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Abstract 

A typical problem in portfolio selection in 
stock markets is that it is not clear which of the 
many available strategies should be used. We 
apply a general algorithm of prediction with 
expert advice (the Aggregating Algorithm) to 
two different idealizations of the stock mar- 
ket. One is the well-known game introduced by 
Cover in connection with his “universal port- 
folio” algorithm; the other is a more realis- 
tic modification of Cover’s game introduced in 
this paper, where market’s participants are al- 
lowed to take “short positions”, so that the 
algorithm may be applied to currency and fu- 
tures markets. Besides applying the Aggregat- 
ing Algorithm to a countable (or finite) family 
of arbitrary investment strategies, we also ap- 
ply it, in the case of Cover’s game, to the un- 
countable family of “constant rebalanced port- 
folios” considered by Cover. We generalize 
Cover’s worst-case bounds for his “universal 
portfolio” algorithm (which can be regarded 
as a special case of the Aggregating Algorithm 
corresponding to learning rate 1) to the case 
of learning rates not exceeding 1. Finally, we 
discuss a general approach to designing in- 
vestment strategies in which, instead of mak- 
ing statistical or other assumptions about the 
market, natural assumptions of computability 
are made about possible investment strategies; 
this approach leads to natural extensions of the 
notion of Kolmogorov complexity. 

1 INTRODUCTION 

In recent years, following Littlestone and Warmuth [II], 
a series of papers devoted to “prediction with expert 
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advice” have appeared. (In this paper, we will usu- 
ally speak of “actions” instead of “predictions”.) Lit- 
tlestone and Warmuth considered the simplest situation 
of binary actions and outcomes with the loss function 
being the number of mistakes made and proposed the 
Weighted Majority Algorithm for merging several deci- 
sion strategies (the same algorithm was independently 
proposed in Vovk [13]). Later the Weighted Majority 
Algorithm was developed in (at least) two different di- 
rections. Vovk [12] (see also [14]) generalized it to a 
wide class of outcome and action spaces and loss func- 
tions. This general algorithm, which we will call the 
Aggregating Algorithm (AA), was shown to be in a cer- 
tain sense optimal (see Haussler et al. [5], Vovk [12, 141). 
On the other hand, Littlestone et al. [lo] and Kivinen 
and Warmuth [8] developed the Weighted Majority Al- 
gorithm in a different direction, introducing what we 
will call EG-type algorithms. 

An interesting special case of the AA is Cover’s (see, 
e.g., Cover and Ordentlich [2]) universal portfolio se- 
lection algorithm. The AA, like the Weighted Major- 
ity Algorithm and EG-type algorithms, depends on a 
parameter called “learning rate” and usually denoted 
by n; 0 < 7 < co. Cover’s algorithm coincides with 
the AA applied to what we call “Cover’s game” and 
the pool of constant rebalanced portfolios with learning 
rate 77 = 1. The usual methods of proving worst-case 
bounds for the AA give the best results for 77 = 1, and 
it seemed evident that one should take n = 1. How- 
ever, in Helmbold et al.‘s experiments [6] it was found 
that the values v = 0.01 to 77 = 0.15 are better than 
r/ = 1 for their EG-type algorithm; moreover, their algo- 
rithm with the learning rate in this range outperformed 
Cover’s algorithm. Since the 7 of Helmbold et al.‘s algo- 
rithm and the AA’s q are of the same provenance, one 
might suspect that the cause of the inferior performance 
of Cover’s algorithm is a wrong learning rate. This sug- 
gests that learning rates different from 1 might also be 
interesting even for Cover’s game, and so we consider 
general q. 

The main contribution of this paper is that, besides 
Cover’s game (Section 3), we consider (in Section 4) a 
more realistic, in some respects, game, where the mar- 
ket’s participants are allowed to take short positions. 
(This game is applicable, e.g., to investment in curren- 
cies and futures, as well as stock, markets.) 
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Cover and Ordentlich [2] are mainly interested in an 
infinite pool of experts which correspond to constant 
rebalanced portfolios (for exact definitions, see below). 
It is not clear why the constant rebalanced portfolios 
are a good choice (they typically involve a lot of trad- 
ing, ignore the non-stationarity of markets, etc.), and 
we are more interested in applying the AA to countable 
or finite families of investment strategies. Such a fam- 
ily might consist, e.g., of all investment strategies that 
the investor believes to be reasonable. For a further 
motivation, see Section 5. 

However, we still prove (in Section 3) a generaliza- 
tion of Cover’s result for Cover’s game and the pool 
of constant rebalanced portfolios; namely, we obtain a 
bound of 9 In T on the extra loss of the algorithm as 
compared to the best constant rebalanced portfolio (N 
is the number of stocks and T is the number of trials). 
For n = 1 our bound becomes Cover and Ordentlich’s [2] 
bound of 9 In T, whereas Helmbold et al.‘s [6] bounds 
are much worse (for fixed 7, their bound on the extra 
loss of their algorithm is linear in T). 

Our use of the word “universal” in the title of this 
paper is traditional: for example, it is widely used in 
discussions of Cover’s algorithm of merging constant re- 
balanced portfolios (see, e.g., [2]) and in information 
theory (see, e.g., [3]). Our preferred interpretation of it 
is, however, in terms of the theory of Kolmogorov com- 
plexity (for an excellent survey of this theory, see Li and 
Vitanyi [9]). 

The basic idea of the universal approach to invest- 
ing may be described as follows. The AA can merge 
any countable families of investment strategies, which 
suggests a possibility of applying Solomonoff’s idea of 
universal prediction (see, e.g., [9], Section 5.2). Con- 
sider a universal Turing machine M: when supplied 
with a “program” i, M simulates Turing machine Mi, 
and every Turing machine is among the Mi. Every 
computable investment strategy is computed by some 
Turing machine M i, and so we can obtain a universal 
investment strategy by merging all Mi. The resulting 
universal strategy will not be computable in the usual 
sense (though it will be computable “in the limit”), so 
we need to use some approximations to it; in the usual 
theory of Kolmogorov complexity such approximations 
were considered, e.g., by Levin (universal search proce- 
dures), Rissanen (MDL principle) and Wallace (MML 
principle). 

In Section 5 we elaborate the idea of universal invest- 
ment. In this paper we are mainly interested in abstract 
setting in which the learner’s computational resources 
(such as the allowed computation time) are unlimited 
and arrive at two modifications of Kolmogorov com- 
plexity. The usual Kolmogorov complexity (more ac- 
curately, its variant KIM, see [9], Subsection 4.5.4) can 
be interpreted as an intrinsic measure of helpfulness of 
the learner’s adversary in the log-loss game. One of 
our modifications (“Cover complexity”) is a measure of 
the market’s helpfulness in Cover’s game; the log-loss 
game is a restriction of Cover’s game and, correspond- 
ingly, Kolmogorov complexity is a restriction of Cover 

complexity (up to a scaling factor). The other modifi- 
cation is a measure of the market’s helpfulness in the 
long-short game. 

2 GENERAL AA 

The AA is an algorithm which the learner can use to 
choose an action based on the suggestions from a pool 
0 of experts; the set 0 is equipped with a a-algebra. 
We will consider the following perfect-information game 
between three participants, Pool, Learner, and Nature: 

FORt=1,2,... 
Pool chooses a measurable function 7t : 0 + r 
Learner chooses yt(Learner) E r 
Nature chooses wt E fl 

END FOR. 

In this description, r is a fixed action space (r is as- 
sumed to be a topological space equipped with the U- 
algebra generated by the open sets), rt(0) is the action 
chosen by expert 8 at time t, and Q is a fixed outcome 
space. We also fix a loss function X : fi x P -i TR; the 
total loss suffered by expert 0 over the first T trials is 

and the total loss suffered by Learner over the first T 
trials is 

LossT(Learner) := CT=, X(wt, yt(Learner)). 

We do not fix the goal of the game; informally, Learner 
aims at performing almost as well as the best expert. 
The AA provides a possible strategy for Learner in this 
game. 

First we fix a learning rate n > 0, put p = e-q, and 
fix a probability distribution PO in the pool 0; the prior 
distribution PO specifies the initial weights assigned to 
the experts. Besides choosing 7 and PO, we also need to 
specify a “substitution function” in order to be able to 
apply the AA. A generalized action is defined to be any 
function of the type R -+ IR and a substitution func- 
tion is a function C that maps every generalized action 
g : 0 + IR into a “permitted action” C(g) E P. A per- 
mitted action y E P is identified with the generalized 
action g defined by g(w) := X(w, y). (Note that, ab- 
stractly, an action may be identified with its loss func- 
tion. In the context of portfolio selection, a permitted 
action is a loss function that can be achieved by a feasi- 
ble portfolio.) Later we will describe which substitution 
functions are allowed in the AA; let us assume that we 
are given some substitution function C. Now we have 
all we need to describe how the AA works. 

At every trial t = 1,2,. . . Learner updates the ex- 
perts’ weights as follows: 

where A C 0 is a measurable set; PO is the prior distri- 
bution. (Therefore, the larger the loss X(w,, yt(0)) the 
more sharply the weight of expert B decreases.) The 
action chosen by the AA at trial t is obtained from the 
weighted average of the experts’ actions by applying the 
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substitution function: it := C (gt) , where the general- 
ized action gt is defined by 

and Pt*_l are the normalized weights, PC-1 (do) := 
pt-I (W/&l (0) ( assuming that the denominator is 
positive; if it is 0, PO-almost all experts have suffered 
infinite loss and, therefore, the AA is allowed to choose 
any action). 

When Learner follows AA(q, PO) (i.e., AA with 
learning rate q and prior PO) we will write 

Losv(AA(rl, PO)) 

in place of LossT(Learner). We will also speak of Ag- 
gregating Pseudo-Algorithm (APA), which makes not 
permitted actions but generalized actions, in accor- 
dance with (1); we will use the self-evident notation 
APA(q, PO) and also the notation 

Lowr(APA(rl, PO)) := CL, gt(wt), 

where gt is the generalized action output by APA(q, PO) 
at trial t. 

All our proofs are based on the following property 
of the APA (see [14]). 

Lemma 1 For any learning rate 7 > 0, prior PO, and 
T = 1,2,..., 

LossT(AF’A(~, PO)) = log0 & /3LoSST(B)Po(d0), 

To finish the description of the AA, we only need 
to specify the admissible substitution functions C. Let 
GA(q) be the set of all possible generalized actions that 
can be output by the APA with learning rate q (see (1)); 
in other words, 

GA(q) := 
{g : R + IR 1 3PVw : g(w) = log0 Jr p+,y) P(dy) > ) 

where ,B := e-q and P ranges over the set of all prob- 
ability distributions in I?. Notice that GA(q) depends 
only on the loss function X and does not depend on the 
pool of experts. 

Let us assume that A takes only nonnegative values. 
Notice that in this case every g E GA(q) also takes only 
nonnegative values. For any such generalized action g 
we define 

x(w,r) 
c(g) = ink SUP,~CI +) 

(with convention i := 0); we also put 

C(V) := SUP,EGA(,) C(S). 

Our assumptions about the game (n,I’,J) will be 
the same as in [14]: 

0 P is a compact topological space. 

l For each w, the function y ++ X(w, y) is continuous. 

l There exists y such that, for all w, X(w,y) < cc). 

l There exists no y such that, for all w, X(w, y) = 0. 

Under these assumptions, there exists a substitution 
function C = C, such that 

vg 6 GA(rlPw E fl : JG,%7)) 5 c(rlMw) (2) 
(see Subsection 7.1 below). The allowed substitution 
functions in the AA are those satisfying (2). Notice 
that, according to Lemma 1 and (2), 

LossdAA(v7, PO)) I 47) loga 
s 

pLOSST(0)Po(de). (3) 
0 

We will say t,hat the game (0, r, X) is q-mixable if we 
can take c(q) = 1 in (2) (notice that always C(Q) 2 1). 
For such games the requirement that the loss function 
should be nonnegative is superfluous; even when the 
loss function is allowed to take negative values, we will 
always have 

Losw(AA(v, PO)) I logO 
s 

PLO”“T(0)P,(dO). (4) 
0 

Cover’s game and the long-short game are q-mixable if 
and only if 7 _< 1. When discussing q-mixable games, 
we will never malce the assumption that the loss function 
is nonnegative. 

When 0 is a countable or finite set, (3) and (4) imply 
the following lemma showing that the AA performs not 
much worse than any expert. (A countable or finite 0 
will always be equipped with the a-algebra of all subsets 
of 0.) 

Lemma 2 If the pool 0 of experts is countable or finite, 

Lo=w(AA(rl, PO)) 5 4~) LOSST(~~ + 4~) ln &, 

where a(v) := c(q)/q. In the case of an v-mixable game, 

Loss~(AA(q, PO)) 5 LOSST(@ + f In &. 

(To prove this lemma it suffices to replace the sum, 
which is represented by the integral sign, in (3) and 
(4) with one addend.) 

3 COVER’S GAME 

Learner is investing in a market of N stocks. The be- 
havior of the market at trial t is described by a non- 
negative price relative vector wt = (wt[O], . . . , wt[N - 
11) E [0, CCJ)~. The entry wt[n], n = 0, 1, . . . , N - 1, of 
the tth price relative vector wt denotes the ratio of day 
t closing price to day t - 1 closing price of the stock 
n; we will usually assume that at least one of wt[n] 
is positive. An investment at time t in this market is 
specified by a portfolio vector “lt E [0, llN with non- 
negative entries rt[n], n = 0, . . . , N - 1, summing to 1: 
rt[O] + . . . + yt[N - l] = 1. The entries of it are the 
proportions of the current wealth invested in each stock 
at time t. An investment using portfolio y increases the 
investor’s wealth by a factor of y . w = Cf&,’ $n]w[n] 
if the market performs according to the price relative 
vector w = w[O] . . . w[N - 11. It is natural to define the 
loss function to be the minus logarithm of this increase: 

X(w, y) := - ln(r . w). (5) 

14 



The AA can only deal with a non-negative loss function 
(unless the latter is q-mixable) and it is usually best to 
apply it to loss functions satisfying inf, X(w, y) = 0 for 
all w, so we “normalize” loss function (5) considering 
“regrets” 

IMICC A” (w, y) := X(w, y) - mQ’n X(w, 6) = In -, (6) 

where llwlloo := max, w[n]. It is easy to see that consid- 
ering loss function (6) is equivalent to considering the 
initial loss function (5) with the additional restriction 
that /lwlloo = 1. 

The next lemma gives c(q) and the AA’s actions for 
the game just defined (Cover’s game) and v < 1. 

Lemma 3 For every 77 5 1, c(q) = 1. Moreover, for 
every 77 2 1 and every g E GA(q), c(g) = 1. The only 
action attaining c(g) = 1 is the average 

y* := J yP(dy) > (7) 
r 

where P is a probability distribution in I? generating g: 

g(w) = loga Jr ,!?x’“,Y)P(dy), V’w, 

with ,!3 := e-7. 

This lemma is proven in Subsection 7.2 below. 
Now we can give a relatively explicit description of 

the AA for rl 5 1: 

Algorithm 1 If 77 < 1, AA(q, PO) ‘s action 7~ at trial 
T is 

(Notice that Algorithm 1 becomes Cover’s algorithm 
when q = 1.) 

It seems that the case 7 > 1 is less interesting than 
the case 17 < 1; for the former we only state the following 
simple result, which shows that c(q) > 1 when q > 1. 

Lemma 4 When Q > 1, c(v) = Q. 

(For a proof, see Subsection 7.3 below.) Lemmas 2, 3 
and 4 immediately imply 

Theorem 1 If the pool 0 of experts is countable or fi- 
nite, the performance of AA(q, PO) will satisfy, for any 
T and 8 E 0, 

1 
Loss~(AA(v, PO)) 5 Loss + 1 In - 

v PO{@) 
(8) 

ifv<l, and 

Loss~(AA(q, PO)) 5 Q LOSST(@ + In 
i& C9) 

if 7 > 1. In (8) the loss function is either - In(y . w) or 
In e; in (9) the loss function is In e. 

We can see that the best bound obtains when q= 1. 
In conclusion of this section, we state a generaliza- 

tion of Cover’s result for Cover’s game, 77 i 1 and the 
pool of constant rebalanced portfolios (for a proof, see 
Subsection 7.4 below). The later pool is defined to be 
0 = I’; expert y’s action is always y. Notice that expert 
y’s loss is the minus logarithm of the wealth attained 
by using the same portfolio y starting with a unit capi- 
tal. (Expert y’s strategy is called a constant rebalanced 
portfolio strategy; it actually involves a great deal of 
trading.) 

Theorem 2 For any learning rate q < 1 and number 
of stocks N there exists a constant c = ~(7, N) such that 
always 

Loss~(AA(q, PO)) < infTEr Loss~(y) + ?$ 1nT + c, 
T= 1,2,..., 

where PO is the Dirichlet measure with parameters 
1 1 
2”“‘Ti. Here the loss function is either - ln(y . w) 

or 111 ll.!tJ~. Y’W 
Notice that the best bound again corresponds to 7 = 1 
(Cover’s case). This is because this bound is deduced 
in two steps: we prove that the APA’s performance sat- 
isfies it and then make use of the fact that c(g) = 1 for 
any generalized action g. For AA(l) = APA(1) nothing 
is lost, but for 17 < 1 we ignore the possibility that at 
the realized outcome w the permitted action C(g) can 
be much better than the generalized action g. 

4 LONG-SHORT GAME 

Here we consider a modification of Cover’s portfolios. 
Again Learner is investing in a market of N stocks, but 
the behavior of the market at trial t is described by a 
vector of returns wt E [-l,~o)~ (notice the difference 
from Cover’s game). The entry wt[n], n = 0,. . . , N - 
1, of the tth vector of returns wt denotes the ratio of 
the day t increase in the price of stock n (i.e., of the 
difference between its day t closing price and its day 
t - 1 closing price) to its day t - 1 closing price. (The 
minimal value of this ratio is -1.) An investment at 
time t in this market is specified by a portfolio vector 
Tt E RN with entries rt[n] satisfying 

IhIll := Irt[Oll + . ..+ l~t[N - 111 L a, (10) 

where a > 0 is a constant (“prudence coefficient”) re- 
flecting how much of her capital Learner is willing to 
jeopardize. The entries of Tt are the proportions of 
the current wealth invested in each stock at time t; 
rt[n] being negative means a short position in stock n. 
An investment using portfolio y increases the investor’s 
wealth by a factor of 1 + y . w = 1 + Crzol r[n]w[n] if 
the market performs according to the vector of returns 
w = w[O].. .w[N - 11. A natural loss function is the 
minus logarithm of this increase: 

X(w, y) := - ln(1 + y. w), 

but again we will also be interested in Learner’s “regret” 

X*(w,y) := In *, (11) 
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where l141m := max, ]w[n]] (notice that -ln(l + 
a]]~]]~) is the loss Learner would have suffered had he 
known w a priori). The loss function X* is non-negative 
and satisfies inf, X” (w, y) = 0 for all w; it is obtained by 
“normalizing” X: 

X*(w, y) = X(w, y) - irifd X(w, 6). 

We will make the optimistic assumption that always 
]lwt]loo 5 a4, where 0 5 A < $; this assumption ensures 
that Learner will never go bust. 

In the next lemma (which is proven in Subsection 7.5 
below) we compute c(n) and the AA’s actions for the 
long-short game. 

Lemma 5 For every r,~ 5 1, c(n) = 1. Moreover, for 
every 71 5 1 and every g E GA(n), c(g) = 1. The only 
action attaining c(g) = 1 is the average (7), where, as 
before, P is a probability distribution in I generating g. 
When n > 1, c(q) > 1. 

Notice that (7) is indeed an action: the convexity of the 
absolute value function implies that a linear mixture of 
portfolios satisfying (10) again satisfies (10). 

A more explicit description of the AA for the long- 
short game with n 5 1 is as follows: 

Algorithm 2 AA(v, PO) ‘s action 7~ at trial T is 

Now we state an analog of Theorem 1, which immedi- 
ately follows from Lemmas 2 and 5, for the long-short 
game. 

Theorem 3 For the long-short game, q 5 1, countable 
or finite 0 and any PO we have 

VI9 E OVT : 
Loss~(AA(q, PO)) 5 LOSST(B) + i In &, 

with the loss function either - ln( 1fy.w) or In w. 

5 PREDICTIVE COMPLEXITY 

So far we have discussed merging virtually arbitrary 
pools of strategies for Learner; there remains, however, 
the question of how to choose the pool of strategies to 
be merged. One (traditional) possibility is to merge a 
pool which we feel contains a strategy that will perform 
well. For example, if we believe that in some securities 
market security prices are generated by an iid process 
(a dubious assumption), we could choose to merge all 
constant rebalanced portfolios (see Theorem 2 above). 
The wider such a pool is, the more justified is the be- 
lief that one of the strategies in it will perform well; 
unfortunately, it is also true that it will be more diffi- 
cult to compete with the best strategy in the pool. We 
are more interested, however, in the case where Learner 
does not have any beliefs and is not willing to make any 
assumptions about her environment (such as a securi- 
ties market). At first it might seem that without any 

limitations on Learner’s environment it is impossible to 
devise any reasonable strategy for Learner. However, 
since we deal with the system 

Learner + Environment, 

instead of imposing restrictions on the Environment 
part we can impose restrictions on the Learner part. 
Indeed, such Learner-side limitations are very natural: 
we know that she must compute her strategy and, more- 
over, her computational resources are bounded. Instead 
of pools reflecting our beliefs we can use pools reflecting 
Learner’s limitations such as the pool of all computable 
strategies or, even better, the pool of all efficiently com- 
putable strategies. (Cf. [13].) 

In this paper we consider the simplest situation 
where Learner’s strategy is required to be computable 
but in a somewhat unusual sense: she is allowed to 
spend infinite amount of time computing her actions. 
We will prove that there exists the best, up to an ad- 
ditive constant, strategy of this kind. Of course, this 
strategy cannot be directly used in practice, but it can 
be a useful (though not achievable) goal: as in the the- 
ory of Kolmogorov complexity, we can study different 
efficiently computable approximations to this best (or 
universal) strategy. 

We will mainly concentrate on what we call “predic- 
tive complexity” : the predictive complexity of a data 
sequence is the loss suffered by the universal strategy 
on that sequence. (The word “predictive” is not very 
suitable for this paper, since Learner’s actions in Cover’s 
or the long-loss game can hardly be interpreted as pre- 
dictions, but it is widely used in related contexts, and 
we use it as well.) Now we will give formal definitions 
(partly following [16], where the square-loss game was 
considered). 

First we formally state a protocol which includes all 
games we are interested in. It will involve one more 
set, C, which we call the signal space; as before, we 
have the outcome space R, the action space r, and the 
loss function X : R x I -+ IR. We will rarely need the 
signals, and in most of this section the reader can simply 
ignore mentioning signals (or, alternatively, assume that 
C is a l-element set and so the signals do not carry any 
information); sometimes we will even drop mentioning 
signals. Our protocol is: 

FOR t = 1,2,. . Learner 
observes signal ot E C 
chooses prediction -n E I’ 
observes the actual outcome wt E Q 
suffers loss X(wt , -n) 

END FOR. 

Such a quadruple (C, 0, I’, X) is called our game. We 
will assurne that the sets C, R and I are equipped with 
some computability structure that allows one to speak 
of, say, computable functions on R x I? (in our examples 
this somewhat vague assumption is obviously satisfied). 
The function X is assumed to be computable. 

A data sequence is defined to be a finite sequence 
II: E (C x R)* of signal/outcome pairs; instead of 

16 



2 = ((al,wl),...,(~.~,~~)) we will usually write z = 
(CT1 . . . Q/W1 . . WT). Let S be a prediction strategy, i.e., 
a function that maps every data sequence x into an ac- 
tion S(x) E I’. Our notation for the total loss 

CL, x (Wt, S(Wl . . Wt-1101 . . .w-l)) 
incurred over the first T trials by Learner who follows S 
will be LOSSS(X), where x = (~1 . . . w~Jg1 . . . PT) are the 
realized signals and outcomes. The function LOSSS(X) of 
a finite sequence x E (C x 0)* is called the loss process 
of S; a real-valued function on (C x a)* is a loss process 
if it coincides with LOSSS for some prediction strategy 
S. 

Especially important are the loss processes corre- 
sponding to computable prediction strategies S; in all 
our examples these are exactly the computable loss pro- 
cesses. It would be ideal if the class of computable loss 
processes contained a smallest (say, to within an ad- 
ditive constant) element. Unfortunately, for the loss 
functions in our games such a smallest element does not 
exist,: given a computable prediction strategy S, it is 
easy to construct a computable prediction strategy that 
greatly outperforms S on at least one signal/outcome 
sequence. Levin suggested (for a particular game, the 
log-loss game; see below) a very natural solution to the 
problem of non-existence of a smallest computable loss 
process. 

We will say that a function Ic : (C x a)* -+ IR is 
a measure of predictive complexity if the following two 
conditions hold: 

1. Ic must be a superloss process, which means that 
Ic(0) = 0 (where q is the empty sequence) and 

vxE(CxR)*3yErvoEC,wER: 
k(x * (a,w)) L k(x) + G4YL (12) 

where (~1 . . . WT/~I . . . go) * ((T, w) is defined to be 
(Wl . . . WTWIcq . . CTTcr). 

2. k must be semicomputable from above, which means 
that there exists a computable sequence of com- 
putable functions ki : (C x n)* -+ IR such that, for 
every 2 E (C x R)‘, k(x) = infi ki(x). 

Requirement 1 means that our measure of predictive 
complexity must be valid: there must exist a prediction 
strategy that achieves it. (Notice that if > is replaced by 
= in (12)) we will obtain the definition of a loss process.) 
Requirement 2 means that it must be “computable in 
the limit”; since we are interested in a universal measure 
of predictive complexity k, we cannot hope that we will 
be able to compute it in finite time; all we can do is 
to output more and more accurate approximations ki 
to it so that in the limit we obtain k. (Notice that in 
item 2 we can assume, without loss of generality, that 
the sequence ki is decreasing.) 

A smallest, to within an additive constant, measure 
k* of predictive complexity will be said to be universal. 
In other words, a measure k* of predictive complexity is 
universal if for any other measure k of predictive com- 
plexity there exists a constant C such that 

t/x E (C x R)* : k’(x) < k(x) + c. (13) 

In Subsection 7.6 below we will prove that a univer- 
sal measure of predictive complexity exists for perfectly 
mixable games (we say that a game is perfectly mixable 
if it is q-mixable for some 17 > 0; as we already men- 
tioned, the games considered in this paper are perfectly 
mixable). 

Lemma 6 There exist universal measures of predictive 
complexity for perfectly mixable games. 

(Remember that we always assume that our games sat- 
isfy assumptions of computability which we do not spec- 
ify explicitly.) 

For every perfectly mixable game we fix a universal 
measure of predictive complexity; the notation for the 
latter will be K: with sub- and/or superscripts to identify 
the game; these sub-/superscripts will be dropped when 
clear from the context. For every 2 E (C x n)*, X(x) 
will be called the predictive complexity of x. 

Remark 1 We have defined predictive complexity only 
“up to an additive constant” (see (13)). It is not difficult 
to make this constant more explicit (see Corollary 1 
below), but to get rid of it completely we need to specify 
a concrete universal measure of predictive complexity. 
Some suggestions on how to choose concrete variants of 
Kolmogorov complexity can be found in [9], Section 3.2. 

An important perfectly mixable game is the N- 
outcome log-loss game (C, R, I‘, A), which is defined as 
follows: 

0 = (0,. . . ) N - l}, r = SN, 
x(w,r) = - ln+-d, 

where SN is the standard simplex in RN, 

SN = {(‘#I, . . > ‘-dN - 11) E [o, 1lN 
1 y[O] + . . . + pqv - l] = l} 

(the same action space as in Cover’s game); the sig- 
nal space can be chosen arbitrarily. Since y[O] is deter- 
mined by ~[l], . . . , y[N - 11, it is superfluous and the 
action space can be taken to be the set of all possible 
(AlI > . . . , Y[N - 11); this is often done in the case N = 2 
usually considered in literature, where the action space 
reduces to [0, 11. Levin [17] proved the existence of a 
universal measure of predictive complexity for the log- 
loss game (in which the notion of a universal measure of 
predictive complexity is tantamount to the minus log- 
arithm of Levin’s a priori semimeasure). We will use 
the notation lc“‘g for the predictive complexity in the 
log-loss game; in the theory of Kolmogorov complexity 
binary rather than natural logarithms are usually used, 
and so there only exists a standard notation for the 
function Ic”‘g/ In 2, which is KM. It is well-known that 
the function KM = K?‘g/ In2 is connected with other 
variants of Kolmogorov complexity by the relations 

and 
KM(x) - K(x)1 = O(log 1x1) 

KM(x) - C(x)1 = Wg lxl), 
where K is prefix complexity, C is plain Kolmogorov 
complexity and 1x1 is the length of Z. (For simplicity we 
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are ignoring signals. Prefix complexity will be defined 
below.) 

It is easy to see that the log-loss game is essentially 
a special case of Cover’s game corresponding to what 
we call Kelley (or horse-race) markets, where only out- 
comes in 

fi := {(w[O], . . . ,w[N - 11) E 10, 1lN 
1 w[O] + . .. + w[N - l] = l} 

are observed: we identify every outcome w E fi with the 
number n (which is an outcome in the log-loss game) for 
which w[n] = 1. 

We will use the following notation for predictive 
complexities in the games we are most interested in: 
X%(x) for Cover’s game with N stocks and the loss 
function - ln(y . w) (Cover complexity), and Ice,,(x) 
for the long-short game with N stocks, “prudence coef- 
ficient” a and the loss function - ln( 1 + y .w) (long-short 
complexity). Notice that we do not need special nota- 
tion for Cover’s game with the loss function - In e, 
since it can be expressed as X%(x*), where the “normal- 
ization” x* of a data sequence x is defined in a natural 
way: we replace every gt in x = (wi . . . ~~101 . . . 0~) by 
(crt, wt-1) and multiply every wt by the number ct such 
that ]]c~w~]]~ = 1. 

Cover complexity contains as a special case not only 
KM but also prefix complexity K (see [9], Chapter 3) if 
we allow the number N of stocks to be infinite. There- 
fore, we define Cover’s game (R,I’, X) with infinitely 
many stocks as follows: 

fl = ~(401,~[11,. . .I E [O, 00)~ I supn 41 < ~1, 
r = {(~[Ol,~[ll,. . .I E [0,03)~ 1 .ZZ”=, r[n] = l}, 

X(w, 7) = CZ’=, rbl44. 
We define the “unstructured” complexity lCint of an 
integer n > 0 to be Icz (v), where u is a l- 
element sequence whose only element is n (similarly 
to what we had before, n is identified with the vector 
(0 )...) O,l,O )...) E IR” where the index of the only 1 
is n). Theorem 4.3.3 of [9] shows that K g ICint/ In 2 

(we let z., $ and 2 stand for the equality and the cor- 
responding inequalities to within an additive constant). 
As usual, we define the complexity of a computable ob- 
ject (such as a prediction strategy) as the complexity 
of a simplest program (encoded as an integer) for com- 
puting that object; the complexity of a non-computable 
object is always 00. 

The following simple corollary of Theorems 1 and 3 
shows how the constant C in the definition of Cover and 
long-short complexity (see (13)) depends on the compet- 
ing investment strategy. 

Corollary 1 Fix the number of stocks N and the pru- 
dence coeficient a > 0. There exists a constant c such 
that, for any finite sequence x E 0” and any computable 
prediction strategy S in Cover’s game or the long-short 
game, 

K(x) < Losss(x) + ,i”t(s) + c. (14) 

This corollary follows from the inequalities of Theo- 
rems 1 and 3 with n = 1. It is interesting that, though 
any learning rate n 5 1 can be used for defining the pre- 
dictive complexity (see Subsection 7.6 below), inequal- 
ity (14) holds no matter which value of n is used. 

Corollary 2 shows how the performance of the algo- 
rithms AA(Pe,q) ( see Theorems 1 and 3) for different 
71 bounds predictive complexity. 

Corollary 2 There exists a constant c such that, for 
any finite sequence x E R* and any learning rate n in 
Cover’s or the long-short game, 

x(x) 5 Lo~~AA(P,,,)(~) + xi”%) + ~2. 

The next theorem gives an upper estimate of Cover 
complexity in terms of Kolmogorov complexity. We fix 
a computable signal I E C (it will be used to represent 

“no signal”); recall that the symbols 2 and $ mean 
that the corresponding inequalities hold to within an 
additive constant. 

Theorem 4 For any fixed N, 
f 

K%(wl . . . wT) 2 - In &,, ,,,,, nT)e(O ,,, N-l}T 1 1 

WI [nl] . . vr[w]2- KM(n*...nTllwl...wT-l) (15) 

For any computable prediction strategy S in Cover’s 

game, 

LOSSS(Wi . . .wT) 5 - In &I, )E{O . . . . N-l}= 

w1 [ml . . . w[w.32- 
KM(nl.(.n~~Twl...~T--l) 

(16) 

It is an open problem to find out if the inequality oppo- 
site to (15) is true; (16) shows that it is “close to being 
true”. In the case of horse races the inequality opposite 
to (15) is true, since for horse races Cover complexity 
coincides with KM In 2. 

The theory of Kolmogorov complexity contains three 
major parts: 

l theory of Kolmogorov complexity proper; 

l theory of randomness; 

l theory of information 

(see, e.g., the early survey by Zvonkin and Levin [17]). 
In the rest of this section we will briefly discuss analogs 
of randomness and information in Cover’s and the long- 
short game. (In what follows we will not mention the 
game explicitly; what we say will be applicable to both 
games.) 

We will say that a computable strategy S is eficient 
for a data sequence wiwz . . . E R” if 

3CVT : Losss(wi . . . wT) < Ic(wi . . . wT) + C 

(in other words, if the loss suffered by S is within 
an additive constant of the predictive complexity on 
wiw2 . . .). For example, one possible interpretation of 
the market efficiency can be that the market portfo- 
lio is efficient for the actual sequence of security prices. 
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This market efficiency assumption has many interesting 
consequences: for example, it is possible to state vari- 
ants (which are stronger than the corresponding limit 
theorems for sequences of events) of the strong law of 
large numbers and the upper half of the law of the it- 
erated logarithm as assertions about efficient securities 
markets. 

In the case of the log-loss game our notion of pre- 
dictive efficiency becomes equivalent to Martin-Liif ran- 
domness: a prediction strategy S in the log-loss game is 
efficient for a sequence in (0, . . . , N - l}” if and only if 
this sequence is Martin-LGf random with respect to S. 

Next we discuss the analog of the notion of informa- 
tion in the case of our two games. Suppose, for example, 
that, along with a dataset describing the security prices 
at some stock exchange, we also have some inside in- 
formation about one of the companies whose stock is 
traded at this stock exchange; we represent this inside 
information as 01 . . 0~ (ot can be, say, the decisions 
taken by the company’s CEO on day t - 1). How can 
we define an objective measure of the usefulness of this 
information? A natural answer is 

I((,1 . . (TT : ‘dl . .‘dT) := K(wl . . .‘dT) 
-K(w1 . WTlUl . . . UT), (17) 

the best achievable loss without the side information 
u1 . . . 0~ minus the best achievable loss with the side 
information. This is a general definition; in the case of 
Cover’s and the long-short games the predictive infor- 
mation 1(~1 . . . ITT : wl . . WT) is the logarithm of the in- 
crease in the final value of the universal portfolio (worth, 
say, Xl initially) due to the use of the side information. 

In the case of the log-loss game, the notion of predic- 
tive information (17) is similar to (but different from) 
the standard notion of the information about w1 . . . WT 
contained in g1 . . . (r~ (see [9], Section 2.8): in defining 
the latter, the whole sequence g1 . . .OT is assumed to be 
given in advance (rather than to be supplied element- 
wise). 

6 DISCUSSION 

. In the previous section we generalized Kolmogorov com- 
plexity to the case of Cover’s game and extended it to 
the case of the long-short game. It is easy to see that we 
can generalize even further taking into account transac- 
tion costs and bid-ask spreads. In the case of transaction 
costs, we only need to make assumption 3 in Subsec- 
tion 2.1 of Blum and Kalai [l]: an investment strategy 
I which invests an initial fraction (Y of its money ac- 
cording to investment strategy 11 and an initial fraction 
1 - QI according to 12, should achieve at least cy times 
the wealth of II plus 1 - LY times the wealth of 12. For 
example, this property is satisfied if we have a fixed 
percentage commission c E (0,l) charged for buying 
each stock, and we can define the modifications ICE), 
and Ic’-’ N,a,c of the complexities Xg and K2,a introduced 
above. 

In the case where bid-ask spreads are allowed, we 
need to consider a more complicated outcome space, 

R= {(w~[O],W~[O],...,W~[N-~],W~[N-~]) E [O,W)~ 

1 WBIO] 5 WAIO], . . .) WB[N - l] I WA[N - l]}, 

where wA[n] are the ask prices and wB[n] are the bid 
prices, and to change the loss function X correspond- 
ingly. It is easy to see that predictive complexity can 
be defined for the modifications of Cover’s and the long- 
short games with bid-ask spreads. 

It is interesting that when transaction costs and bid- 
ask spreads are taken into account, our two main games 
(Cover’s and long-short) do not fit into the standard 
protocol (see, e.g., [14]) of the theory of prediction with 
expert advice any longer: the current action influences 
not only the immediate losses, but there also appears 
the possibility of delayed losses or rewards, since the 
choice of the portfolio at trial t will make it easier or 
more difficult to switch to desirable portfolios at later 
trialst+l,t+2,.... 

There also remain several interesting questions re- 
lated to the pool of constant rebalanced portfolios. 
First, it would be nice to prove an analog of Theorem 2 
above for the long-short game. A potentially promising 
direction of further research would be to study the possi- 
bility of tracking the best constant rebalanced portfolio 
(see Herbster and Warmuth [7] and also Vovk [15]). 

7 SOME PROOFS 

7.1 EXISTENCE OF SUBSTITUTION 
FUNCTIONS SATISFYING (2) 

In this subsection we will prove that, under our assump- 
tions on (a, I?, X), the inf in the definition of c(g) exists. 

The case c(g) = m is trivial, so we assume that c(g) 
is finite. Let clc2 . . . be a decreasing sequence such that 
ck -+ c(g) as k + co. By the definition of c(g), for each 
k there exists bk E J? such that 

vw. x(w,6k) < ck 
Yj(zj-- 

Let 6 be a limit point (whose existence follows from the 
compactness of I?) of the sequence &S2 . . . . Then, for 
each w, x(w, 6) is a limit point of the sequence x(w, 6k) 
(by the continuity of X) and, therefore, 

(This means that we can put C(g) := 6.) 

7.2 PROOF OF LEMMA 3 

We assume that the loss function is - ln(y . w) and do 
not assume IIwl1~ = 1. 

Let g E GA(q) (77 5 1) be generated by a probability 
distribution P: 

g(w) = logp J p(“‘T)P(dy); 
r 

we are required to prove that c(g) = 1 and that (7) is 
the only action for which 

VW : X(w, y*) 5 g(w). 
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First we prove that c(g) 
(y[O], . . . , y[N - l]) satisfy 

sup J+J, Y) 
w 

for all w. Taking 

2 1. Let an action y = 

I cdw) 

w[n] := 
l-t, ifn=j, 
1, otherwise, 

where j E (0,. . . , N - l} and t E (0, l), we obtain 

- 141 - rbl + (1 - Md 
< (-logo Jr p-l~cl-~l~l+cl-t)~~~l)P(d~); 

141 - rbl + (1 - thbl) 
2 c$ lnJr(l - S[j] + (1 - t)G[j])“P(&). 

For t = 0, the last inequality turns into the equality 
0 = 0; therefore, we can replace the left-hand and right- 
hand sides of this inequality by their derivatives in t at 
the point t = 0. We find: 

-rLil 
1 - rbl + (1 - OYbl 

i.e.. 

Summing over j, we can see that c 2 1 and that c = 1 
is possible only for the average portfolio (7). 

It remains to prove that (7) satisfies 

for any w E 0. Let us fix w and put f(r) := pX(W~r). 
Inequality (19) can be rewritten as 

the last inequality follows from the concavity of f(r) = 
(y . w)” (recall that 71 5 1). 

7.3 PROOF OF LEMMA 4 

In this subsection we will assume that the loss function 
is - ln(y . w) under the constraint )]w]], = 1 (as we 
already mentioned, this is equivalent to considering loss 
function (6)). So we consider the game (R, I?, X), where 

fl = {‘d E [o,W)N 1 ll‘d&, = l}, r = SN, 

X(w, y) := - ln(y . w) 

(recall that S,V is the standard simplex in lRN). 
Fix 7 > 1. We start by proving that C(Q) 2 77. 

Degenerate outcomes w E 0 and portfolios y E I are 
defined as those of the form (0,. . . ,O, l,O,. . . ,O); the 
nth degenerate outcome or portfolio contains n zeroes 
before the only 1. Consider the probability distribution 
in I assigning equal weights $ to the N degenerate 

portfolios. The loss of the corresponding generalized 
action will be 

at every degenerate outcome. On the other hand, the 
loss of any real portfolio y = (y[O], . . , y[N - 11) at the 
nth degenerate outcome is - In y[n]; therefore, it is at 
least - In & for at least one of the degenerate outcomes. 
We can see that 

1 

It remains to prove that for any probability distri- 
bution P in I there exists y E I? such that, for any 
w E R, 

- 147. w) L 71 logp 
J rB- 

‘n(6.w)P(ds). 

This inequality is equivalent to 

ln(y . w) 2 In J eq'n(6.")P(df5), I- 
i.e., 

y . w > J (6. w)~P(dd). 

The last inequality is obziously true for y = & 6P(d6). 

7.4 PROOF OF THEOREM 2 

By Lemmas 1 and 3, we are required to prove, for all 
6 E r, 

lo&3 J N-l 

r 
~L”s”T(y)P~(dy) 5 Loss~(G) + 7 1nT -t c, 

i.e., to prove 

(y . wt)“Po(dy) 1 f-&5. wt)” x T-v. 
t=1 

As in Cover and Ordentlich [2], we will reduce our gen- 
eral problem to Kelley markets. To do so, it is sufficient 
to notice that the function 

(J > 
1/v r (Y . WY’p(dY) 

is concave in w (when 77 5 1): this is a special case 
of Minkowski’s inequality llfr + f211p > ]]frllp + Ilf211p, 
where fi and fs are nonnegative functions and p E (0, l] 
(cf. [4], Theorem 24). 

So we shall consider only Kelley markets. We need 
to estimate 

from below by ET-~ for some E = e(N,q) > 0. 
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Recall that our prior is the Dirichlet distribution 
with parameters 4. We let &,+I stand for the stan- 
dard solid simplex in lRRNel, 

EN-1 = {(y[l],...,y[N - l])E [O,llN-' 

I 7411 + . . . + YIN - 11 L 11, 
and let y[O] stand for 1 - y[l] - . . . - Y[N - 11; g means 
equality to within a constant factor (which may depend 
on 77 and N). If T, is the number of times the nth 
degenerate outcome occurs (and so TO+. . .+TN-~ = T), 
we have: 

(Jr n;r=,(r.wt)“po(dr))l”l 
n:=, (6.w 1 

> ( J,,-, (Y[O])~~“. . . (y[N - ll)TN-1’7 
x (r[op2 . . . (y[N - l])-‘/2dr[l] . . dy[N - I]) “’ 

x&191/2,, . . , l/2) (To/T)-To (TNel/T)+l 
= ’ B”” (Tori + f, . . . > TN-IV + ;) To~o,,,~~~l~N-’ 

x 
IX 

( 
r(Toq+1/2)...r(TN_1q+i 2) , 1117 

r(Tq+NP) 
TT 

> 

’ ToTO...T~-lTN-’ ; 

using Stirling’s formula r+) s zz-1/2e-z, we continue: 

g (Toq + 1/2)To”. . (TN-IV + 1/2)“-‘qeo 
(TV + N/2)Tq+N/2-1/2 

xTTTowTo . . . TN-~-~“-’ 

= (l++JToq...(l++-)TN-*q 
(TV + N/2)N’2-1’2 (1+ 5&)Tq 

7.5 PROOF OF LEMMA 5 

In this subsection we only consider the loss function 
In w (the proof for the loss function - ln(1Sy.w) 
is obtained by formally setting a := 0). 

Let g E GA(v) (7 < 1) be generated by a probability 
distribution P: 

g(w) = logp J pe(d$ 
r 

= logo J e-q In '+a Iu m 1Q P(dy) 
r 

= logo St 1fy.w q 
r 1 +Ul(Wll, > ‘(“) 

.&Cl + 7 ’ w)qp(dY) 
= logo (1 + u]]w(l,)q ; (20) 

we are required to prove that c(g) = 1 and that (7) is 
the only action for which 

VW : x(w,y*) 5 g(w). 

(Notice that this is obvious for q = 1.) is a universal measure of predictive complexity. 

2. We notice that 

k(z) := logp 2 @+)2-i 
i=l 

First we prove that c(g) > 1. Setting 

w[n] := 
t, if 72 = j, 
0, otherwise, 

where j E (0, , . . , N - l}, letting t -+ *O and replacing 
the numerator and denominator of (20) by their first- 
order Taylor approximations at t = 0, we obtain 

g(w) N lo@3 
l + 71 (Jr 7[dP(d7)) t 

1 dzrpt ’ 
where N stands for asymptotic equality as t -+ 0. Since 
y* = J yP(dy), we further obtain 

g(w) N lo&3 qg# 
- vr’[~1~--wl~l _ 

111 p - -r*[j]t + altl. 
Comparing this expression with the loss of any other 
action y # y*, 

ln 1 + aId 

1 + rLilt - -r[j]t + +I, 
we can see that always c(g) 2 1 and c(g) = 1 can be 
attained by no y # y*. 

It remains to prove that y* attains c(g) = 1 if and 
only if 77 5 1, i.e., to prove (cf. (20)) that 

In 1 + +Jllcc &Cl + 7. w)qP(dT) 
lfy”.w 5 logfl (1 + u]lwl],)q (21) 

is equivalent to 7 5 1. Inequality (21) is equivalent to: 
l+y’.w 

7jln(l+ y* . w) 2 In J (1 + 7. w)qp(dY); 
r 

(1 + y* . w)V L J (1 + y . w)VP(dy). (22) 
r 

If rj < 1, (22) immediately follows from the fact that the 
function (1 +y .w)q is concave in y: it is the composition 
of the linear function y * (1 + y . w) and the concave 
function t ~--t tq. If v > 1, (22) is violated for non-trivial 
w and P because the function t ++ tq is strictly convex 
for q > 1. 

7.6 PROOF OF LEMMA 6 

For simplicity we will assume that the sets C and R 
are finite. To satisfy this assumption we might replace 
in 0 = [0, ~o)~ the ray [O,co) by a finite (but dense) 
subset; it will also be clear from the proof that it works 
for R = [0, oo)N as well if some of the definitions are 
(routinely but tediously) modified. 

The idea behind our proof is that we merge all “semi- 
computable prediction strategies” using the AA. To sim- 
plify presentation, however, the explicit mentioning of 
the AA has been “compiled out” of our construction. 

Our proof consists of two steps: 

1. We observe that there exists a computable sequence 
Icr , IQ, . . . of measures of predictive complexity. 

21 



Proof of 1 

Choose a universal partial recursive function M(i, j), 
where i and j range over the positive integers, taking 
positive integer values; the universality of M means 
that the set of functions Mi defined by Mi(j) := 
M(i, j) contains all partial recursive functions of the 
type {1,2,. .} -+ {1,2,. . .}. 

We will say that a measure N of predictive complex- 
ity is finitary if: 

l it takes values in the set of rational numbers ex- 
tended by adding CO (which is defined to be the 
largest element of the extended set of rational num- 
bers); 

l the set 

carrier(N) := {X I N(z) < co} 

is finite. 

Define M*(i,j) to be M(i,j) if 

Notice that there are only countably many finitary mea- 
sures of predictive complexity; let Nj (j = 1,2,. . .) be 
a computable enumeration of the finitary measures of 
predictive complexity. 

l M(i, j’) is defined for all j’ < j, and 

l NM(++i) I NM(i,jl) for all j’ < j; 

M*(i, j) is undefined if either of these conditions fails. 
Notice that M* is a partial recursive function. It re- 
mains to set 

(the inf is over the j for which M*(i, j) is defined). 
We omit the proof that the sequence kl, k2,. . . con- 

tains all measures of predictive complexity. 

Proof of 2 

Recall that we assume that our game is v-mixable for 
some q; fix such 77 and set P := e-7. We say that a 
generalized action g is a superaction if there exists an 
action y E I’ such that, 

VW E n : g(w) > qw, y) 

(i.e., g is a permitted action, perhaps plus some extra 
losses). Since our game is q-mixable, every q-mixture of 
actions is a superaction. 

Let us prove now that k is a measure of predictive 
complexity. Its upper semicomputability immediately 
follows from the upper semicomputability of all ki and 
the computability of their sequence ICI, k2, . . ., so we only 
need to prove that k is a superloss process, i.e., that for 
all 2 E (C x R)* and 0 E C the difference 

= logp 2 pki(+*(wJ))2-i - log, g Pk+)2-i 

We can see that this difference is an q-mixture of super- 
actions and, therefore, is a superaction itself. 

7.7 PROOF OF THEOREM 4 

We can define, analogously to the a priori semimeasure, 
the Cover exponential complexity as follows: 

M(x) := eMKcC,Cz); 

notice that M can be defined to be the largest, up to a 
constant factor, process satisfying 

We rewrite inequality (15) as follows: 

Vx3yVw : M(x * w) < (y . w)M(x) 

(such processes will be called Cover exponential super- 
loss processes in this proof). Notice that the Cover 
exponential complexity is an extension of the a priori 
semimeasure: if we consider only the degenerate out- 
comes (horse races), we obtain the definition of the a 
priori semimeasure. 

M(WI . ..wT) 5 c (nl,..., TIT ~(0 ,..., N-l}T 

wl [nil . . . WT[?lT]M(721 . . . nT i IWl . . .wT-I), 
(23) 

where M is the obvious “conditional” modification of 
the a priori semimeasure and 2 is “more than or equal 
to to within a constant factor”. 

To prove (23) it is sufficient to show that the function 

l&k,,... ,nT)~{o,...,~-l}~ wlhl.. . wdnTl 
x M(nl . . . nTl.h.dl . . .“?-I) 

is a Cover exponential superloss process, i.e., to show 
that 

V(Wl . . . ‘dT)3+w : 
C(n,,... ,~T)E 0 ,..., N-l}=,n~{O ,..., N-l} 

W1[?-Q]. . .WT[nT]w 1 n]M(nl . . .nTnlh.dl . . .wT) 
2 (7 ‘w) c(n, j..., ~T)E(O ,..., N-l} T wl [nl] . . . wT[nT] 

xM(nl . . .~,+LQ.. .w-I). 

Rewriting the last inequality as 

C(n,,... ,~T)~‘si~~~~‘T”“” . . . WdnT] 
’ (&(O,...,N-1) 

n . . . nTnl& . . . L’T) 
-(y . w)M(nl . . .TIT~LW~ . . .wT-..I)) < 0, 

we can see that it is sufficient to establish the existence 
of y such that, for every w, 

&O,...,N-11 w[nlM(nl . . . nT+& . . .wT) 

-(y . w)M(nl . . nTllw1 . . . WT-~) 5 0. 

It is clear that we can take any 

g(w) := k(x * (a, w)) - k(x) 

is a superaction. To see why this is true, we transform 
this difference as follows: 

rbl 2 
M(nl . . . nTnlhJl . . .‘dT) 
M(nl . . .nTllwl . ..wT-1)’ 

such y exists by the definition of the a priori semimea- 
sure. This completes the proof of inequality (15). 

k(x * (a, w)) - k(x) Inequality (16) is simple, and we omit its proof. 

22 



ACKNOWLEDGMENTS 

We are grateful to Philip Dawid for enlightening discus- 
sions. The comments by the members of the program 
committee were very useful for improving the presen- 
tation. V. Vovk thanks EPSRC for providing financial 
support through grant GR/L35812. 

References 

PI 

PI 

PI 

PI 

PI 

P31 

PI 

PI 

PI 

PO1 

[ill 

WI 

[I31 

P4 

A. Blum and A. Kalai. Universal portfolios with 
and without transaction costs. In Proceedings of the 
10th Annual Conference on Computational Learn- 
ing Theory, pages 3099313, New York, 1997. Assoc. 
Comput. Mach. 
T. Cover and E. Ordentlich. Universal portfolios 
with side information. IEEE Trans. Inform. The- 
ory, 421348-363, 1996. 
M. Feder, N. Merhav, and M. Gutman. Universal 
prediction of individual sequences. IEEE Trans. 
Inform. Theory, 38:1258-1270, 1992. 
G. H. Hardy, J. E. Littlewood, and G. Polya. 
Inequalities. Cambridge University Press, Cam- 
bridge, 1967. 
D. Haussler, J. Kivinen, and M. K. Warmuth. 
Tight worst-case loss bounds for predicting with 
expert advice. Technical Report UCSC-CRL-94- 
36, University of California at Santa Cruz, re- 
vised December 1994. Short version in P. Vitanyi, 
editor, Computational Learning Theory, Lecture 
Notes in Computer Science, volume 904, pages 69- 
83, Springer, Berlin, 1995. 
D. P. Helmbold, R. E. Schapire, Y. Singer, and 
M. K. Warmuth. On-line portfolio selection us- 
ing multiplicative updates. In Proceedings of the 
19th International Conference on Machine Learn- 
ing, 1996. 
M. Herbster and M. Warmuth. Tracking the best 
expert. In Proceedings of the 12th International 
Conference on Machine Learning, pages 286-294. 
Morgan Kaufmann, 1995. 
J. Kivinen and M. K. Warmuth. Exponential Gra- 
dient versus Gradient Descent for linear predictors. 
Inform. Computation, 132:1-63, 1997. 
M. Li and P. Vitanyi. An Introduction to Kol- 
mogorov Complexity and Its Applications. Springer, 
New York, 2nd edition, 1997. 
N. Littlestone, P. M. Long, and M. K. Warmuth. 
On-line learning of linear functions. J. Comput. 
Complexity, 511-23, 1995. 
N. Littlestone and M. K. Warmuth. The 
Weighted Majority Algorithm. Inform. Computa- 
tion, 108:212-261, 1994. 
V. Vovk. Aggregating strategies. In M. Fulk 
and J. Case, editors, Proceedings of the 3rd An- 
nual Workshop on Computational Learning The- 
ory, pages 371-383, San Mateo, CA, 1990. Morgan 
Kaufmann. 
V. Vovk. Universal forecasting algorithms. Inform. 
Computation, 96:245-277, 1992. 
V. Vovk. A game of prediction with expert advice. 
In Proceedings, 8th Annual Conference on Compu- 

P51 

WI 

WI 

tational Learning Theory, pages 51-60, New York, 
1995. Assoc. Comput. Mach. To be published in J. 
Comput. Syst. Sci. 
V. Vovk. Derandomizing stochastic prediction stra- 
tegies. In Proceedings of the 10th Annual Con- 
ference on Computational Learning Theory, pages 
32-44, New York, 1997. Assoc. Comput. Mach. 
V. Vovk. Probability theory for the Brier game. 
Accepted for publication in Theoretical Computer 
Science, 1998. Preliminary version in M. Li and 
A. Maruoka, editors, Algorithmic Learning The- 
ory, Lecture Notes in Computer Science, volume 
1316, pages 323-338, 1997. Full version: Technical 
Report CSD-TR-97-09, Department of Computer 
Science, Royal Holloway, University of London, re- 
vised February 1998. 
A. K. Zvonkin and L. A. Levin. The complexity 
of finite objects and the development of the con- 
cepts of information and randomness by means of 
the theory of algorithms. Russian Math. Surveys, 
25:83-124, 1970. 

23 


