola Santoro. Distributed Com-
puting, chapter Rendezvous of Mobile Agents in Unknown Graphs with
Faulty Links, pages 108–122. LNCS. Springer Berlin / Heidelberg, 2007.

[2] Colin Cooper, Ralf Klasing, and Tomasz Radzik. Searching for black-
hole faults in a network using multiple agents. In Proceedings of the
10th International Conference on Principles of Distributed Systems
(OPODIS 2006), volume 4305 of Lecture Notes in Computer Science,
pages 320–332. Springer Verlag, December 2006.

[3] J. Czyzowicz, S. Dobrev, R. Královič, S. Mikĺık, and D. Pardubská.
Black hole search in directed graphs. In SIROCCO 2009, Lecture Notes
in Computer Science. Springer, 2009. to appear.

[4] Stefan Dobrev, Paola Flocchini, Rastislav Královič, Giuseppe Prencipe,
Peter Ružička, and Nicola Santoro. Black hole search in common inter-
connection networks. Networks, 47(2):61–71, 2006.

[5] Stefan Dobrev, Paola Flocchini, Giuseppe Prencipe, and Nicola San-
toro. Mobile search for a black hole in an anonymous ring. Lecture
Notes in Computer Science, 2180:166–179, 2001.

[6] Stefan Dobrev, Paola Flocchini, Giuseppe Prencipe, and Nicola San-
toro. Searching for a black hole in arbitrary networks: optimal mobile
agent protocols. In PODC ’02: Proceedings of the twenty-first annual
symposium on Principles of distributed computing, pages 153–162, New
York, NY, USA, 2002. ACM.

[7] Stefan Dobrev, Paola Flocchini, Giuseppe Prencipe, and Nicola San-
toro. Multiple agents rendezvous in a ring in spite of a black hole. In
OPODIS, volume 3144 of Lecture Notes in Computer Science, pages
34–46. Springer, 2003.

[8] Stefan Dobrev, Paola Flocchini, and Nicola Santoro. Structural Infor-
mation and Communication Complexity, chapter Improved Bounds for
Optimal Black Hole Search with a Network Map, pages 111–122. LNCS.
Springer Berlin / Heidelberg, 2004.

26

BIBLIOGRAPHY 27

[9] Stefan Dobrev, Paola Flocchini, and Nicola Santoro. Cycling through
a dangerous network: A simple efficient strategy for black hole search.
pages 57–57, 2006.

[10] Paola Flocchini, David Ilcinkas, and Nicola Santoro. Ping pong in
dangerous graphs: Optimal black hole search with pure tokens. In DISC
’08: Proceedings of the 22nd international symposium on Distributed
Computing, pages 227–241, Berlin, Heidelberg, 2008. Springer-Verlag.

[11] Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco.
Hardness and approximation results for black hole search in arbitrary
networks. Theoretical Computer Science, 384(2–3):201–221, 2007.

[12] Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sar-
racco. Approximation bounds for black hole search problems. Networks,
52(4):216–226, 2008.

	Introduction
	Black Hole Search
	Aim of this Work
	Related Work

	Definitions
	Computational Model
	The Problem

	The Knowledge of Incoming Link
	Proposed Model
	Lower Bound on the Size of the Optimal Solution

	Size-Optimal Algorithm
	Algorithm
	Correctness
	Upper Bound on the Size of the Optimal Solution

	Conclusion
	Bibliography

