
Katedra Informatiky
Fakulta Matematiky, Fyziky a Informatiky

Univerzita Komenského, Bratislava

σ-valuation of trees
Richard Štefanec

ŠVOČ 2009

Advisor:
doc. RNDr. Rastislav Královič, PhD. Bratislava, 2009

Introduction

More than 45 years ago, Ringel conjectured that a complete graph K2m+1

can be decomposed into 2m + 1 copies of arbitrary tree T with m edges.
Despite a lot of effort, there are still just a few known tree classes for which
this conjecture is proven.

Main object of this paper is to show that it is possible to find such de-
composition for arbitrary spider. We are going to prove this by showing that
every spider has a σ-Valuation. Besides that, we will extend this result to a
tree class, obtained by substituting paths in spiders by graphs from a sub-
class of caterpillars. We will also show that there exists σ-valuation of some
other graph classes.

In first part of this paper, we will introduce some basic concepts, defini-
tions and constructions known in a field of graceful labelings. We will also
mention certain classes of trees for which it is proven that they could be
labeled by some labeling, connected with Ringel’s conjecture.

Second part consist of our main results. σ-valuation of spiders is proven
in two steps. The proof is constructive, so it is possible to use it for finding
such labeling for any spider. We define in this chapter superclass of spiders
which also admits σ-valuation.

In the last part we show how to use graceful labelings of graphs for con-
structing σ-valuations of certain larger classes. We use such construction to
show that every lobster, irregular banana and irregular bamboo tree has a
σ-valuation. Besides that we also show that every tree with diameter at most
7 and every tree with at most 38 vertices have σ-valuation.

keywords: Ringel’s conjecture, σ-valuation, ρ-valuation, Graceful tree
labeling, Lobster, Spider

2

Chapter 1

Definitions and known results

Conjecture 1.1. (Ringel’63) Let K2m+1 be complete graph with 2m+1 edges
and T an arbitrary tree with m edges. Then K2m+1 can be decomposed into
2m + 1 copies of T .

This conjecture is still unsolved. Rosa introduced in 1966 valuations of
trees which could lead toward a proof of the Ringel’s conjecture. We will
first introduce the most well known of this labelings – the Graceful labeling.

Definition 1.1. Graceful labeling of a graph G = (V, E) is a labeling f :
V → {0 . . . |E|} inducing an edge labeling g, defined by g(uv) = |f(u)−f(v)|,
such that:

• ∀u, v ∈ V, u 6= v, f(u) 6= f(v)

• g is a bijection from E(G) to {1 . . . |E|}

If graph G has a graceful labeling, we say that G itself is graceful. Graceful
labeling is also called β-valuation.

Conjecture 1.2. (Graceful labeling conjecture) Every tree has a graceful
labeling.

It is easy to see that if labeling f is graceful then also the labeling h(v) =
|E| − f(v) is graceful. Such labeling is called the complementary labeling.
First condition trivially holds. For each edge f(uv) = |u−v| = |v−u| = ||E|−
|E|+ v−u| = |(|E|−u)− (|E|− v)| = h(uv), so the complementary labeling
also preserves the second condition. This implies that every nontrivial graph
has an even number of graceful labelings.

3

Rosa introduced an even more restrictive labeling – bipartite. There is
no conjecture analogous to GLC for this valuation, because there are trees
for which it is proven that they cannot be bipartitely labeled. In spite of this
fact, is bipartite labeling still very interesting, because of some it’s interesting
properties.

Definition 1.2. The Bipartite labeling is graceful a labeling with a further
property that there exists x ∈ {0 . . . |E|} such that for an arbitrary edge uv
either f(u) ≤ x < f(v) or f(v) ≤ x < f(u) holds.

A tree which admits bipartite labeling is also called balanced, interlaced
or α-valuation.

0

1

2 3

45

4

3
1

2

5

Figure 1.1: Two possible representations of an graceful labeling.

Two various representations of one specific labeling of a star can be seen
on figure 1.1. On the left representation are the values of edge and vertex
labels written on respective places. On the right we could see representation,
where axis represents possible values of vertex labels and every vertex is
placed on the plane according to its label value. We could then count the
value of an edge, by just looking at the distance between embedded vertices.
Highlighted line in both representations corresponds to the same edge.

The bipartite labeling allows us to do some operations to generate new
graceful labelings.

Definition 1.3. Let f be a bipartite labeling of a graph G with bipartition
(A, B) with k such that there exists such vertex v that v ∈ B, f(v) = k and

4

u ∈ A, f(u) = k − 1. We call f ′ the reverse labeling of f where f ′ is defined
by:

f ′(x) =

{
k − 1− f(v), v ∈ A

|E|+ k − f(v), v ∈ B

If f is a bipartite labeling then also f ′ is. For any bipartite labeling f ,
we can by using reverse and complementary labelings, label with zero such
vertices for whose f(v) has one of values 0, k − 1, k, |E|

There are two more kinds of near graceful labelings whose do not fulfill
conditions of gracefulness, but could still lead to proof of Ringel’s conjecture.

Definition 1.4. The σ-valuation is a labeling, where the induced edge label-
ing must satisfy the condition of being bijection from E(G) to {1 . . . |E|}, but
the vertex range is relaxed to {0, . . . , 2|E|}

Definition 1.5. The ρ-valuation is a labeling, where the induced edge la-
beling is relaxed to {1, . . . , 2|E|}, under the condition that either label i or
label 2|E| + 1 − i is used, but not both and the vertex range is relaxed to
{0, . . . , 2|E|}.

It could be seen that there is a hierarchy of labelings. Sorted from
strongest to weakest it is α, β, σ and ρ.

We will now define some labelings that could be interesting as building
blocks for various valuations.

Slater and Maheo with Thullier independently introduced the k-graceful
labeling scheme

Definition 1.6. The k-graceful labeling f is a labeling such that

• f is an injection into {0, 1, . . . , |E|+ k − 1}

• edge labels are shifted to {k, . . . , |E|+ k − 1}

Every graph with a bipartite graceful labeling is k-graceful for all k, since
we can add arbitrary constant to the labels from partition with higher label
values. But there are graphs which are k-graceful for all k and do not have
a bipartite graceful labeling.

Definition 1.7. The (k,d)-graceful labeling f is a labeling such that

5

• f vertex labels are in range {0, 1, . . . , (|E| − 1)d + k}

• edge labels take values {k, k + d, k + 2d, . . . , (|E| − 1)d}

Theorem 1.1. • Every k-graceful graph is (kd, d)-graceful.

• Every connected (kd, d)-graceful graph is k-graceful.

• If graph is (k, d)-graceful and not bipartite then k ≤ (m− 2)d

Definition 1.8. The caterpillar tree T is a tree which consists of a path Pn

and a set of vertices not on Pn, each of them joined to exactly one vertex on
Pn.

Theorem 1.2. Every caterpillar is graceful.

Proof. (due to Rosa [18]) There is an algorithm for labeling which could be
used for every caterpillar. To label a path – a special case of caterpillars –
one could label the vertices on this path by alternatively using largest and
smallest label possible. Similar approach is applicable for any caterpillar.
One has to take a vertex which is a beginning of a longest path in the tree
and start labeling vertices along this path. For every vertex on this path
one has to use largest(smallest) label possible then label all adjacent vertices
not lying on that path with consecutive available labels of opposite size and
move to next vertex, which would be labeled with smallest(largest) label
possible.

Maheo in 1980 defined that a graph is strongly graceful, if it possesses a
bipartite graceful labeling with the extra condition that for every vertex v
the labels of all incident edges form a sequence of consecutive integers. As
we have seen, labeling from the proof of the last theorem is strongly graceful,
so every caterpillar is strongly graceful. Bodendiek and Schumacher have
shown that caterpillars are the only trees with this property.

It has to be mentioned that today is therm strongly graceful labeling
denoting also other labeling, introduced by Broersma and Hoede. In this
paper we will use this therm for labeling as it was defined by Maheo.

Definition 1.9. A lobster T is a tree consisting of path Pn and vertices not
on Pn at distance at most two form a vertex in Pn.

6

Even though we could get a caterpillar from any lobster simply by deleting
all its leaves, there is very little known about gracefulness of lobsters, up to
some special cases.

Caro et al. [7] proved the following:

Theorem 1.3. All lobsters have a ρ-labeling.

Huang, Kotzig and Rosa studied gracefulness of trees with at most 4
leaves and trees not admitting bipartite labeling in 1982 paper [12], we will
present here some of their results:

Definition 1.10. Let T be a tree and v a vertex of T . A branch vertex of
T is a vertex of degree at least 3 in T . A v-endpath of T is a path P from v
to a leaf of T such that each internal vertex of P has a degree two in T . A
spider S(a1, . . . , ar) is a tree with exactly one branch vertex v and v-endpaths
of lengths 1 ≤ a1 ≤ . . . ≤ ar where r = degv. These v-endpaths will be called
the legs.

Theorem 1.4. • The tree S(p, q, r) with 3 leaves has a bipartite labeling
if and only if (p, q, r) 6= (2, 2, 2)

• Every tree S(p, q, r) with 3 leaves has a graceful labeling.

Trees with exactly four leaves can be divided into two groups. First can be
described by using the spider notation as S(p, q, r, s). Second group are trees
with two branch vertices u and v, both with degree 3. We would describe
this trees by using a notation (p, q; r; s, t), where the numbers refer to lengths
of the u-endpaths, distance between u and v and lengths of the v-endpaths
respectively.

Theorem 1.5. • If at least two of p, q, r, s are not equal 2 then there
exists a bipartite labeling of the spider S(p, q, r, s).

• Every tree S(p, q, r, s) has a graceful labeling.

• Every tree S(p, q; r; s, t) has a graceful labeling.

Corollary 1.1. All trees with at most 4 leaves are graceful.

Theorem 1.6. Let Trs denote a tree of diameter three on r + s + 2 vertices
with two vertices of degree s + 1 and r + 1 adjacent to each other and r + s
leaves. Let Prs be the tree of diameter six obtained by replacing each edge in
Trs with a path of length two. Then next claims holds.

7

• The tree Prs has a bipartite labeling if and only if |r − s| ≤ 1.

• Every tree Prs has a graceful labeling.

As we have already mentioned, it is shown that not every tree has a
bipartite graceful labeling. There are some results describing some such
graph classes.

Huang, Kotzig and Rosa proved next theorem:

Theorem 1.7. Let T be a tree all of whose vertices are of odd degree. Let
T ∗ be obtained from T by replacing every edge of T by a path of length two.
If |V (T)| ≡ 0(mod 4) then T ∗ does not have a bipartite labeling.

Theorem 1.8. Let T be a tree with diameter 4 and T is not a caterpillar
nor path then T has no bipartite labeling.

Theorem 1.9. Let T (q1, q2, q3; s) be a tree rooted at its centre x. Vertex x
is adjacent to s leaves and to 3 vertices having degrees qi + 1, where each of
these are adjacent only to x and the leaves of T . In this case, the following
holds:

For any q1, q2, q3 ≥ 1 there exists a graceful labeling f of T (q1, q2, q3; s)
with f(x) = 0

Kotzig [14] showed that we are able to guarantee gracefulness by next
two modifications of any tree.

Theorem 1.10. • If a leaf of a long-enough path is joined with any leaf
of an arbitrary tree, the resulting tree is graceful.

• If a long-enough path replaces an arbitrary edge in an arbitrary tree,
the resulting tree is graceful.

Theorem 1.11. Every tree of diameter 5 is graceful

Sketch of a proof of this theorem could be found in survey work from
Edwards and Howard [8]. Original proof is in Hrniar and Haviar 2001 [11].

Definition 1.11. A bamboo tree is a rooted tree consisting of branches of
equal length, the leaves of which are identified with the leaves of stars of equal
size.

Theorem 1.12. All bamboo trees are graceful.

8

Proof could be found in Sekar 2002 [21].

Definition 1.12. An olive tree Tk is a rooted tree consisting of k branches,
the i-th branch is a path with a length i. In other words – Tk is a spider
S(1, 2, 3, . . . , k).

Theorem 1.13. All olive trees are graceful.

Proof. (sketch, due to Abhyankar, Bhat-Nayak [1]) The tree Tk is labeled
according to parity of k by labeling branch vertex first, with q = (n+1)(2n+
1) for tree T2n+1 or with label q = n for T2n. In second step are labeled the
vertices adjacent to the branch vertex according to parity. In final step are
labeled the remaining vertices such that sum of any two adjacent vertices is
either q − 1 or q for first case, and q or q + 1 for second case.

Definition 1.13. The symmetrical tree T is a rooted tree in which every
level contains vertices of the same degree.

Theorem 1.14. Every symmetrical tree is graceful.

This theorem was proven by Stanton and Zarnke [20].

α-val β-val σ-val ρ-val
Caterpillars YES YES YES YES

Olive YES YES YES
Symmetrical NO YES YES YES

Lobsters NO YES YES
Spiders NO YES YES

3-Cayley tree NO
number of leaves ≤ 4 NO YES YES YES

|V (T)| ≤ k 6 33 38 38
diam(T) ≤ k 3 5 7 7

Table 1.1: State of knowledge about valuations of some well-known tree
classes. “No” means that there exist at least one tree for which it is impossible
to find such valuation, in most cases could be as counterexample for the α-
valuations be used the spider S(2, 2, 2).

There is one more classical result, currently outperformed by a distributed
computing project – Graceful Tree Verification Project, which extended this
result to all trees up to 33 vertices.

9

Theorem 1.15. (Aldred, McKay ’98) All trees with number of vertices less
or equal 27 are graceful.

This was proved by Aldred and McKay [2] in 1998. They used an algo-
rithm, which begins with random permutation of labels {0, 1, . . . , |E|} and
switches such pairs of vertex labels which increased cardinality of the edge
labels set. If there wasn’t any such pair then they used other initial permu-
tation. They used some other heuristics to obtain the graceful labeling very
fast. Time consumption for one tree needed to be very low, because the num-
ber of various trees is growing very fast – for example there are 751, 065, 460
trees of order 27.

For more information about graceful and graceful-like labelings see work
from Frank van Bussel [23], survey made by Michelle Edwards and Lea
Howard [8]. Reader interested in labeling in general could find a lot of in-
teresting informations in Dynamic Survey of Graph Labelings from Joseph
A. Gallian [9] – really comprehensive survey with 180 pages and almost 800
cited papers.

10

Chapter 2

σ-Valuation of Spiders

Theorem 2.1. Every spider S(n1, n2, . . . , nk), with ni ≥ 3 for each i, has
σ-Valuation.

Notation 2.1. We will for a spider S(n1, n2, . . . , nk) use following notation:
The root of this spider will be called r. For i-th path with a length ni we will
create a path Gi by deleting the vertex r. This path has length |Ei| = mi and
|V | = ni vertices. We will call the vertex, which was in the original graph
connected with the root, vi. We will call Ai the bipartition which includes
vi and the other bipartition Bi. We will labels of vertices in Gi sometimes
for brevity call the subblock Gi. Notation for the spider, which we want to
label, will be as usual – the whole graph will be called G, |E(G)| = n and
|V (G)| = m. The constructed labeling will be for brevity called l even for
edges and vertices, it will always be either mentioned, or clear from context,
which one is meant.

SpidersLabeling(T, r)

1 label G1 . . . Gk with strongly graceful labeling, such that vi = 0
2 for i := 1 . . . k

do scale the labeling of Gi such that l(e) = l(e) +
∑j<i

j=0 mj

3 move the labels of Gi “into” Gi+2 for each i < k − 2
4 move the resulting blocks such that l(vk) = 0, l(vk−1) = |E|+ 1 and l(r) = |E|
5 use (k − 1)-times the shift and insert operations for s1 . . . sk−1

6 insert the edge (r, vk)

11

r

G1 Gk

v1 vk

· · ·

Figure 2.1: The spider S(4, 4, . . . , 5, 3) and resulting graphs G1 . . . Gk

Proof. Informal overview of the actions needed to label a spider can be seen
as pseudocode in procedure SpidersLabeling. We will now show how could
this operations be executed and that after each step some invariants hold.

Step 1: We can label each path with method shown in proof of theorem
1.2. We first label vi with 0 and than use this alternative labeling method
for achieving strongly graceful labeling.

This labeling has a positive property that we could for every i move part of
vertex labels, such that we get edge labels 1, 2, . . . , i−1, i+1, i+2 . . . , m, m+1,
from 1, 2, . . . ,m. This is possible to do any number of times, for any i in
interval [1, m′], where m′ is the maximal edge label used before the operation.
We will use this property in following steps. We will moreover be interested
just in such shifts that don’t move any label of vertex in the first biparti-
tion. It is needed to say that this property is stronger, as shift operation
for bipartite labelings, where we could from k-graceful labeling, achieve an

12

(k + j)-graceful labeling for any nonnegative j.

Step 2: The possibility of scaling is a consequence of the properties dis-
cussed in last paragraph. After the scaling procedure, an invariant holds that
there are used all edge labels from interval [1, m − k], each of them exactly
once.

Step 3: In this step we will create two “blocks”, each of them containing
just labels of Gi’s with even/odd i. Formally we change labels for each vertex
v in Gi, such that

l(v) = l(v) +
∑

j∈[i+2,k]
j≡i(mod 2)

dnj/2e

This is possible without risk that we will label two vertices in one block with
the same label. The reason is that we assume that each ni ≥ 3, what means
that mi ≥ 2. Then the difference between highest label in i and smallest in
i + 2 is at least 3. That is enough to put labels of Gi “into” those of Gi+2.
Besides, it is also possible to shift content of Gi inside the Gi+2 at least once.
We will use this property in Step 5. After this step we get two blocks, one of
them occupying |E|+ 1− k, second one |E|+ 1− k−mk consecutive vertex
labels (not each of this labels needs to be used).

Step 4: We “move” all labels of vertices in block containing Gk−1 such
that l(vk−1) = |E|+ 1, it could be done by just adding |E|+ 1 to each label
of vertex in this block. Besides, we label the vertex r with label |E|.

Step 5: In this step we add labels to all edges (r, vi) except (r, vk). We
first add labels (r, vi) for positive i := k − 1, k − 3, k − 5 . . . then for i :=
k − 2, k − 4, k − 6 . . ., one label in each step. Adding an label will be done
in two substeps – shift and insert. In case it will be needed, we will “move”
the whole subblocks within possible bounds. Strongly graceful labeling and
even our combination of such labelings has a property that an edge with
lower label values have its vertex labels within interval of vertex labels of an
edge with higher edge label, if both edges occupy the same block. From this
property follows already mentioned property that we could always change
edge labels from l1, l2, . . . lp ∧ li < li+1, such that for any i ∈ [1, lp] we get
l1, l2, . . . , lr−1, lr + 1, lr+1 + 2, . . . lp + 1, where lr is the first label with value
greater or equal to i. This could be done just by adding one to every vertex

13

label higher than some s. We will call this operation shift. Moreover, we
will call such operation admissible if we don’t shift any vertex label in first
bipartitions Ai. This is important, because than we will be sure that shift
operation don’t alter this bipartitions and specifically the already added edges
(r, vi).

a)

b)

c)

l(e) = i

l(e) = i

l(e) = i + 1

Figure 2.2: Example of the shift operation: 2.1 a) The labels of a graph G
before the shift i operation, b) The graph after using the admissible shift
operation for the value i, highlighted vertices are those, whose value was
raised, c) Next possible admissible operation for value i + 2. In all cases is
highlighted such edge, whose value is minimal from values greater or equal
to the value of shift operation.

Now we will show a property that for any of the two blocks, there is
always possible to use admissible shift operation for i or i + 1. We had to
mention that this property isn’t valid for every strongly graceful labeling –
as a counterexample could be used any star, with leafs in bipartition A. But
in this case are all Gi paths, what is enough for this property to hold. In
general, any caterpillar, with maximum degree 2 of all vertices in bipartition
B has this condition. We will generalize this result for such trees at the end

14

of this chapter.
We will first show that this property holds for the situation before the first

shift operation. In this situation there is exactly one block containing edge e
with edge label l(e) = i. For the block without such label, for each bipartition
Bj holds that all edge labels adjacent to vertices in this bipartition are either
smaller or all of them are higher than i. So we could just move every vertex
in all bipartitions containing just higher labels. For the bipartition with
e = (u, v) ∧ v ∈ Bj for some j could happen that we couldn’t move v and
all vertices with higher labels, because there is other vertex e′ = (u′, v) with
smaller label than i. But than we could use shift operation for i+1, because
we could either move all vertices higher than v if edge with label i + 1 is
in the same block, or it could happen that i + 1 is smallest label in some
subblock of the other block – to move the smallest label in some subblock
is always possible. Technically we do in both cases the same operation –
move all vertices with higher vertex label than v in first bipartition and all
the Bj bipartitions of blocks with higher or equal edge labels than i + 1. It
could also happen that i + 1 is bigger than maximal used label, in this case
we could just omit the shift operation, but this case wouldn’t happen in our
algorithm.

After any number of admissible shift operations, the situation wouldn’t
be much different. There could possibly happen that there exist no e with
l(e) = i in either of blocks, but it is not a problem, because admissible shift
operation won’t change the property that for any edges e = (u, v) ∧ e′ =
(u′, v) ∧ v ∈ Bj for any j holds l(e) = l(e′) + 1 ∨ l(e) = l(e′) − 1, so there
couldn’t happen that e and e′ with e < i < e′ share the same v ∈ Bj. Moving
subblocks in bounds of other subblocks wouldn’t affect any of this properties,
because, this don’t affect edge labels.

Now, when we have proven some properties for the shift operation, we
could approach the main labeling scheme. We will call the subblock Gj set-
tled, if we have already added label to (r, vj), the subblock Gk will be settled
by definition. We wouldn’t move this blocks in any way, with exception
of the shift operations done on vertices of its bipartition Bj. Other blocks
would be called unsettled. We will add (r, vi) labels in already mentioned
order i := k− 1, k− 3, k− 5 . . . , k− 2, k− 4, k− 6 This order means that
we will first label block containing Gk−1, which we will call the right block
then the left block. In a case that for some l(r, vi) would be impossible to use
an admissible shift operation, we will first move all unsettled subblocks in
current block by 1 then use shift operation for the new value of l(r, vi) and

15

insert this edge. As already mentioned, it is always possible to move a block
within an other block by one, thanks to requirement of length of paths at
least 3.

We will in each step i call procedure ShiftInsert(i,si :=abs(l(vi) −
l(r))). We first test if we could shift/insert and if not then we move the
unsettled blocks. We have to treat the shift operations in right/left block
differently. The reason is that the following shift operations in right block
wouldn’t affect the missing label si, because every following shift in step
j > i will affect just labels higher than sj and sj > si. In left block is the
situation different – for every following shift will hold j > i ⇒ sj < si and
so we have to make a “hole” in the edge labeling on such place that after all
k − 1 operations will hold that this “hole” has the same value as sj.

We have to verify that the following holds:

1 for any i from right block and j from left holds si < sj

2 Each shift operation lengthens the size of each block by 1

3 The move operation wouldn’t cause lengthening size of any block

4 After k − 1 operations are the “holes” in labeling, made by shift oper-
ations, matching inserted labels

To prove the first condition, we have to show that this inequality holds
for the subblocks with highest(lowest) value of si(sj) in right(left) block.
These blocks are G1 and G2. If we rewrite the first inequality for these two
blocks, we get condition (l(v1) + l(v2) < 2 · |E|). If we look at the difference
between value of l(vi) in this part of algorithm and after 3-th step, we see
that only difference is, adding to one of these values |E| + 1 and possible
k − 2 move operations on one of both sides. After step 3 is the value of
l(v1)+ l(v2) ≤ |E|−k−2 where k stands for at least k vertices in bipartitions
Bi and 2 for additional 2 vertices that from G1 and G2 which has higher label
(vi has minimal label of Gi and Gi has at least 3 vertices, where we counted
until now just one). So if we add to this inequality operations done until
now, we get:

l(v1) + l(v2) ≤ 2 · |E| − 3 < 2 · |E|

So the inequality holds and therefore also the first condition.
Second condition is evident from definition of shift operation. Third fol-

lows from an observation that we never use this operation for outer subblocks

16

Gk or Gk−1 – in first case, because we don’t use shift operation for Gk in this
step, shift operation for Gk−1 is used as first one, with si = 1 which allows
admissible shift. Last condition was already mentioned.

So if we sum everything up, after k − 1 operations has the highest edge
label value |E| − 1, we have assigned |E| − 1 labels and there is no conflict
between edge labels – shifting doesn’t create such conflict between the labels
of block edges, there is no such conflict between the labels of inserted edges,
because monotonicity of si’s in one block and the condition 1. Finally there
is no conflict between the labels of block edges and inserted edges, because of
condition 4. This means that after the step 6 we have used each of the edge
labels 1 . . . |E| exactly once. Last thing that we have to show is that there
was no vertex label used more than once and that no vertex label is higher
than 2|E|. There is no such conflict within blocks, and there isn’t any conflict
between them or with root, because after step 3 was valid an invariant that
the first block has size |E| + 1 − k, what means that the highest label has
value |E| − k, after k − 1 shift/insert operations it has value |E| − 1, where
root has the value |E|. To see that, we have used just vertices 0 . . . 2|E|
we also use invariants from step 3. There is no free space between blocks
and root and they occupy |E|, 1 and |E| −mk vertices respectively, which is
together 2|E| + 1 − mk, what means values 0 . . . 2|E| − mk, where mk ≥ 2.
So the valuation we get is σ-valuation.

ShiftInsert(i, si)

1 if shift si isn’t admissible
2 do move all unsettled subblocks in current block one step right
3 if RightBlock
4 then si := si + 1
5 else si := si − 1
6 if RightBlock
7 then shift si

8 else shift si − (i− dk/2e)
9 l(r, vi) := si

It should be mentioned that last theorem holds not only for spiders, which
are technically defined as trees having at least 3 paths meeting in vertex r.
But it holds also for paths S(n1, n2) or S(n1), or for graph with just one
vertex – in this case size of both blocks will be 0. So we will treat such
special cases the same way as spiders.

17

Theorem 2.2. Every spider has σ-Valuation.

Proof. We have to show that we could add to our labeling scheme any number
of “legs” with lengths 1 or 2. Adding legs with length one is trivial, we just
have to shift all vertex labels by one and then label the vertex of a leg with
zero. We could repeat this process for each leg with length one. For adding
both – the paths of length one and two we have to do 3 things – first make
place for the paths of length two, with some shift and move operations. Then
we could add the paths of length one and finally those of length two.

bk2/2c k1 k2 k2 k2

r

r

bk2/2c k1 k2 k2 k2

r

bk2/2c k1 k2 k2 k2

r

a)

b)

c)

d)

Figure 2.3: Scheme of construction used in proof of theorem 2.2 a) Labeled
graph G, b) Vertex labels after shift and move operations, c) vertex labels
of added vertices for paths of length 1 (left) and first labels ui of paths of
length 2 (right) and respective edges, d) vertex labels of added vertices wi

and edges (ui, wi)

Formally we have an already labeled graph G with k paths and m edges.
We treat an graph G′ with additional k1 paths of length 1 and k2 of length 2.
After first step, we want to get a labeling with edge labels k2 + 1, . . . , k2 + m
and with k2 unused labels l(r) + 1, . . . , l(r) + k2. This could be done by
first using k2 shift operations with value 1, 2 · k2 + 1 operations of move for
the whole right block and then relabel r, such that l(r) = m + k2. Shift
operations will result into adding k2 to all block labels. Move operations will
solve vertex label conflicts and adding to (r, vi) edge labels k2.

Now we could add vertex labels for paths of length 1, as mentioned before
– we just add one to each vertex label and label new vertex with 0. After k1

18

such operations we have used edge labels k2 + 1, . . . , k1 + k2 + m. Label of r
has value m + k1 + k2.

Now we will show, how we could label all paths of length 2. We will use
such notation that vertex in i-th path, connected to r will be called ui, and
the leaf vertex wi. We first have to add bk2/2c to each vertex label, this
will result to l(r) := m + k1 + k2 + bk2/2c, smallest used vertex label will be
bk2/2c and the highest will be 3 · k2 + bk2/2c + 2 · m − mk (resulting label
from last theorem plus results of operations in this theorem). Then we label

l(ui) := l(r) + i

for 1 ≤ i ≤ k2. Now we have used edge labels 1, . . . , k1 + k2 +m and we have
to use labels m + k1 + k2 + 1, . . . ,m + k1 + 2 · k2.

Finally, we use labels for wi as follows:

l(wi) =

{
bk2/2c − i if i ≤ bk2/2c,
2 ·m + 2 · k1 + 4 · k2 − (i− bk2/2c − 1) if i > bk2/2c,

Labelings of wi’s will use intervals [0, bk2/2c−1] and [2 ·m+2 ·k1 + ·k2 +
bk2/2c + 1, 2 · m + 2 · k1 + 4 · k2], so there will be no conflict with already
assigned vertex labelings. We will moreover show that the resulting edge
labeling will have values [m + k1 + k2 + 1, m + k1 + 2 · k2]. If we calculate
values of l(ui)− l(wi) for i ≤ bk2/2c, we get

l(ui, wi) = m + k1 + k2 + 2 · i

with minimum in m + k1 + k2 + 2 for i = 1 and maximum in m + k1 + 2 ·
k2 − [k2is odd] for i = bk2/2c. Similarly we will get

l(ui, wi) = m + k1 + 3 · k2 + 1− 2 · i

with minimum in m+k1 +k2 +1 and maximum in m+k1 +2 ·k2− [k2is even]
for i > bk2/2c. So the resulting edge labelings are from desired interval and
after this step we have successfully labeled G′ with values 1, . . . , |E ′|.

We could extend this result, without changing the construction on spider-
like graphs, where we don’t put together paths, but trees from a subclass of
caterpillars.

Definition 2.1. We will call half-caterpillar a caterpillar with start vertex
of its longest path vi and an additional property that every vertex with even
distance from vi has degree at most 2.

19

v1

Figure 2.4: Half-caterpillar tree

Figure 2.5: Resulting tree after joining 3 various half-caterpillars

We could see example of an half-caterpillar on figure 2.4 and example of
an tree from following theorem on figure 2.5.

Theorem 2.3. A tree obtained by merging the start vertices r of k half-
caterpillars has σ-valuation.

Proof. The proof for this class will look exactly as the proof just showed for
spiders, with one exception that we don’t speak about spiders with paths
of length at least 3, but with half-caterpillars with at least 3 non-r-vertices.
Added special cases are again just P1 and P2, because every other half-
caterpillar has at least 3 vertices, so even second part of proof wouldn’t need
adding of any special cases.

20

Chapter 3

σ-valuations of some other tree
classes

Theorem 3.1. Let G be a connected graph admitting graceful labeling. Then
graph G′ obtained by identifying each vertex vi with the center vertex of star
Sai

of any size (possibly 0) has σ-valuation.

Proof. We will take any one of the graceful labelings of G. For this holds that
used vertex labels are 0, . . . , n−1 and that each of the edge labels 1, . . . , n−1
is used at least once. We will for k new edges use the labels n, . . . , n + k− 1.
We first sort the vertices, which have to be identified with non-zero-sized
stars, in ascendant order of their label values. We will then use edge labels
for added edges also in ascendant order, starting with value n. So if the
smallest vertex label of has value a and we will identify it with the center
vertex of S2 then we label new leafs of this star a + n and a + n + 1. It is
clear that such labeling will never use same vertex label twice, because for
two following nodes starting in (possibly equal) vertices with vertex labels
a1 ≤ a2 holds that a1 +n+ i < a2 +n+ i+1. The minimal vertex label value
that we could use, is n, maximal possible vertex label is not smaller than
2(n + k − 1) (because of connectivity we had at least n− 1 edges in G). We
wouldn’t use vertex outside this boundaries, because in situation that the
smallest vertex label has value 0, we get value n := 0+n as new vertex label.
If the highest has value n− 1 then we get n− 1 + n + k − 1 ≤ 2(n + k − 1).
So the resulting labeling is σ-valuation.

Theorem 3.2. Every lobster, irregular banana, irregular bamboo and every
tree with diameter at most 7 has σ-valuation.

21

Therm irregular is here used to denote possibly various star sizes in op-
position of regular versions, where each star has same size.

Proof. Each of this classes could be obtained by using previous theorem on
classes known to be graceful. Those classes are caterpillars for lobsters, stars
S(i, i, . . . , i) for banana and bamboo trees and trees with diameter at most
5 for those with diameter 7.

Theorem 3.3. Every tree T with at most 38 vertices has σ-valuation.

Proof. We will use theorem 3.1 and the properties that every tree with di-
ameter at most 4 and with at most 33 vertices are graceful. We will for tree
T with more than 33 vertices distinguish two cases. If T has at most 4 leafs,
than it has graceful labeling what is also a σ-valuation. If T has more than 5
leafs, than after removing this leafs, we get tree T ′ with at most 33 vertices.
We use theorem 3.1 for labeling the vertices from T \ T ′

Note 3.1. There are more possibilities how to construct σ-valuations from
some more restrictive valuations. We have also proved that we could get σ-
valuation from connecting any vertex v1 of graceful graph G1 with any vertex
v2 of G2 admitting α-valuation. Similar result seems to be possible to obtain
for graceful graph G1 and graph G2 with so called local bipartite labeling, if
we add some restrictions on G1 and G2. It could be interesting to do some
research in this way, mainly trying to connect more graphs with α-valuation
to some graceful graph, or trying to find some construction for identifying
vertices of such graphs instead of connecting them with a vertex.

22

Bibliography

[1] Abhyankar, V.J., Bhat-Nayak, V.N. Easiest graceful labeling of olive
trees, Bulletin, Bombay Mathematical Colloquium, 14 (1998) no.3.

[2] Aldred, R.E.L., McKay, D. Graceful and harmonious labellings of trees,
Bull. Inst. Combin. Appl., 23 (1998) 69–72.

[3] Aldred, R.E.L., Širáň, J., Širáň, M. A note on the number of graceful
labelings of paths, Discrete Math., 261 (2003) 27–30.

[4] Bloom, G.S., Golomb, S.W. Numbered complete graphs, unusual rulers,
and assorted applications, in Theory and Applications of Graphs, Lec-
ture Notes in Math., 642, Springer-Verlag (1978), 53–65.

[5] Bonnington, C.P., Širáň, J. Bipartite labelings of trees with maximum
degree three, J. Graph Theory, 31 (1999), no. 1, 7–15.

[6] Broersma, C., Hoede, C. Another equivalent of the graceful trees conjec-
ture, Ars Combinatorica, 51 (1999), 183–192.

[7] Caro, Y., Roditty, Y., Schönheim, J. Starters for symmetric (n, G, 1)-
designs. ρ-labelings revisited, preprint.

[8] Edwards, M., Howard, L. A survey of graceful trees, Atlantic Electronic
Journal of Mathematics, 1 (2006) 5–30.

[9] Gallian, J.A. A dynamic survey of graph labeling, The Electronic Journal
of Combinatorics, (http://www.combinatorics.org/) DS 6 (2000), 1–79.

[10] Gvozdjak, P. On the oberwolfach problem for cycles with multiple
lengths, Ph.D. thesis, Simon Fraser University, 2004

23

[11] Hrnčiar, P., Haviar, A. All trees of diameter five are graceful, Discrete
Math., 233 (2001) 133–150.

[12] Huang, C., Kotzig, A., Rossa, A. Further results on tree labellings, Util.
Math., 21c (1982) 31–48.

[13] Chung, F.R.K., Hwang, F.K. Rotatable graceful graphs, Ars Combin.,11
(1981) 239–250.

[14] Kotzig, A. On certain vertex-valuations of finite graphs, Utilitas Math.,
4 (1973) 261–290.

[15] Kotzig, A. Recent results and open problems in graceful graphs, Congres-
sus Numerantivum, 44 (1984), 197–219.

[16] Poljak, S., Sura, M. An algorithm for graceful labelling of a class of a
symmetrical trees, Ars Combin., 14 (1982) 57–66.

[17] Rosa, A. Labeling snakes, Ars Combin., 3 (1997) 67–73.

[18] Rosa, A. On certain valuations of the vertices of a graph, Theory of
graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach,
N.Y. and Dunod Paris (1967) 349–355.

[19] Rosa, A., Širáň, J. Bipartite labelings of trees and the gracesize, Journal
of graph Theory, 19 (1995), 201–215.

[20] Stanton, R.G., Zarnke, C.R. Labellings of balanced Trees, Congressus
Numerantivum, 8 (1973), 479–495.

[21] Sekar, C. Studies in Graph Theory, Ph.D. Thesis, Madurai Kamaraj
University, 2002

[22] Van Bussel, F. 0-centred and 0-ubiquitously graceful trees, Discrete Math.
277 (2004) no.1-3, 193–218.

[23] Van Bussel, F. Towards the graceful tree conjecture, University of
Toronto, 2000

[24] Wang, J.-G., Jin, D.J., Lu, X.-G., Zhang, D. The gracefulness of a class
of lobster trees, Math. Comput. Modelling,20 (1994) 105–110.

24

