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Abstract

The thesis is devoted to complexity and algorithmical aspects of communica-
tion in multi-hop radio networks modelled by graph-based models. Primary
focus is on scenarios (topologies, models, and communication tasks) that
have not been in the center of attention of the research community. We in-
vestigate how restricted topology of radio networks can help to design more
efficient communication algorithms and protocols in both centralized and
distributed settings. Time, the number of rounds required to accomplish a
communication task, is considered as the main efficiency criterion. However,
the majority of proposed algorithms are designed in such a way that mini-
mizes the number of transmissions per node, i.e., the energy consumption is
considered as another efficiency criterion.

We deal with intensively investigated centralized broadcasting in the case
when an underlying reachability graph belongs to a certain graph class (e.g.,
class of planar graphs, class of k-degenerate graphs, etc.). In the fully dis-
tributed setting, we consider radio broadcasting in networks with the grid
topology. Although, we deal with special topologies, some results are directly
related to broadcasting in radio networks with arbitrary topology. Moreover,
in the fully distributed setting with nodes capable of collision detection, we
explore the concept of encoding information into collisions. We focus on
more complex communication tasks like maximum finding and computation
of some network parameters as well.

The standard graph model of radio networks adopted by the algorithmic
community is often criticized due to its simplifications that do not reflect
communication environment of some real-world radio networks properly. In
order to treat this problem, we propose a new graph-based model of radio
networks that generalizes the standard graph model. The new model is based
on the concept of interference reachability graphs that allow to model radio
networks with long-range interference, i.e., radio networks where interference
range of a node exceeds its transmission range. We study how presence of
long-range interference influences time efficiency of centralized broadcasting.
As a result, we design several algorithms generating radio broadcasting sched-
ules for radio networks of arbitrary topology with long-range interference.



Abstrakt

Praca sa venuje zlozitostnym a algoritmickym aspektom komunikacie
v multi-hop radiovych siefach modelovanych grafovymi modelmi. Hlavné
pozornost je upriamena na komunika¢né scenére (topologie, modely a komu-
nikacné tlohy), ktoré doposial neboli stredobodom z&ujmu vyskumnej ko-
munity. V préaci studujeme, do akej miery predpoklad obmedzenej topologie
radiovej siete umoznuje vytvorit efektivnejsie komunika¢né algoritmy a pro-
tokoly. Skiimame tak centralizované, ako aj plne distribuované komunikacné
prostredia. Ako hlavné kritérium efektivnosti uvazujeme ¢as - pocet ko-
munika¢nych kol potrebnych na realizaciu komunikacnej tlohy. Vacsina
z prezentovanych algoritmov je v8ak navrhnuta takym spésobom, aby okrem
¢asu minimalizovala aj pocet vysielani realizovanych uzlami siete. Teda popri
Case vykonavania tlohy je dalsim uvazovanym kritériom efektivnosti ener-
getickd narocnost komunikac¢ného protokolu.

V tejto dizertac¢nej praci sa zaoberdme intenzivne skiimanym problémom
centralizovaného broadcastingu v pripade, ze graf dosiahnutelnosti prislicha-
juci radiovej sieti patri do nejakej konkrétnej triedy grafov (napr. triedy
planarnych grafov, triedy k-degenerovanych grafov, atd.). V pripade plne
distribuovaného komunikac¢ného prostredia uvazujeme taktiez broadcasting
v radiovych sietach, ktorych topologiou je mriezka. Hoci sa venujeme pre-
vazne Specidlnym topologiam sieti, niektoré z naSich vysledkov st priamo
aplikovatelné aj v siefach s Tubovolnou topolégiou. Okrem toho, uvaziac plne
distribuovany model s uzlami siete vybavenymi schopnostou detekcie kolizii,
skimame koncepciu kdédovania informacie do kolizii spésobenych interferen-
ciou. V tomto modely sa tiez zaoberame komplexnejsimi komunikac¢nymi tlo-
hami ako st vypocet maximélnej hodnoty, ¢i vypocet niektorych parametrov
siete.

Standardny grafovy model radiovych sieti, ktory bol prijaty algoritmickou
komunitou, je ¢asto kritizovany z dévodu zjednoduseni, ktoré nedostatoénym
sposobom reflektuji komunikac¢né prostredie niektorych realnych radiovych
sieti. V snahe riesit tento problém sme navrhli novy grafovy model radiovych
sieti, ktory zovseobecnhuje Standardny grafovy model. Tento novy model je
zaloZeny na tzv. interferenc¢nych grafoch dosiahnutelnosti, ktoré umoziuju
modelovat radiové siete s interferenciou véic¢sieho dosahu, t.j. radiové siete,
v ktorych interferen¢ény rozsah uzla presahuje jeho vysielaci rozsah. Sku-
mame, ako pritomnost zvySenej interferencie ovplyviuje moznost ¢asovo efek-
tivnej realizacie centralizovaného broadcastingu. Vysledkom nasho vyskumu
je okrem iného aj niekol'ko algoritmov generujucich ¢asovo efektivne broad-
castovacie rozvrhy pre Tubovolné radiové siete so zvySenou interferenciou.

vi



Chapter 1

Introduction

Nowadays, new technologies in computers and telecommunications cause that
computer and communication networks are part and parcel of the human
being. Communication networks are collections of information processing,
autonomous nodes that are interconnected for the purpose of data commu-
nication. The nodes communicate via sending messages (packets). There
are various taxonomies of communication networks. Some of them are the
following;:

based on distance among nodes - LAN (local area network), WAN (wide
area networks), etc.

based on hops among nodes - single-hop networks (each pair of nodes
is connected by a communication link) or multi-hop networks (remote
nodes communicate via intermediate nodes)

based on transmission technology - nodes are connected by cooper wire,
optic fiber, or wireless medium

based on method of sending and receiving information - point-to-point
networks (certain pairs of nodes are connected by a communication
link), broadcast networks (all nodes share a single communication chan-
nel), etc.

based on network topology - bus network, star network, hierarchical
network, etc.

Intuitively, particular features of a communication network (i.e., used
transmission technology, method of sending information, etc.) can signifi-
cantly influence design and effectiveness of algorithms realizing a commu-
nication task. For instance, the fact that a message (signal) comes over a



communication link can be less relevant than what happens if two or more
messages arrive simultaneously at a node. Indeed, there are communication
networks for which simultaneous arrival of messages causes that some or all
arrived messages are discarded. It can be caused by features of transmission
medium or limited buffering capabilities of nodes. In that case, (possibly
expensive) retransmission of discarded messages could be necessary.

In recent years, wireless and mobile communication have seen explosive
growth both in terms of the number of services provided and the types of
technologies that have become available. Most of wireless solutions use radio
waves as a transmission medium. Radio communication has been moved from
typically military applications to the civil sphere (cellular phones, wireless
local area networks, sensor networks, etc.). Success of radio communication
lies in two its key features. Radio networks allow mobility of nodes (users)
and building of low-cost communication infrastructure.

1.1 Radio Networks

This thesis is devoted to the area of radio networks. Radio networks differ
from other communication networks in the way how the nodes send and
receive messages. We consider a radio network to be a collection of receiver-
transmitter nodes (devices, stations). Depending on transmission power and
geographic characteristics of the surrounding region, a message (signal) which
is transmitted by a node can reach only a given subset of other nodes. This
subset of nodes is referred to as a transmission range of node. Communication
in radio networks has broadcast character, but only in a limited distance.
Particularly, a message transmitted by a node is always sent to all nodes
which are located within its transmission range. On the other hand, if at
least two messages arrive simultaneously at a node, an interference of radio
waves causes that message content is destroyed, i.e., no message is received.

The network is synchronous, i.e., the nodes have access to a clock. The
clocks tick at the same rate and it is assumed that they start at the same
time, but with possibly different initial values. A clock cycle is called a
step, a time slot, or a round. This type of synchronization defines locally
synchronous model. In the case that initial clock values are the same a glob-
ally synchronous model is defined. As mentioned above, time is assumed to
be slotted and all transmissions are realized at time slot boundaries. In a
given time slot, a node can transmit or listen to radio channel (not simulta-
neously). As noted in [58], synchronization of local clocks can be achieved
by interfacing a global positioning systems. Under current technology, GPS
systems provide time information accurate to 100 nanoseconds. It allows



nodes to detect time slot boundaries and thus to synchronize. Note that
asynchronous communication in radio networks was studied in [13, 63].

All nodes operate on the same radio frequency. This assumption seems to
be a significant restriction, but it is easy to see, that constantly more radio
frequencies can improve effectiveness at most by a constant factor.

Another assumption that significantly determines effectiveness and design
of communication algorithms is an assumption concerning initial knowledge
of the nodes. In the literature, it is mostly assumed that initial knowledge
of a node contains at least its unique integer identifier (ID) or a label. The
range of identifiers is assumed to be 1,..., N, where N = O(n) and n is
the number of nodes forming a radio network. Some works (e.g., [35, 38|)
deal with the assumption of large labels, i.e., the upper bound of identifiers
is N = O(n?), for a constant p > 1. A network without unique identi-
fiers of the nodes is called an anonymous network. In ad-hoc (or unknown)
radio networks, initial knowledge of a node is limited only to its own iden-
tifier. The authors of other works assume that initial knowledge of nodes
is extended by information about the network in their surroundings. For
instance, a node knows identifiers of nodes located within its transmission
range [2, 45] or in a defined distance from it [23]. Assuming a further ex-
tension of initial knowledge of nodes, one can define a known topology radio
network. In such a radio network, each node is aware of the whole network
topology. For known topology radio networks, algorithms are often referred
to as centralized, since a schedule of transmissions can be computed by the
nodes in advance. Communication tasks in known topology radio networks
were intensively investigated in [26, 27, 36, 49].

Two types of models of radio networks prevail in the literature. The first
one is a graph model. The network is modelled by a directed graph called a
reachability graph G = (V, E). The vertex set of GG consists of the network
nodes and two vertices u,v € V are connected by an edge e = (u,v) if and
only if the transmission of the node u can reach the node v. In such a case
the node u is called a neighbor of the node v. If the transmission power of all
nodes is the same, then the reachability graph is symmetric, i.e., a symmetric
radio network can be modelled by an undirected graph. The second type of
model is a geometric model. Each node of a radio network is represented as
a point in k-dimensional Euclidian space. Each point has a region associated
with it. If a point which corresponds to a node v lies in a region associated
to a point corresponding to a node u, then any transmission of the node u
can reach the node v. Again, u is called a neighbor of the node v. Of course,
the most interesting case is 2-dimensional Euclidian space in which a region
associated to a point is a circle centered at this point. Radius of the circle
corresponds to the power of transmitter.



Obviously, the graph model is more general than the geometric model.
Given a set of points, it is easy to construct a reachability graph on the set of
these points such that there is a directed edge from u to v if and only if the
point v lies in the region associated to the point u. On the other hand, more
effective algorithms were designed (e.g., in [24] or [29]) for radio networks
modelled by the geometric model. As for the applicability, the geometric
model is more appropriate for radio networks in flat regions without large
obstacles, where a transmission reaches the same distance in every direction.
In regions with large obstacles (mountains, buildings, etc.), where reach of a
transmitter depends on the direction, the graph model is more appropriate.

In what follows, we focus only on radio networks modelled by the graph
model.

1.2 Communication in Radio Networks

As previously noted, communication in radio networks is synchronous. At the
beginning of a round (time slot), each node decides whether it will operate as
a receiver or as a transmitter. Note that it is assumed that all computations
concerning an action in the given round are not taken into consideration (an
action can be determined at the early beginning of a round or at the end of
the previous round).

If a node operates as a transmitter, it transmits a message. The trans-
mitted message reaches all nodes within its transmission range in the same
round.

If a node operates as a receiver, there are three possible cases.

(1) If a node is not located within transmission range of a transmitting
node, i.e., none of its neighbors transmits in the given round, it hears
a background noise and no message is received.

(2) If a node has exactly one transmitting neighbor, it receives the trans-
mitted message.

(3) If a node has more than one transmitting neighbor, i.e., at least two
messages arrive simultaneously in this round, a collision occurs and it
hears an interference noise. The interference causes that no message is
received.

The nodes of a radio network are always able to recognize the second case,
i.e., the case when exactly one message arrives. Generally, it is assumed that
the background noise and the interference noise are indistinguishable for the



nodes. It means that a node is not aware whether none or at least two of its
neighbors transmit in a given round.

If a node can distinguish the background noise (the first case) and the
interference noise (the third case), we say that it is equipped with a collision
detection capability. Under the assumption of collision detection capability,
adopting a notation from [10, 59|, we say that a node, acting as a receiver
in a given round, hears a p-signal, if at least one of its neighbors operates as
a transmitter and sends a message in this round. Otherwise, we say that it
hears a \-signal.

Simultaneous transmission of a message to all neighbors of a node seems
to be a feature which brings speed-up for communication tasks disseminating
information. On the other hand, collisions cause that design of time-efficient
algorithms is difficult. If a neighbor u of a node v has to deliver a message to
v, rules of an algorithm should guarantee that there will be a round in which
no other neighbor of v transmits. Similarly, in the case when more neighbors
of the node v possess the same message requiring delivery to v, they have to
decide which of them informs v. In many cases, simultaneous transmissions
and collisions are the reason of communication slowdown.

1.3 Communication Scenarios

In this section, we present various assumptions concerning the process of
communication in radio networks. Their combinations result in many com-
munication scenarios used in the literature. They precise a considered model
of a radio network and thus significantly influence design of effective commu-
nication algorithms. In the literature, the most considered assumptions are
the following.

e randomization in communication process - Randomized algorithms run
faster that deterministic, require little initial knowledge, and are easier
to implement. On the other hand, an accomplishment of a task (to-
tally or in given efficiency bounds) is not guaranteed, but is achieved
with high probability. Note that there are settings and communica-
tion tasks (e.g., broadcasting in anonymous networks without collision
detection) for which deterministic algorithms do not exist, however,
randomization provides a solution working with high probability.

e centralized / distributed control - Centralized algorithms assume ex-
istence of a central monitor that is aware of network topology and
controls transmissions of the nodes. Central monitor can compute a
schedule of transmissions in advance. Assuming known topology radio



networks (possibly with globally synchronized clocks), some centralized
algorithms can be implemented in distributed way. In each round, each
node acts according to a schedule of the central monitor, which can be
computed locally utilizing an algorithm of the central monitor. If full
topology information is not available, designed algorithms have to rely
only on local initial knowledge.

e adaptivity - Nonadaptive algorithms have all transmissions scheduled
in advance. In adaptive algorithms, a node may schedule future trans-
missions on-line according to its previous history. Since the transmis-
sions can be scheduled in centralized algorithms or in known topology
radio networks beforehand, adaptivity can help more significantly in
distributed settings. In this setting, the nodes have only limited knowl-
edge about the network. Note that assumptions concerning adaptivity
are closely related to memory and computational requirements of real-
world devices.

e collision detection capability - If the nodes transmit in an appropriate
way, it is possible to obtain extra information using collision detec-
tion mechanism. Thus, we can design more efficient communication
algorithms. In order to produce radio devices as simple as possible,
the assumption about collision detection capability cannot be always
fulfilled. Hence, most of works assume a lack of collision detection
capability.

e fault-tolerance - It is usually assumed that the communication envi-
ronment is fault-free. Clearly, this assumption is not realistic, because
probability of a fault increases with increasing size and complexity of
the communication network. Fault-tolerant communication algorithms
have to complete their tasks even in the case when at most a certain
number of components fails. In the following, we shall consider only
fault-free communication environment. Note that fault-tolerant algo-
rithms for radio networks were discussed in [43, 51].

e locally / globally synchronized clocks - Mostly, if the clocks are not glob-
ally synchronous, a node cannot participate in a communication algo-
rithm before successful receiving of a message. It follows that there is
initially a limited possibility of parallelization. Indeed, a sort of broad-
casting has to be completed before. On the other hand, if the nodes
know a round in which a communication algorithm starts, they can
simultaneously retrieve additional information about the network and
so to speed-up execution of the algorithm. If the nodes are allowed to



transmit before receiving a message sent by another node during previ-
ous execution of the algorithm, we say that spontaneous transmissions
are allowed.

1.4 Communication Tasks

In order to carry out complex communication tasks in radio networks (or
in other communication networks), we have to design communication algo-
rithms heading towards desired goals and preserving acceptable efficiency
costs. There are communication tasks that appear more often than others
and are utilized usually as subroutines of more complex tasks. Such com-
munication tasks are called communication primitives. Since effectiveness
of designed algorithms for these primitives has a great impact on effective-
ness of more complex tasks, their study makes many challenges. In the rest,
we present some communication primitives studied in the context of radio
communication.

1.4.1 Broadcasting

The study of communication in radio networks was initiated in the context
of broadcasting. Broadcasting is typically used as an initialization subrou-
tine or a subroutine distributing computed information to all nodes in the
network. The goal of broadcasting is to disseminate information (a source
message) from one distinguished node, called a source, to all other nodes in
the network. In multi-hop radio networks, remote nodes are informed via in-
termediate nodes. Also, a broadcasting algorithm can be naturally described
by a radio broadcasting schedule. It prescribes for each round, which nodes
transmit the source message. Clearly, only a node that already knows the
source message can transmit. The broadcasting task is completed when all
nodes become informed. Note that it is not required that the source is noti-
fied after the broadcasting is completed. This is not true for an acknowledged
radio broadcasting, which is completed in a round such that all nodes of the
network are informed and the source is aware of this fact. Obviously, if the
reachability graph of an unknown radio network is not strongly connected, it
is not possible to complete acknowledged radio broadcasting. If the broad-
casting time is upper-bounded by an expression and the source is aware of
all parameters occurring in this expression, the source knows (can compute)
the round in which the task is completed at the latest.



1.4.2 Gossiping

Initially, each node possesses a message. The goal of gossipingis to distribute
all messages to all network nodes. In a n-node radio network, gossiping can be
seen as n simultaneous broadcastings or as an exchange of messages between
all pairs of nodes. Gossiping problem was mostly considered in models with
globally synchronous clocks, where the nodes know a round in which the
gossiping starts. Many works assume that it is possible to include whole
history of received messages in each message transmitted during the work of
a gossiping algorithm. This not very realistic assumption is avoided in works
focusing on b(n)-gossiping. In b(n)-gossiping, each transmitted message can
contain at most b(n) single messages or b(n) bits of auxiliary information,
where b is an integer function and n is the number of network nodes. The
1-gossiping is referred to as a gossiping with unit messages. Note that a
survey of some results concerning the gossiping task can be found in |70].

1.4.3 Multipoint-to-multipoint Multicast

In order to support group communication in radio networks, multipoint-to-
multipoint multicast was investigated. The goal of multipoint-to-multipoint
multicast (M2M multicast) is to support an exchange of messages within a
fixed group of nodes. It can be seen as a generalization of gossiping which
concerns only a certain subset of nodes called participants.

1.4.4 Maximum Finding

Let us assume that each node possesses a value (an integer or real value
in appropriate coding). The goal of maximum finding is to compute the
maximal possessed value in one distinguished node called the initiator. The
process of computation is started by the initiator in a round unknown to
other network nodes.

Maximum finding algorithms can be utilized in the following real-world
situation. Consider a collection of sensors measuring a physical quantity and
communicating via low-power radio. There is one distinguished node (for
instance, a node connected to the control center) that needs to know the
maximum among measured values in order to perform an operation (e.g.,
to indicate an alert). Ome can utilize maximum finding algorithm for a
selection of a node which satisfies desired properties (e.g., it possesses the
largest number of messages, it has the largest identifier, etc.).



1.4.5 Wake-up Problem

At the beginning, all nodes are asleep, but some nodes wake up sponta-
neously in arbitrary time slots. The main objective is to activate (wake up)
all network nodes. A node becomes activated if and only if it wakes up spon-
taneously or it hears a message. Note that a node hears a message in a given
round if and only if exactly one of its neighbors transmits in this round. All
activated nodes transmit according to a protocol in order to wake up all other
network nodes.

The wake-up problem is closely related to other synchronization-type
primitives like leader election and synchronization of local clocks. Since the
wake-up problem that assumes exactly one spontaneously woken-up node is
equal to the broadcasting problem, the wake-up problem can be seen as a
generalization of the broadcasting problem.

1.5 Graph Model and Related Terminology

Throughout this thesis, we focus on radio networks modelled by graphs.
Graph is one of the most natural and simplest ways to describe a commu-
nication network. Therefore, the graph model was adopted by distributed
algorithms community and it prevails in most of works coming from this com-
munity. Let V be a set of network nodes. We can associate with each node
v € V a set of nodes Tg(v) which can receive transmission from the node v
directly. We refer to Tr(v) as a transmission range of the node v. A graph
G = (V, E) modelling a radio network is called a reachability graph. The ver-
tex set of (7 is the set of network nodes. Two vertices u, v € V are connected
by an edge e = (u,v) if and only v € Tr(u), i.e., (u,v) € E <= v € Tg(v).
The node u is called a neighbor of the node v. Unless stated otherwise,
throughout this thesis, we assume that an underlying reachability graph is
symmetric. This corresponds to the case when transmission power of all
nodes is the same.

Thanks to modelling a network by a graph, we can describe communi-
cation network by graph parameters of an underlying graph. We adopt the
standard graph terminology.

Definition 1.5.1. Let G = (V, E) be a graph. We denote the smallest in-
teger d, s.t., there is a path along d edges connecting a node u to a node
v, as d(u,v). FEccentricity of a node u, denoted as ecc(u), is defined as
max{d(u,v)|v € V'}. We refer to maz{ecc(v)|v € V'} as a diameter D of the
graph G.



We shall denote a set of all neighbors of a node v as N(v). Degree of a node
v, denoted as deg(v), is the number of its neighbors, i.e., deg(v) = |N(v)].
Finally, we refer to A = maz{deg(v)|v € V'} as the maximum degree of the
graph.

Algorithms and analysis of algorithms require often to consider all nodes
that are in the same distance from a distinguished node. For a given node
s, we denote as L; = {v|d(s,v) = i} a set of nodes that are in distance i
from the node s. The set L; is referred to as an i-th layer of the graph with
respect to the node s.

We are interested in the worst case analysis of designed communication
algorithms. Since ecc(v) < D < 2 - ecc(v) for an arbitrary node v, the
eccentricity of a distinguished node (a source or an initiator) and the diameter
of the graph can be interchanged without affecting asymptotical complexity.

1.6 Complexity Measures

Effectiveness of designed algorithms is typically bounded by a function of
some parameters of an underlying reachability graph, e.g., the diameter D,
the number of nodes n, the eccentricity ecc(s) of a distinguished node s, or
the maximum degree A.

Most of works considers the time that is required to complete a prescribed
communication task as a measure of effectiveness of designed algorithms. In
the synchronous model of radio networks, time corresponds to the number
of rounds. Each communication task defines two distinguished rounds: the
first. one is considered as a start round of the task and the second one as
a completion round. Main reason why this measure is so important is the
assumption that the topology of a radio network remains unchanged during
work of an algorithm. This assumption is realistic, if designed algorithms
are fast, i.e., they accomplish the task in (short) time which is negligible
comparing to a period of topology changes. Note that we shall denote the
minimal number of rounds required to complete a communication task by
an optimal schedule with respect to a source/initiator s and a reachability
graph G as mintime(s, G).

Another considered efficiency measure is the number of transmissions
during the work of an algorithm. Very often the nodes of radio networks are
powered by batteries and thus there is close relationship between lifetime of
nodes and the number of transmissions. It raises the issue of design of fast
algorithms using low number of transmissions. Energy consumption can be
considered in a global view as a sum of all transmissions realized by nodes,
or in a local view when we limit the number of transmissions per node during
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the whole work of algorithm. The local view results in k-shot transmission
schedules when each network node is allowed to transmit at most k-times.

Naturally, we can combine both previously mentioned measures in a com-
bined efficiency measure.

1.7 Summary of Results

In Chapter 2, we study the broadcasting problem in known topology radio
networks. We focus on the broadcasting problem in radio networks with
some topology restrictions. We generalize the broadcasting algorithm pre-
sented in [36] to a general schema. The main advantage of this schema is
that it is suitable for generating broadcasting schedules for arbitrary reach-
ability graphs which belong to a certain graph class. Indeed, it uses another
algorithm for information dissemination in bipartite reachability graphs as
a sub-routine to generate parts of the broadcasting schedule. Efficiency of
a generated schedule follows from the fact that this sub-routine algorithm
can be specialized for bipartite graphs of some graph classes. Moreover,
our designed schema simplifies proofs of some known results. Utilizing this
schema, we investigate communication in radio networks with planar and
k-degenerate reachability graphs. Also, we provide lower bounds matching
or almost matching presented upper bounds. The main results presented in
this chapter are the following:

e a schema generating radio broadcasting schedules with length D +
O(timey(G)-logn), where time,(G) is the maximal length of a schedule
for information dissemination in a bipartite subgraph of G generated
by a given algorithm A,,

e a simplified algorithm for generating D+ O(A -log n)-round broadcast-
ing schedules for arbitrary reachability graphs and D + O(logn)-round
schedules for planar reachability graphs,

e lower bounds 2-ecc(s), 3/2- D, and D+ Q(logn) for planar reachability
graphs, and

e an algorithm generating D + Oy (log? n)-round broadcasting schedules
for k-degenerate reachability graphs.

Chapter 3 is devoted to communication in a newly proposed model of
radio networks in which transmission and interference range of a node differ.
This model generalizes the standard graph model of radio networks. Also,
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we introduce new parameters to reflect presence and structure of interfer-
ence edges. In order to study communication in bipartite graphs, we define
and investigate interference selective families as an useful combinatorial tool.
Later, we construct other algorithms for energy and time efficient information
dissemination in bipartite graphs. They are used as building blocks for algo-
rithms generating broadcasting schedules for arbitrary interference reachabil-
ity graphs. We design a general schema, similar to the schema in Chapter 2,
which generates broadcasting schedules for arbitrary networks. Finally, we
design another algorithm generating time and energy efficient broadcasting
schedules which takes into consideration a newly defined parameter called an
interference distance of a network. This algorithm generates 1-shot broad-
casting schedules and it is based on clustering. The main results in Chapter 3
are the following:

e a new model of radio networks which generalizes the standard graph
model and models radio networks in which transmission and interfer-
ence ranges differ,

e a deterministic polynomial-time algorithm generating interference se-
lective families with size O((14+7(F))- ((1+1og(Amaz/Amin))) -log | F|)
where r(F) is an interference ratio of the collection F,

3

e algorithms generating 1-shot transmission schedules for information
dissemination in bipartite interference reachability graph with lengths
O(A?) and O(A -logn),

e a general schema generating broadcasting schedules in arbitrary inter-
ference reachability graphs which results in 2-shot broadcasting sched-
ules with lengths O(A - Dy 4+ A? -logn) and O(A - (Dr 4 log®n)),

e an algorithm producing 1-shot broadcasting schedules with the length
Dy 4 O(A - dy(G) - log* n) where d;(G) is an interference distance of
the graph G, and

logn

log A

interference reachability graph with interference distance 2.

e a lower bound eccp(s) + 2 (A . ) rounds on broadcasting time in

In Chapter 4, we investigate communication in radio networks where the
nodes have no topology information in advance, i.e., communication in radio
networks in a fully distributed setting. We deal with non-standard and not
well investigated communication tasks like maximum finding, computation
of some network parameters, and computation of grid coordinates. Namely,
we focus on communication in symmetric radio network with nodes capable
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of collision detection. We explore how encoding information into detectable
collisions can help to design fast deterministic communication protocols that
work even in anonymous radio networks. The concluding part of Chap-
ter 4 is devoted to communication in radio networks such that an underlying
topology is a grid graph. In this case, the nodes are not capable of colli-
sion detection and are equipped with unique identifiers. However, a network
node does not know its position in the grid. We show a time-efficient protocol
accomplishing the broadcasting task and design a protocol which computes
coordinates of all nodes in this grid network. Chapter 4 contains the following
main results:

e for anonymous symmetric radio networks with collision detection ca-
pability

— an asymptotically optimal protocol computing eccentricity of a
distinguished node s in O(ecc(s)) rounds,

— an asymptotically optimal protocol computing distance of each
node from a distinguished node s in O(ece(s)) rounds,

— an asymptotically optimal protocol computing the maximum Max
among integer values possessed by the networks nodes during
O(ece(s) + log Max) rounds, where s is a node that initiates the
computation,

e for radio networks with the grid topology

— an asymptotically optimal radio broadcasting protocol working
in O(ecc(s) + log N) rounds where N is an upper-bound on the
maximal identifier in the network,

— a protocol for computation of grid coordinates in O(ecc(s)+log N)
rounds.

Our results presented in this dissertation partially appeared in the fol-
lowing refereed papers:

[A] F. Gal¢ik and G. Semanisin, Centralized broadcasting in radio net-
works with k-degenerate reachability graphs, ITAT 2006 Information
Technologies - Applications and Theory, Bystra dolina, Slovakia, 26.9.-
1.10.2006, (2006), pp. 41-46.

[B] F. Gal¢ik and G. Semanisin, Mazimum finding in the symmetric radio
networks with collision detection, SOFSEM 2007: Theory and Practice
of Computer Science, Harrachov, Czech Republic, January 20-26, 2007,
LNCS 4362, (2007), pp. 284-294.
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[C]

D]

[E]

[F]

F. Galc¢ik, On radio communication in grid networks, ITAT 2007 In-
formation Technologies - Applications and Theory, Polana, Slovakia,
21.9.- 27.9.2007, (2007), pp. 47-54.

F. Gal¢ik, Centralized communication in radio networks with strong in-
terference, SIROCCO 2008: 15th International Colloquium on Struc-
tural Information and Communication Complexity, Villars-sur-Ollon,
Switzerland, June 17-20, 2008, LNCS 5058 , (2008), pp. 277-290.

F. Galcik, A note on the lower bound of centralized radio broadcasting
for planar reachability graphs, Discrete Applied Mathematics, Volume
157, Issue 4, (2009), pp. 853-857.

F. Gal¢ik, L. Gasieniec, and A. Lingas, Efficient broadcasting in known
topology radio networks with long-range interference, accepted to PODC
2009: 28th Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, Canada, August 10-12, 2009.
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Chapter 2

Centralized Broadcasting in
Radio Networks

Centralized broadcasting refers to the broadcasting problem in the special
setting when the network topology is known to all network nodes. I.e., the
nodes have a labelled copy of an underlying reachability graph as a part of
their initial knowledge. Due to known network topology, a schedule of trans-
missions that realizes the broadcasting can be precomputed by all nodes in
advance. Such a schedule is called a radio broadcasting schedule. In this
setting, the broadcasting process can be seen also as a process controlled
by a central controller. As we can notice, the only difficulty arises: proper
(off-line) dealing with the broadcast and interference character of the ra-
dio communication medium. From a practical point of view, the centralized
broadcasting can be applied in radio networks with a stable and known net-
work topology (e.g., in static sensor networks).

The main considered efficiency criterion (in most of the research papers) is
the time of the task completion. For a given reachability graph and a source
node, the goal is to design an algorithm generating a radio broadcasting
schedule that uses as small number of communication rounds as possible.
It is known that computation of an optimal radio broadcasting schedule for
arbitrary reachability graphs is NP-hard, even if the underlying reachability
graph is embedded in the plane [8, 65]. Therefore, the main challenge is
design of polynomial-time algorithms generating radio broadcasting schedules
with approximately optimal number of communication rounds (length of the
schedule). Note that other complexity measures like energy consumption
have been investigated in the context of centralized broadcasting as well.

In this chapter, we focus mainly on the broadcasting problem in radio
networks in the case when an underlying reachability graph is somehow re-
stricted, e.g., it is planar, k-degenerate, or it has a bounded maximum degree.
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Intuitively, such assumptions allow to produce more efficient radio broadcast-
ing schedules. Since, the network topology is known in advance, the nodes
can use a better algorithm in the case when reachability graph fulfills given
restrictions that are known in advance or are algorithmically effectively rec-
ognizable. The results show that there are graph topologies which are more
broadcast friendly (allow more efficient broadcasting) than the others. When
building a static radio network, we can utilize this fact, and choose locations
of devices and directions of antennas in such a way that the resulting reach-
ability graph will have a topology allowing efficient broadcasting.

2.1 Introduction

We start with a formal definition of a radio broadcasting schedule.

Definition 2.1.1. Let G = (V. E) be a directed graph and R C 'V be a subset
of nodes. A set of nodes informed by R, denoted as I(R), is the set

I(R) = {v € V| there exists the unique x € R such that v € N(x)}.
For a singleton set R = {z}, I(R) = I({z}) = N(z).

Definition 2.1.2. Let G = (V, E) be a directed graph. A sequence of sets
II = (Ry,...,Ry) is called a radio broadcasting schedule with respect to the
reachability graph G and a source s € V' if and only if the following holds:

(1) R; CV, for everyi=1,2,...,q;

(2) Rq={s};
(8) Riy1 C U;Zl I(R;), for everyi=1,2,...,q—1;

(4) V= U;’=1 [(Rj)-
The length of the schedule T1 is ¢ = |II|.

Observe that the property (2) of the previous definition claims that the
source is the only transmitting node in the first round. The property (3)
implies that only informed nodes can transmit. Finally, the property (4)
claims that all nodes become informed after the broadcasting schedule is
executed, i.e., every node receives a message in at least one round of the
schedule.

Note that it is assumed that there is a directed path from the source s to
any other network node in the graph GG. If the transmission power of all nodes
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is the same, the resulting reachability graph is symmetric. The assumption
about equal transmission powers was adopted in almost all papers. As we
will see later, this assumption allows powerful use of pipelining approach in
the communication process. In what follows, we shall assume that considered
reachability graphs are undirected (unless stated otherwise).

Two broadcasting strategies appear in the literature. The first strategy is
based on flooding. At any round, the set of network nodes can be partitioned
into a set of informed nodes and a set of uninformed nodes. Each of those sets
contains a subset of frontier nodes that have a neighbor in the other set. The
frontier nodes form a bipartite graph where one its part consists of informed
nodes and the other of uninformed nodes. Typically, only a small fraction of
uninformed frontier nodes can be informed in one round due to interference.
Hence, a natural subgoal is to design an algorithm which for a given bipartite
graph produces a schedule of transmissions informing all nodes of the unin-
formed part. We shall refer to this problem as an information dissemination
in bipartite graphs (radio networks). The key idea of the second broadcasting
strategy is very fast delivery of information (source message) to close vicinity
of each network node. This is done utilizing a (tree-like) communication sub-
network that allows fast spreading of information and pipelining. All known
algorithms generating fast broadcasting schedules are based on combinations
of those two strategies and their modifications. Transmissions that follows
from information dissemination in a bipartite graph are mostly referred to as
slow transmissions. Transmissions realizing the latter strategy are referred
to as fast transmissions.

2.1.1 Related Work

The study of deterministic centralized broadcasting in the packet radio net-
work model introduced by Chlamtac and Kutten in [8] was initiated by
Chlamtac and Weinstein in [9]. The authors presented a polynomial-time al-
gorithm producing radio broadcasting schedules with length O(D-log®n/D)
rounds. Their result was complemented by Alon et al. in [1]. In this work,
the authors proved Q(log®n) lower bound for a family of reachability graphs
with the radius 2 using a probabilistic argument. This result together with
the trivial lower bound D provides a lower bound D + Q(log®n) rounds on
the time of broadcasting in arbitrary radio networks. Designing an algorithm
generating schedules of the length that matches this lower bound became one
of important challenges in this field.

In [2], Bar-Yehuda et al. presented a randomized algorithm producing
schedules of expected length O(D -logn +log”n). Hence, it was shown that
a radio broadcasting schedule of the length O(D - logn + log®n) always ex-
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ists. Recently, a deterministic algorithm producing schedules of the length
O(D -logn + log>n) was designed by Kowalski and Pelc in [48]. Utilizing
this result, deterministic schemes presented in |27, 31| gave deterministic al-
gorithms for centralized radio broadcasting. Particularly in [31], Gaber and
Mansour showed a method in which underlying reachability graph is parti-
tioned into clusters with smaller diameter. Broadcastings in cluster graph,
that forms a tree-like structure, and in each cluster are performed applying
known broadcasting algorithms. Utilizing algorithm from [48] they obtained
an algorithm producing a schedule of the length O(D +1log®n). This method
was improved by Elkin and Kortsarz [27]. An algorithm that produces sched-
ules of length O(D 4+ log* n) was shown. Recently, these results were further
improved by Gasieniec et al. [36]. The authors proposed an algorithm pro-
ducing schedules of the length D + O(log®n) and a randomized algorithm
producing schedules of expected length D + O(log®n). Their algorithms are
based on construction of a ranked tree called a gossiping-broadcasting span-
ning tree. Finally, Kowalski and Pelc [49] presented a polynomial-time deter-
ministic algorithm generating schedules of length O(D + log?n). The non-
approximability result from [26] implies that schedules constructed by this
algorithm are asymptotically optimal unless NP C BPTIM FE(nC{eglogn)),
However, for large D, algorithm presented by Cicalese et al. in [17| with the
broadcasting time D + O(%) rounds is faster than O(D + log®n)-time
algorithm from [49].

Elsésser and Gasieniec studied the broadcasting problem in random radio
networks. In [28], they considered a random graph G, = (V, E') with expected
average degree d = n - p, where n = |V| and p is the probability that two
nodes are connected by an edge. In this setting, they showed how to perform
centralized broadcasting in (7, asymptotically optimal in time O(lnn/Ind+
Ind) rounds with probability 1 — o(1/n).

Time efficient broadcasting with restriction on energy consumption (the
number of transmissions per node) was first investigated in unknown graphs
by Berenbrink et al. in [3] and later in known graphs by Gasieniec et al. in
[33]. In particular, the authors of [33| presented an algorithm generating 1-
shot (each node is allowed to transmit at most once) broadcasting schedules
of lengths O(y/n) and D + O(y/n - logn) for bipartite and arbitrary graphs
respectively.

A detailed survey of know results concerning time-efficient broadcasting
can be found in Pelc’s review [61] or in the recent Peleg’s review [62].
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2.2 General Schema for Fast Centralized Broad-
casting

Gasieniec et al. [36] presented an algorithm generating radio broadcasting
schedules of the length D+ O(log® n) for arbitrary reachability graphs. Mod-
ifications of the approach introduced in their work was later used in other
algorithms |17, 49, 53|. This approach can be seen (reformulated) also as
a general schema. The schema expects as an input an algorithm for infor-
mation dissemination in bipartite graphs that are subgraphs of a considered
class of input reachability graphs. Utilizing a given algorithm, it generates
fast radio broadcasting schedules. We use the schema and its properties for
designing algorithms producing fast radio broadcasting schedules for radio
networks with a specific graph topology (planar, k-degenerate).

The algorithm (schema) consists of two parts. At first, a sort of ranked
spanning BF'S tree is computed. The tree is called a gathering-broadcasting
spanning tree (GBST). Thanks to properly defined ranks of nodes, its edges
form a communication subnetwork that allows fast information dissemina-
tion. After a GBST of the network is computed, a schedule of transmissions
(fast and slow transmissions) is generated.

2.2.1 Gathering-Broadcasting Spanning Tree

The crucial notion during construction of a GBST is its ranking. The stan-
dard definition of the rank of nodes in a rooted tree is adopted. This ranking
was investigated and used in different contexts (see, e.g., definition of Strahler
number of binary trees used in hydro-geology [67] or its use in computer sci-
ence [68]). Given a (BFS) tree, the rank of a node v is defined as follows:

e if v is a leaf, rank(v) = 0,

e if v is an internal node, let r,,,, be a maximal rank among ranks of its
children nodes. If v has at least 2 children with the rank r,,,,, then
rank(v) = rpaee + 1. Otherwise, rank(v) = rmae-

Lemma 2.2.1. The greatest rank is assigned to the root and its value is at
most |logn| where n is the number of nodes. Each simple path along tree
edges from the root to any other node forms a mon-increasing sequence of
ranks.

Let L; be a set of nodes with the distance ¢ from the root s of the tree, i.e.,
L; = {v|d(s,v) = i}. Ranks of nodes provide a partition of nodes into rank
sets R; = {v|rank(v) = i}, where 0 < i < logn. Utilizing those definitions,
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we define fast transmission and slow transmission sets. The fast transmission
set F¥ is defined as F¥ = {vjv € Ly N R; A parent(v) € R;}. Further, we
define F; = <) FF and F = [J!8™ F. Le., Fis a set of nodes that have
the same ranks as its parents in the higher (closer to the root) layer. The slow
transmission set is defined as SF = {v|v € Ly N R; Aparent(v) € R;Aj > i}.
Similarly, S; = ng) Sk and S = U,,E’(%"J S;. Le., a node belongs to the set
S in the case when its parent has different (larger) rank.

For a given arbitrary graph G = (V, F), a gathering-broadcasting span-
ning tree is any BF'S spanning tree T" of the graph G such that

e T is rooted at the source node s,
e T is ranked,

e all nodes in FF of T' can transmit their messages to their parents si-
multaneously without any collision, for all 0 < i <logn and 1 < k <
ecc(s), and

e all nodes in F¥ of T can receive messages transmitted simultaneously
by their parents without any collision, for all 0 < ¢ < logn and 1 <
k < ece(s).

Observe that the definition of GBST implies that for any pair of nodes
u,v € FF it holds that

e (u,parent(u)) € E, (v,parent(v)) € E, and
o (u,parent(v)) ¢ E, (v, parent(u)) ¢ E.
In [36], the authors showed the following theorem.

Theorem 2.2.2 ([36]). For a given graph G = (V, E), a gathering-broadcasting
spanning tree can be constructed in time O(n? - logn).

2.2.2 Broadcasting Schema

A GBST allows simultaneous non-conflicting transmissions for certain nodes.
This is utilized in the broadcasting algorithm presented in [36]. In this sec-
tion, we show generalization of this algorithm that is more suitable for radio
networks whose reachability graphs belong to a graph class defined by a
hereditary property, see [6]. A hereditary property is a graph property satis-
fying the condition that if a graph has a given property then all its subgraphs
have this property. Typical examples of hereditary properties are planarity,
to be a k-degenerate graph, to have the maximum degree smaller than A.
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Figure 2.1: Example of a ranked BF'S tree with marked nodes of the set F'

As we will see later, the generalized algorithm is useful in other situations as
well.

After a GBST is constructed, we define a set of slow bipartite graphs
{G*0 <i < |logn| A1 < k < ecc(s)}. Let us define sets A¥ = Ly N R;
and BF = {v|v € Ly, A parent(v) € A¥ Arank(v) < i}. Le., the set A¥ is a
set. of nodes with the rank 7 in the distance k£ — 1 from the source. The set
B¥ is a set of all neighbor of nodes in A¥ that are in the distance k from the
source and their ranks are strictly less than i. The graph G¥ = (V/*, EF) is
defined as

o VF= AU BF and
o BF ={(u,v)|(u,v) € EAue A¥ ANv e BF}.

Each graph G* is a bipartite graphs. It is also a subgraph of the graph
(G with parts of the bipartition in two neighboring BF'S layers. Note that if
the graph GG belongs to a graph class G defined by a hereditary property, the
graph G* belongs to the graph class G as well. Note also that some graphs
G% can be empty or can have empty B-part. Definition of sets A¥ implies
that each node belongs to exactly one set A¥ and at most one set BE.

Let A, be an algorithm that for a given bipartite graph of a class G
generates a schedule of transmissions realizing the information dissemination
in bipartite graphs. Denote as time,(() the maximal length of a schedule
produced by A, for an arbitrary bipartite subgraph of the graph (. Let IT¥
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be a schedule generated by the algorithm A, for the bipartite graph G¥ with
the set A¥ as the informed part. Obviously, |[IIF| < time,(G).

Now, we describe a schedule of transmissions realizing the radio broad-
casting in the graph GG with the source s. Let v € L; be a node with the
rank i, i.e., v € A Further, let {t;,s,...,%,} be a set of rounds in
which the node v transmits in the schedule II**'. Finally, let us denote
tF'(v) = k+3- (timey(G) +2) - (rank(s) —i). The node v transmits the source
message in rounds

e t"'(v), if and only if the node v has a tree child in I, and
o t"(v)+3-¢;, foralll <j<gq.

Transmission of the node v in the round t¥(v) is referred to as a fast
transmission. All other transmissions of the node v are referred to as slow
transmissions. Now, we show some properties of the designed schedule.

Lemma 2.2.3. Fast and slow transmissions do not interfere each other.

Proof. Assume that nodes u € Ly, and v € Lj, transmits simultaneously.
Further, let us assume that the node u realizes a fast transmission and the
node v a slow transmission. According to the scheduling principle, it holds
that t¥'(u) = t¥(v) + 3 - t; for an appropriate value t;, 1 < t; < timey(G).
Due to definitions of ¢*'(u) and t'(v), this equality implies that |k, — k,| >
3. Hence, the nodes u and v do not share a common neighbor and their
simultaneous transmissions do not interfere. O

Lemma 2.2.4. Slow transmissions in different bipartite graph Gfll and ij
do not interfere each other.

Proof. Assume contrarily that two slow transmissions interfere. It follows
that there are two nodes u € Aff andv € Af; sharing a common neighbor and
transmitting simultaneously. Le., there are values ¢;, and ¢, (1 < t;,,t;, <
time,(@)) such that t¥'(u)+3-t;, = ¥ (v) +3-1;,. Without loss of generality,
let us assume that i; > i,. The previous equality implies that k; — ks =
3+ ((timep(G) + 2) - (i1 — i2) + t;, — tj,). It can be easily shown by a case
analysis that either |ky — ko| > 3 or ky = ko, i1 = io, t;, = t;,. It follows that
either the nodes u and v do not share a common neighbor or Gf' = G2, O

Lemma 2.2.5. Any node in F' receives the fast transmission from its parent
without any collision.

Proof. Let us consider a node u € FF C F. Since u € F, it holds that
rank(parent(u)) = i and parent(u) € Lg_;. Assume contrarily that a
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collision occurs during the fast transmission of the node parent(u), i.e.,
in the round % (parent(u)). If follows that there is a neighbor v € L,
(v # parent(u)) of the node u that transmits in the round ¥ (parent(u)).
Due to Lemma 2.2.3, fast and slow transmissions do not interfere. There-
fore, the node v realizes its fast transmission in the round ¢ (parent(u)), i.e.,
tf'(v) = t¥ (parent(u)). The last equality implies that either |[j — k| > 6, or
j = k—1 and rank(v) = i. The former case contradicts directly the assump-
tion that v is a neighbor of w. In the latter case, we get v € Ly_1 N R;.
Since the node v transmits, it follows that there exists a node w € L
such that parent(w) = v and w € FF (see the condition for fast trans-
missions). Finally, u,w € FF and the last property of GBST imply that
(v,u) = (parent(w),u) ¢ E contradicting again that v is a neighbor of
u. U

Lemma 2.2.6. Each node v receives the source message before the round

tf(v).

Proof. The proof is done by induction on the layer number of a node. For
the source, the claim trivially holds. Now, we prove the claim for a node
v € L; N R; under assumption that induction hypothesis holds. It holds that
either v € FF or v € SF. In the both cases, we get parent(v) € Lj_;. The
induction hypothesis implies that the node parent(v) is informed before the
round ¢ (parent(v)). Hence, the node parent(v) can realize all its scheduled
fast and slow transmissions. Since rank(v) < rank(parent(v)), it follows
that t" (parent(v)) < t¥(v).

In the former case (v € FF), the fast transmission of the node parent(v)
in the round ¢ (parent(v)) < t¥'(v) is successfully received by the node v due
to Lemma 2.2.5. Therefore, the node v is informed before the round ¢ (v).

In the latter case (v € SF), it follows that parent(v) € Ly_, N R;, where
I > i. Note that the node v belongs to the uninformed part B of the
graph Gi¥. Note also that the informed part A} is a subset of Ly_; N R; and
parent(v) € AF. For any node u € AF, the induction hypothesis implies that
it is informed before the round ¢ (u). Moreover, for any pair of nodes u, w €
AF it holds that t!'(u) = t¥'(v). Since | > i, for an arbitrary node u € A¥
transmitting in rounds {{,...,¢,} according to schedule II¥, and for any j,
1 <j<gq, wegett"(u)+3-t; <tF(u)+3-timey(G) = k—1+3- (timey(G) +
2)-(rank(s)—1)+3-timey(G) < k—1+43-(timey(G)+2)- (rank(s)—i) < t¥'(v).
Le., all nodes in AF realize their slow transmissions before the round ¢ (v).
Due to Lemma 2.2.3 and Lemma 2.2.4, slow transmissions according to I
in G do not interfere with other transmissions. Since the schedule I} is a
schedule for information dissemination in the bipartite graph G¥, the node
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v is informed after all slow transmissions according to the schedule IIf are
done. O

Theorem 2.2.7. For a given arbitrary graph G = (V| E), a radio broad-
casting schedule with the length D + O(timey(G) - logn) can be generated in
polynomial time.

Proof. Lemma 2.2.6 claims that each network node v is informed by the con-
structed schedule in the round ¢ (v) at the latest. Due to Lemma 2.2.1,
rank(s) < logn. Since k < ecc(s), it follows that t¥(v) < ecc(s) + 3 -
(timey(G) + 2) - logn = D + O(time,(G) - logn). The polynomial-time con-
structibility of the schedule follows from Theorem 2.2.2 showing that a GBST
of a given arbitrary graph GG can be constructed in polynomial time. O

Observe that the presented schedule has another interesting feature. If
a given algorithm A4, produces k-shot schedules of transmissions, the result-
ing schedule is (k + 1)-shot broadcasting schedule. I.e., this schema can
be used for construction of energy efficient broadcasting schedules, provided
that schedules generated by the algorithm A, are energy efficient.

We conclude this section with corollaries of Theorem 2.2.7. We start with
the corollary that shows the main result in [36].

Corollary 2.2.8. There exists a deterministic polynomial-time algorithm
that generates, for any n-node radio network with diameter D, a broadcasting
schedule with length D 4+ O(log® n).

Proof. The algorithms in |9, 48| generate transmission schedules for infor-
mation dissemination in bipartite graph with length O(log®n). Using one
of those algorithms as the algorithm A, in the schema from Theorem 2.2.7,
we obtain an algorithm generating radio-broadcasting schedules with length
D + O(log®n). O

The authors in [18] presented an algorithm producing schedules with
length O(log A -logn) for information dissemination in n-node bipartite net-
works with the maximum degree A. Generalization of their algorithm for
radio networks with long-range interference is presented in Chapter 3 (The-
orem 3.2.6). The algorithm in [18] and Theorem 2.2.7 imply the following
corollary.

Corollary 2.2.9. There exists a deterministic polynomial-time algorithm
that generates a radio broadcasting schedule with length D 4 O(log A -log® n)
for any n-node radio network with diameter D and the maximum degree A.
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In [37], the following algorithm for information dissemination in bipartite
networks was presented. The algorithm is based on minimal covering sets.

Definition 2.2.10. Given a bipartite graph G = (AU B, E), a minimal
covering set is such a set C', C' C A, that every node in B is connected to a
node in C' and removal of any node from C does not preserve this property.

Lemma 2.2.11 ([37]). Let G = (AU B, E) be a bipartite graph with the
informed part A and the uninformed part B. Let A be the maximum degree
of a node in the graph G. If deg(v) > 1 for all v € B, all nodes in B can be
informed by transmissions of nodes in A during at most A rounds.

Proof. Let Ag C A be a minimal covering set of G. Let us denote By =
{ulu € B A |N(u) N Ag| = 1}. Definition of the minimal covering set implies
that each node v € Ag has such a neighbor u € B that N(u)N Ay = {v}, i.e.,
the node v is the only neighbor of the node w in the set Ay. Indeed, if for
each neighbor z € N(y) of anode y € Ay it holds that N(z)N Ay D {y}, then
the set Ag \ {y} is covering set as well. This contradicts minimality of the
covering set Ag. Obviously, after a simultaneous transmission of all nodes in
Ay, all nodes in By receive a message without any collision. Therefore, we
can remove all nodes in By from B. Since |N(v) N By| > 1 for each node
v € Ag, it holds that degree of each node in Ag is decreased at least by one
after removal of By from B. Repeating this process at most A times, all
nodes in B become informed. Finally, note that a minimal covering set of a
given set can be easily found in linear time. O

Utilizing algorithm from Lemma 2.2.11 in the schema from Theorem 2.2.7,
we get another corollary.

Corollary 2.2.12. There exists a deterministic polynomial-time algorithm
that generates a radio broadcasting schedule with length D + O(A -logn) for
any n-node radio network with diameter D and the maximum degree A.

In [36], Gasieniec et al. showed also an algorithm generating gossiping
schedules with length 2- D + A -logn 4+ O(log®n). The algorithm consists
of two parts: gathering and broadcasting part. At first, all messages are
gathered in the central node applying a schedule with the length D+ A-logn
rounds. Further, gathered messages (one combined message) is broadcasted
in the network during next D + O(log®n) rounds. However, replacing the
broadcasting schedule of length D 4+ O(log®n) with a broadcasting schedule
of length D+ O(A-logn) generated by the algorithm in Corollary 2.2.12, we
get a gossiping schedule of length 2- D + O(A - logn).
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Corollary 2.2.13. There exists a deterministic polynomial-time algorithm
that generates a gossiping schedule of length 2- D+O(A-logn) for any n-node
radio network with diameter D and the mazimum degree A.

2.3 Broadcasting in Planar Graphs

Intuitively, if the reachability graph of a radio network belongs to a specific
class of graphs, we can utilize this fact and design algorithms producing
more efficient (faster) radio broadcasting schedules. If graphs of this class
are effectively recognizable by an algorithm, whenever we recognize such
a reachability graph, we can replace algorithm for arbitrary graphs by an
algorithm for graphs in this class. Moreover, when building a static radio
network, we may try to choose locations of devices and directions of antennas
in such a way that the resulting reachability graph will have a topology
allowing efficient broadcasting.

One of those specific classes is a class of planar graphs. Planarity of a
graph can be verified in polynomial time [41]. Recall that a graph is planar
if and only if it can be embedded in the plane, i.e., it can be drawn on the
plane in such a way that its edges intersect only at their endpoints.

In this section, we show that planarity is a helpful property for central-
ized communication in radio networks, i.e., we show that planar reachabil-
ity graphs are radio broadcasting friendly topology in context of centralized
communication. Surprisingly, this is not true in the fully distributed set-
ting. Indeed, the graphs showing best known lower bounds [46] for radio
broadcasting in unknown symmetric radio networks are planar.

2.3.1 Upper Bounds

The first result concerning the broadcasting problem in radio networks with
planar reachability graphs was given by Elkin and Kortsarz in [27]|. They
presented an algorithm generating radio broadcasting schedules of length
D + O(log®n). This result was later improved independently by Gasieniec
et al. in [36] and by Gal¢ik in [32]. Both works showed a polynomial-time
algorithm that for a given planar reachability graph produces a broadcasting
schedule of the length 3 - D. The key subroutine of those algorithms is a
subroutine for information dissemination problem in a bipartite graph G}, =
(AU B, E) that is a subgraph of a planar graph G' = (V, FE) and

e all nodes of the informed part A are in the same distance i from the
source (A C L;), and
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e all nodes of the uninformed part B are in the same distance 7 + 1 from
the source (B C Ly1).

Hence, we consider only subgraphs of bipartite inter-layer graphs.
Computation of transmission schedule starts with preprocessing of an
input graph G as follows.

1. We remove all nodes in the distance at least ¢ from the source, except
nodes in the set AU B.

2. We remove all edges with both endpoints in the set A or in the set B.
3. We contract all edges, except edges with one endpoint in the set A.

Note that node removal, edge removal, and edge contraction preserve
planarity. Preprocessing is concluded by use of stereographic projection. We
fix a planar embedding of the graph GG such that the source node s is located
on the outer face. From the computational point of view, the result in [16]
implies that we can assume that the planar embedding of the graph G is a
straight-line drawing (it can be computed by a polynomial-time algorithm).
If anode b € B has exactly one neighbor in A, any transmission of its unique
neighbor in A delivers the source message to the node b. Since we shall
guaranty that all nodes in A transmit at least once, we can remove all nodes
in B with exactly one neighbor and consider the resulting graph. Moreover,
if some nodes in A have no neighbor in B, they can be removed as well.
Indeed, construction of a schedule for such nodes is trivial.

Observe, that the resulting graph G consists of two types of edges: a set of
edges joining the source s and a node in the set A, and a set of edges joining a
node in A and a node in B. Since the source s lies on the outer face, it follows
that at least one node from B lies on the border of the outer face. Let B’ # ()
be a set of all nodes from B that lie on the border of the outer face. Due to
preprocessing, each node in B has at least two neighbors in A and each node
in A has at least one neighbor in B. Therefore, each node, except the source s,
appears on the outer-face border at most once. For a node b € B and two its
neighbors ar,ar € N(b) C A, let R(b,ar,ar) be a closed region bounded by
the edges (s,ar), (ar,b), (b,ar), and (ag, s). Let ag’i) € A and agi) € Abea
predecessor and a successor of a node b; on the outer-face border respectively.
Notice that a union of regions |, R(b, ag’), ag), s) is a complement of the
outer face. Moreover, planarity of the graph embedding implies that for

any two different nodes b; and b; the intersection of regions R(b;, ', alt)

and R(b;, aibj), agj), s) contains the source s and at most one node from the
set {agji),ag” ,ag’j),ag:j)}. Notice also, that the information dissemination
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process among nodes inside R(b;, a L )7 aﬁf{ )) can be treated individually with
exemption of the nodes ag’ and aj (be)

Now, we show how to assign a transmission round round(a) € {1,2,3}
to each node a € A. lLe., each node of A transmits in exactly one of three
rounds in the generated transmission schedule for information dissemination

in bipartite graphs. The schedule is computed in the following steps.

1. Let {b1,bo,...,b.} be a sequence of nodes in B’ in order in which
they appear on the outer-face border. Assign round(ag’i)) := 1 and

round(a R‘)) = 2 in case that ¢ mod 2 = 0. Otherwise (i mod 2 = 1),
assign round(a(ﬂ)) =2 and round(aRZ)) L.

2. Compute assignments for internal nodes of the region R(b;, a%i)7 agi))
separately for each b; utilizing the procedure Assign-Inside-Region (see
Lemma 2.3.1).

3. Assign round(v) := 1 for each node v € A with unassigned transmission
round. Note that in this step, we assign transmission rounds to nodes
in the original set A, i.e., to all nodes of the set A which have been
removed from the graph GG in the process of assignment computation.

Since we assign transmission rounds in one direction of outer-face border
traversal, the resulting assignment assigns at most one transmission round
to each node in A. Moreover, the resulting assignment satisfies the prop-
erty that each node in B’ receives the source message in two transmission
rounds. The third step does not introduce collisions, since we remove from
the graph GG only such nodes in A that have no neighbors in B or all their
neighbors in B have exactly one neighbor in A. In the remaining, we show
how to recursively compute transmission rounds for nodes inside a region
R(b;, ag”)7 agi)) such that all nodes in R(b;, aL b, 52 ') N B receive the source
message. Recall again, that the planar embedding of the graph G implies

that there are no edges crossing the border of the region R(b;,al’, a'%).

L.e., computing transmission rounds for nodes in R(bl,afi), (b)) N A, we
have to take into consideration only transmission rounds assigned to nodes
ag’ and aR %) Observe also, that if transmission rounds assigned to nodes
inside R(b;, ag’) (b')) i.e., to nodes R(b;, ag”' ,a (b )N A, inform all nodes of
the set R(bl, ay, ,ag )) N B, then the computed schedule realizes information
dissemination in the bipartite graph G, = (AU B, Ey).

Let R(b, ag’)7 (b)) be a region defined by the nodes b, ag’)7 ag)7 and s such
that
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e the nodes a(L), aR have assigned different transmission rounds, i.e.,

round(aL ) # round(aR ), and

e 10 node in the set R(b, af),ag)) N A, except nodes ag’) and ag)

assigned transmission round, and

, has

e all neighbors of b are inside of R(b, ag’), ap N, ie., N(b) C R(b, ag’), a%))

Note that regions considered in the second step of the assignment com-
putation satisfy this property.

Lemma 2.3.1. We can assign to each node of R(b, af),ag) N A one of

3 transmission rounds in such a way that all nodes in R(b, af),asq)) N B
receive the source message. Computation of the assignment is realized by a
polynomial-time algorithm called Assign-Inside-Region.

Proof. Let (ag’) =qay,ag,...,0, = ag)) be a clockwise (or counterclockwise)
ordering of nodes in the set N(b) Hence, round(a,) € {1, 2,3}, round(a,) €
{1,2,3}, round(a;) # round(a,), and round(a;) is unassigned for any i,
1 <i < p. Let us denote t; = round(ay), to = round(a,), and t3 = {1,2,3}\
{t1,12}. We set the transmission round round(a;) of a node a; to s in case
that ¢ mod 2 = 0, and to ¢y otherwise. Since N(b) C R(b, aS-Jb), ap ) defined
assignments of transmission rounds guaranty that the node b is informed
in the round ¢; by transmission of the node a(,f’). After this assignment,
transmission rounds (informing the node b) of all neighbors of the node b are
determined and fixed. If there are no other nodes from the set B inside the
region R(b, ag’),ag)), ie., R(b, af),ag)) N B = {b}, then we are done. The
computed assignment realizes information dissemination inside the region
R(b,a,a).

In the complementary case when |R(b, aL ,aR ) N B| > 1, we proceed in
the following way. Due to planarity and bipartition, the region R(b, ag’)7 53))
is a union of disjoint (with exception of border nodes and edges) subregions
R(b,ai,a;41) for i, 1 < i < p. Let us consider each subregion R(b, a;,a; 1)
separately. Note that no node from the set A (except a; and a;y1) lo-
cated inside this region has assigned transmission round, and round(a;) #
round(a;y1). Let G(b,a;,a;11) be a graph induced by the network nodes in-
side the region R(b, a;, a;1) with exception of the node b. Removing the node
b and all nodes (including incident edges) outside the region R(b,a;, a;1),
we get a planar embedding of the graph G(b,a;,a;,1). Later, removing all
nodes in B with exactly one neighbor in A, we remove from the graph all
nodes which are informed by any transmission of their unique neighbors in
A. Finally, removing all nodes in A without a neighbor in B, we eliminate
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Figure 2.2: A region R(b, ag)), aﬁ?) and processing of subregion R(b, as, as)

nodes whose transmissions do not cause interference. Similarly as above, the
source s lies on the outer-face border. Let (by,bs,...,b,) be a sequence of
nodes from B in the order in which they appear on the outer-face border
of the considered planar embedding of G(b,a;,a;11). Let ag”') and agi) be
the predecessor and the successor of the node b; on this outer-face border
respectively. Note that at most two nodes on this outer-face border have
already assigned transmission rounds. Moreover, if there are two such nodes,
they have assigned different transmission rounds. Let ¢; be a transmission
round assigned to one of those nodes (if no node has assigned transmission
round, ¢; can be any transmission round). Further, let ¢3 be an unassigned
transmission round. Since each node, except the source s, appears on the
outer-face border at most once, starting from a node with assigned trans-
mission round #; (if no such node exists, we start in any node of the set
A lying on the border) and traversing the outer-face border, we can assign
transmission rounds ¢; and {3 to all nodes of set A on this border in such
a way that for an arbitrary node b; € B on the outer-face border it holds

round(ag’i)) # round(agi)). Finally observe that complement of the outer

face is a union of disjoint regions (J,,;, R(bi, a%i), agi)). Due to planarity,

assignment of transmission rounds can be computed in each of those regions
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independently. For computation of the assignment, we apply the procedure
Assign-Inside-Region recursively. Indeed, each region R(b;, ag”), agi) ) satis-
fies all properties to be an input region of the procedure Assign-Inside-Region
and contains strictly smaller number of network nodes than the input region
R(b, ag’), ag)). Note that b ¢ R(b;, ag”), agi)).

Correctness of the computed assignment follows from the inductive hy-
pothesis that the assignments computed by the procedure Assign-Inside-
Region for all subregions R(b;, ag’i)7 agi)) inform all nodes in B inside them,
and the fact that the node b is informed due to transmission rounds assigned
to its neighbors. Each call (not counting time taken by recursive calls) of
the procedure Assign-Inside-Region takes polynomial-time and during whole
computation there are at most |B| calls of this procedure. O

In the following theorem, we summarize properties of the presented al-
gorithm for generating transmission schedules which realize information dis-
semination in planar bipartite graphs.

Theorem 2.3.2. Let G = (V, E) be a planar graph with a source s. Denote
L; = {vldist(s,v) = i}. Let G, = (AU B, ENA X B) be an induced bipartite
subgraph of the graph G such that A C L; and B C L;yy for some i. If A
is a set of informed nodes and each node in B has at least one neighbor in
the set A, then there is a polynomial-time algorithm which generates a 1-shot
schedule of transmissions informing all nodes in B during at most 3 rounds.

The previous theorem provides two corollaries for broadcasting in arbi-
trary planar reachability graphs.

Corollary 2.3.3. Let G = (V, E) be a planar reachability graph. There is
a polynomial-time algorithm that for a given source node s generates 1-shot
radio broadcasting schedules with length not exceeding 3 - ecc(s) — 2 rounds.
Proof. Consider a set of layers L; = {v|d(s,v) = i}, where 0 < i < ecc(s).
If all nodes in an i-th layer L; are informed, a schedule generated by the
algorithm from Theorem 2.3.2 informs all nodes in the (i + 1)-th layer in
at most 3 rounds. Therefore, a broadcasting schedule informing all network
nodes in at most 3 - (ecc(s) — 1) + 1 can be constructed. O

The following corollary shows also the main result of [53] by Manne et al.

Corollary 2.3.4. Let G = (V, E) be a planar reachability graph. There is
a polynomial-time algorithm that for a given source node s generates 2-shot
radio broadcasting schedules with length ecc(s) + O(logn).

Proof. The algorithm from Theorem 2.3.2 generates 1-shot schedules for in-
formation dissemination in planar bipartite reachability graph. Applying this
algorithm as the algorithm 4, in Theorem 2.2.7, the claim follows. O
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2.3.2 Lower Bounds

Utilizing algorithm from Corollary 2.3.3, centralized broadcasting can be
always completed in 3 - ecc(s, G) — 2 rounds in radio networks with planar
reachability graphs, i.e., mintime(s,G) < 3 - ecc(s,G) — 2 for an arbitrary
planar graph . Recall that mintime(s, G) stands for length of a time-
optimal broadcasting schedule with respect to a source s in the reachability
graph . Obviously, the broadcasting cannot be completed in less than
ecc(s, @) rounds, since ecc(s, ) is the minimal distance between the source
s and the most remote node. Another result (Corollary 2.3.4, [53|) implies
that there is a constant ¢ such that mintime(s, ') < ecc(s) + ¢ - logn for
an arbitrary planar graph (. Considering this, Manne et al. stated in [53]
a natural question. Is there an algorithm that for any planar reachability
graph and a source generates a schedule with the length ecc(s) + O(1) ? In
this section, we present several lower bonds that provide also negative answer
to this question.

At first, we show that there are undirected planar reachability graphs such
that broadcasting in less than 2-ecc(s, G) rounds is not possible. Particularly,
we present a sequence of planar graphs {G|k > 1}, such that there is a node
s € V(Gy) satisfying

(1) ecc(s,Gy) =2k,

(2) for each radio broadcasting schedule with respect to the source s and
reachability graph G/, there is a node that is informed in the round
4-k = 2-ecc(s, Gy) for the first time, i.e., mintime(s, Gy) > 2-ecc(s, Gy),
and

(3) ece(s, Gy) = O(log |V (Gy)]).

Construction of the sequence {G|k > 1} is recursive. The (basic) graph
(¢, is defined as follows

o V(GY) = {s}U{uili=1,....4}U{uwli=1,...,8}

o E(Gy) ={(s,v;), (vi, uq), (v, uira)|i = 1,2,3, 4 U{(us, v;), (ug, vig1)|i =
1,2,3).

In order to construct the graph Gy, for k£ > 2, we glue a copy of the graph
(i;,_1 to each node u; (i = 1,...,8) of the graph (1 in such a way that u; = s
where s is the source of G_;.

Clearly, GGy is a planar graph with the eccentricity of the distinguished
source node s equal to 2 - k = ecc(s, Gy). Since |V (Gy)| =8 |V (Gy_1)| + 5,
for k > 2, it holds ecc(s, Gi) = O(log |V (G)|)-
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Figure 2.3: Graph (4

Now, we show that for each graph (G} and for each schedule of radio
broadcasting with respect to the source s and reachability graph G, there is
a node w € V(Gy) such that w is informed in the round 4 - k = 2 - ecc(s, Gy)
for the first time.

Theorem 2.3.5 (|[E|). For each k > 1, any radio broadcasting schedule for
graph Gy with respect to the source s has the length at least 2 - ecc(s, Gy,)
rounds, i.e., mintime(s, Gy) > 4 -k =2 - ecc(s, Gy).

Proof. The proof is done by induction on k. At first, we consider the graph
(1 and show that for any schedule there must exist a node uninformed after
3 rounds. Let us assume an optimal schedule. After the first round, all
neighbors of the source are informed. Since the node uy (most upper node
on Figure 2.3.2) has 4 neighbors, it becomes informed only after a round in
which exactly one of its neighbors (v, vo, v3, or v,) transmits. Without loss
of generality, let the second round be a round after which the node uy is
informed. After this round, there are 3 uninformed nodes of degree 1 and
at least one uninformed node of degree 2. Note that nodes of degree 1 have
distinct neighbors. Moreover, all neighboring nodes of uninformed nodes of
degree 2 have an uninformed neighbor of degree 1. Thus, it is not possible to
inform all nodes after the third round, since in order to inform uninformed
nodes of degree 1, all their neighbors have to transmit. However, it causes a
collision for uninformed nodes of degree 2.

Consider now the graph Gy, k > 2, and assume that according to the
inductive hypothesis the claim is true for GG;_;. In the recursive construction
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of GG, we can observe that the broadcasting in a copy of Gy_; is started after
the corresponding node u; of the ‘basic’ G; becomes informed. Also note that
broadcastings in different copies of GG;_; are independent, i.e., broadcasting in
one copy has no influence on the broadcasting process in another copy. Claim
for k = 1 implies existence of a node u; which becomes informed in the round
4 for the first time. Considering assertion for corresponding copy of G_1, we
obtain mintime(s, Gy) > 4+ mintime(u;, Gp_1) > 4+4-(k—1)>4-k. O

Typically, the complexity of algorithms for centralized radio broadcast-
ing (the length of a produced radio broadcasting schedule) is described by
an expression containing parameter [ - diameter of the reachability graph.
However, parameter D can be replaced with the eccentricity of the source
node ecc(s, ) in known algorithms for the planar case. It is easy to see that
the constructed sequence of graphs {Gg|k > 1} does not provide a better
lower bound than the trivial lower bound D. Indeed, D = 2 - ecc(s, Gj) <
mintime(s, Gy), for each k > 1. In fact, 2 - ecc(s, Gy) = mintime(s, G},).
Using a simple extension of (G, one can construct a better lower bound ac-
cording to the parameter D. Let G, be the planar graph constructed from
G, as follows: we add a path of length ecc(s, Gy) starting in the source s.
Let s be the last node of the added path. Clearly, diameter of the reach-
ability graph is preserved, i.e., Dg- = 2 - ecc(s,Gy) = D, = ecc(s, Gy).
Assume that s is the source of the broadcasting. Since each broadcast-
ing have to follow a path from 35 to s of the length ecc(s, i), we obtain
mintime(s,Gy) = ecc(s,Gy) + mintime(s,Gy) > 3 - ecc(s,Gy). Hence,
mintime(s,Gy) > 3/2- D.

Theorem 2.3.6 ([E]). For each k > 1, any radio broadcasting schedule for
graph Gy, with respect to the source s has the length at least 3/2- D rounds,
i.e., mintime(s, Gy) > 3/2 - D, where D is diameter of Gy,.

In the remaining, we generalize the previous construction. Let G be an
undirected planar graph and denote

mintime(v, Q)

ratio(Q) = maz { RO V(G)} .

Let s € V(@) be a node such that ratio(G) = %‘f(g)@ Following intro-
duced notation, since it holds mintime(s, Gy) > 2-ecc(s, Gy,), it follows that
ratio(Gy) > 2 for each Gy, k > 1. We construct a sequence of planar graphs

{G|k > 1}, s.t., there is a node s’ € V(G}) satisfying

(1) ecc(s',GY) =k - ecc(s', G),
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(2) for each radio broadcasting schedule with respect to the source s and
reachability graph G, there is a node that is informed in the round
k- mintime(s', G) = k - ratio(GQ) - ecc(s', G) = ratio(G) - ecc(s', GY,) for
the first time, and

(3) ece(s', Gy) = O(log [V (G )]).

Define G| = G. For k > 2, (7}, is constructed recursively from G and G),_,.
As in the previous section, we glue a copy of the graph GG}, , to each node v
of the graph G1, v # ', in such a way that the node v is identified with the
source s’ of G,_,. Note that the construction preserves planarity (applying
topological isomorphism, there is always a planar embedding of G’ with the
node s’ on the outer face). Using similar argumentation, one can show by
induction that all desired properties of G}, according to s are valid. Finally,
it is easy to see that the properties imply ratio(G},) > ratio(G), i.e., it is
not possible to complete radio broadcasting in less that ratio(G) - ecc(s', G,)
rounds with respect to the source s’ and the reachability graph .

Theorem 2.3.7 (|E|). Let G' be an undirected planar graph. There exists a
sequence of planar graphs {G|k > 1}, s.t., for any k > 1, G}, contains a
node s satisfying mintime(s', G},) > ratio(G) - ecc(s', G}.).

Let GT,C be a planar graph constructed in such a way that we add a path
of the length ecc(s’, GG}), which starts in the node §', to the graph G/. Let s
be the last node of the added path. Considering 5 as a source of a broadcast-
ing, one can prove the following theorem providing generalized lower bound
according to diameter of a graph.

Theorem 2.3.8 (|E|). Let G be an undirected planar graph. There exists
a sequence of planar graphs {G'|k > 1}, s.t., for any k > 1, G contains
a node 3 satisfying mintime(3,G) > (1 + ratio(G))/2 - D, where D is the
diameter of the graph G'.

Algorithms for centralized radio broadcasting from Section 2.3.1, which
complete the broadcasting in 3 - ecc(s, G) — 2 rounds, imply that ratio(G) <
3 — m for an arbitrary planar graph (. The presented construction im-
plies that there is an infinite sequence of planar graphs satisfying ratio(G) >
2. Also, the generalized construction shows that in order to get a better lower
bound of time of the centralized radio broadcasting for the planar case, we
have to search for a planar graph with larger ratio(G) (in the best case with
ratio(G) = 3 — ecc(%)

Finally observe, that in the case when we take into account the number
of network nodes, the presented lower bounds can be easily reformulated as a
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lower bound ecc(s) 4+ 2(log n) rounds for broadcasting in planar reachability
graphs. It results in the claim that algorithms (Corollary 2.3.4, [53]) gener-
ating broadcasting schedules with length ecc(s) + O(logn) generate broad-
casting schedules with the asymptotically optimal length.

2.4 Broadcasting in k-degenerate Graphs

The previous section shows that planar reachability graphs allow time and
energy efficient radio broadcasting. Since each planar graph belongs to a
class of 5-degenerate graphs, the following natural question emerges. Do k-
degenerate reachability graphs allow efficient radio broadcasting for a fixed
value k or even for an arbitrary value k similarly as planar graphs ?

Let us start with definition and description of the class of k-degenerate
graphs.

Definition 2.4.1. Let k be a non-negative integer. A graph G is called k-
degenerate (we write G € Dy,), if for each subgraph H of G, the minimum
degree of H does not exceed k.

The following value plays the fundamental role in the theory of k-degenerate
graphs:
s(G) = max vgl(l}l{) deg (v).

This number is called Szekeres- Wilf number and it is easy to see that G
is k-degenerate if and only if s(G) < k. The definition implies that each
subgraph of k-degenerate graph is k-degenerate as well (for more details see
[6]). Moreover, it implies that for each graph G there is a number & such
that GG is k-degenerate.

Proposition 2.4.2 ([52]). A k + m-node graph G is k-degenerate if and
only if the vertex set V(G) can be labelled vy,vs, . .., Vg1 such that in the
subgraph ({v;, vis1, ..., Vpim}) of G deg(v;) < k for eachi=1,2,...,m — 1.

Note that the labelling of k-degenerate graph G satisfying the previous
proposition can be computed in such a way that we remove a node with the
lowest degree in every step. Obviously, this computation takes polynomial
time. Also note that k-degenerate graphs have no general bound on the
maximal degree of a node. On the other hand, it was shown in [52] that the
number of edges of a k-degenerate graph is at most k- n — (k'QH) where n is
the number of nodes.
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2.4.1 Upper Bounds

In this section, we focus on upper bounds on length of a radio broadcasting
schedule. We present algorithms generating radio broadcasting schedules for
arbitrary k-degenerate reachability graphs.

Consider a class of 1-degenerate graphs (remark that every connected 1-
degenerate graph is a tree). In such a case we can construct a trivial radio
broadcasting schedule IT = (Ry, ..., R,) with respect to a graph (tree) G and
a source s € V() as follows:

(1) Ry :={s} and
(2) Ripr:=1(R)\ U I(R)), fori>1.

The condition (2) yields that in the round 7 + 1 a message is transmitted by
all nodes which received a message in the round i for the first time. It is easy
to see that there is a round p such that R, = (). Letting ¢ := p — 1 one can
prove that II is a radio broadcasting schedule of the optimal length.

In what follows we present algorithms generating a radio broadcasting
schedule for graphs which belong to Dy, for a fixed integer k, k > 2.

Theorem 2.4.3 ([A]). Let G = (AU B, E) € Dy be a bipartite k-degenerate
graph (k > 2) such that degg(v) > 1 for all v € B. There is a polynomial-
time algorithm which generates transmission schedules with length at most
[k2/2] + k+ O((1+1ogk) - log | B|) realizing information dissemination with
the informed part A and the uninformed part B.

Proof. The algorithm works in two phases. During each phase, a part of the
resulting schedule is produced. The goal of each part is to inform all nodes
in the specific subset of B.

Phase 1: Let (G be an input graph and denote n = |V(G)|. Since G
is a k-degenerate graph, according to Proposition 2.4.2, in polynomial time
we can compute labelling vy, vy, ..., v, of the nodes of G such that for each
i = 1,2,...,n in the induced subgraph G; = ({vi,vis1,...,Un})s it holds
degg (v;) < k. It means that the nodes of G can be ordered in such a
way that there are at most k£ edges from the node v; to the nodes of set
{Vig1, - vn}

For each i, 1 <7 < n, we define a set:

Naeg(vi) = {v; € V(G)|(vi,v5) € E(G) A j > i}

Note that Nge,(v;) € N(v;) and |Ngeg(v;)| < k for each v; € V(G). The
goal of this computation phase is to produce a schedule which ensures that
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each node v; € B, s.t., |N(v;) \ Naeg(vi)| > 1, becomes informed. During
the computation, a round, denoted as round(v;), is assigned to every node
v; € V(@) such that round(v;) € RU{NIL}, where R = {1,...,[k*/2] +k}.
Symbol NIL is used for still undefined round. For a node v; € A, the value
round(v;) denotes a round in which the node v; will transmit a message
during the first part of schedule. For a node v; € B, it denotes a round (from
the other admissible) in which the node v; receives a message. Initially, we
set round(v;) := NIL for all v; € V(G). For each node v,, € B, we shall
maintain the following set during the computation:

Receive(vy,) = {r | there exists the uniquewv; € N(vy,)
such that round(v;) =r # NIL}

The nodes are processed in the sequential order from v, to v;. After a
node v; is processed the following two invariants hold:

(1) for each v; € A such that j > ¢ we have:

e round(v;) # NIL
o round(vy,) # NIL, for all v, € Ngey(v;).

2) for each v; € B such that j > ¢ it holds:
( fi J

e Receive(vj) =) = round(v;) = NIL

o Receive(vj) # ) = round(v;) € Receive(v;)

Now we show, how a node v; € V(@) is processed. We fix v; € V(@) and
suppose that all nodes in the set {v;;1,...,v,} have been already processed.

In the case when v; € B, we process the node v; as follows. If Receive(v;) #
() then we set round(v;) to an arbitrary element of the set Receive(v;). Oth-
erwise, round(v;) is unchanged, i.e., round(v;) = NIL.

In the case when v; € A, the processing of the node is more complex. For
each v,, € B we compute the set:

Used(vy,) = {round(v)|v € Naeg(vm)}
Next we compute the following sets:
Unassigned = {v; € Ngeg(v;)|round(v;) = N1L}

Assigned = Ngeq(vi) \ Unassigned
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Used" = U Used(v;)

vjc€Unassigned
Used = {round(v;)|v; € Assigned} U Used"

Finally, we set the value round(v;) to an arbitrary element of the set R\ U sed.
Afterwards we set the value round(v;) := round(v;), for all v; € Unassigned.

The first part of the schedule, which corresponds to this computation
phase, is produced as follows: a node v; € A transmits a message exactly in
the round round(v;), i.e., R; = {v; € Alround(v;) = j} for each j € R.

Correctness of phase 1: We use computational induction to show that
during the first phase of the algorithm both mentioned invariants hold after
processing of a node.

It is not difficult to see that the claim is true after processing of a node
v; € B. In the case when v; € A, at first we show the correctness of the
assignment, i.e., that R\ Used # () and we are able to choose a round-
number.

Let v,, € Unassigned. From the definition of the set Unassigned it
follows that v, € Ngeg(vi) € B, m > i and round(v,,) = NIL. Since m > i
the second invariant implies that Receive(v,,) = (). Thus each round-number
in the set Used(v,,) is assigned to at least two nodes from the set Ngeq(vp,).
Otherwise, there is a node u € Nge,(vy,) such the value round(u) # N1L and
moreover there is no node w € Nye4(vy,) such that round(u) = round(w).
But it contradicts to Receive(vy,) = 0. Since | Ngeg(vr)| < k and each round-
number is used at least twice, it holds that |Used(v,,)| < k/2. Again using
| Naeg(vi)| < k we obtain:

k k?
|Used| < |Assigned| + 5 |Unassigned| < 5t k—1.

Hence, there is at least one free round-number and R\ Used # (), i.e., the
defined assignment is correct.

One can verify that according to the assignments which are created at the
moment when the round-number round(v;) is determined, the first invariant
holds.

Now we shall analyze the second invariant. Since during the processing
of the node v; € A we change only one round-number in the set A, it is
sufficient to consider validity of conditions of the second invariant only for
nodes of the set Nge,(v;) C B. Since for each node v, € Assigned it holds
that round(v,,) ¢ R\ Used, validity of the conditions remains unchanged for
the nodes of the set Assigned. Consider a node v,, € Unassigned. Since
after processing of v; it holds that NIL # round(v;) = round(v,,) ¢ Used
and round(vy,) ¢ Used = round(vy,) ¢ Used(v,) C Used. Since v, €
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Unassigned, the first invariant implies that before processing of v; there is
no node v; € N(vy) \ N(vy) € A such that round(v;) # NIL. We can
summarize both these facts into the claim: There is no v; € Nge,(v,,) such
that round(v;) = round(vy,,) and round(v;) = NIL, for all v; € (N(vy,) \
Nieg(m)) \ {v:}. This claim implies that Receive(v,,) # 0 and round(v,,) €
Receive(vy,).

Since after processing of all nodes both invariants hold, we show that
each node v,, € B satisfying N(vy) \ Naeg(vm) # 0 becomes informed af-
ter execution of the first part of schedule. Let v,, € B be a node such
that N(vy) \ Ngeg(vm) # 0 and let v; € A be a node such that v; €
N(vm) \ Naeg(vm). The definition of Nge,(vy,) implies that ¢ < m and thus
Um € Ngeg(v;). Finally, the first invariant guaranties that round(v,,) # N1 L.
Hence the second invariant implies that round(v,,) € Receive(vy,), i.e., Uy
receives a message in at least the round round(v,,).

It follows that only the nodes v; € B, for which N(v;) = Nge,4(v;), can be
uninformed. For such uniformed nodes it holds |N(v;)| = [Naeg(vi)| < k.

Phase 2: The goal of this phase is to inform all remaining uninformed
nodes. Since for every uninformed node v; € B it holds that |N(v;)| < k,
we can use the algorithm from Theorem 3.2.6 (Chapter 3) to produce the
second part of the schedule. Using the following input collection of set-pairs
F = {({jlv; € N(v;)},0)|v; € Bis uninformed}, the algorithm produces a
collection (ad-hoc selective family) & = {Si,...,S,} as an output, where
p=O0((1+1logk)-log|B]). The second part of schedule is constructed using
the following definition R; g = {v; € Ali € S;} for each j, 1 < j < p,
where R is the set of the size [k?/2] 4+ k which has been defined in Phase 1.
Correctness of the produced schedule follows from Theorem 3.2.6.

Complexity: The total length of produced schedule is [k?/2] + k +
O((1 +logk) - log|B|) rounds. Since both phases take polynomial time, the
designed algorithm is polynomial as well. O

Note that this result cannot be improved in general due to the lower bound
for 2-degenerate graphs that is shown in the next section (Theorem 2.4.8).

Theorem 2.4.4 ([A]). Let G = (V, E) be an undirected connected k-degenerate
graph (k > 2), i.e., G € Dy. Then there exists a polynomial-time algorithm
producing radio broadcasting schedules of the length D.([k*/2] + k + O((1 +

logk) - log 3)).

Proof. Since each subgraph of a k-degenerate graph is k-degenerate too, we
use the algorithm from the proof of Theorem 2.4.3 to inform the nodes of
every consecutive layer, i.e., broadcasting is scheduled layer by layer. The
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length of the schedule follows from the fact that S°7 log|L;| is maximized
for |L;| =n/D. O

Since k is a fixed constant for any given class of k-degenerate graphs, the
previous theorem results in the following corollary.

Corollary 2.4.5 ([A]). Let k > 2 be an integer and Dy, be a class of k-
degenerate graphs. There is a polynomial-time deterministic algorithm which
produces radio broadcasting schedules of length Or(D -logn/D) with respect
to a reachability graph G € Dy, and a source s € V(G).

It is not difficult to see that for k-degenerate graphs with diameter o(logn)
proposed algorithm produces radio broadcasting schedules of shorter length
than known algorithms for the general case.

Finally, we get another algorithm for generating radio broadcasting sched-
ules in arbitrary k-degenerate graphs applying Theorem 2.2.7.

Corollary 2.4.6. Let k > 2 be an integer and Dy, be a class of k-degenerate
graphs. There is a polynomial-time algorithm that for a given graph G € D,
and a given source node s generates radio broadcasting schedules with length
ecc(s) + Oy (log” n).

2.4.2 Lower Bounds

This section is devoted to a lower bound on the broadcasting time in radio
networks whose reachability graph is k-degenerate for £ > 2. In particular,
we show that there is a subclass of 2-degenerate graphs such that every radio
broadcasting schedule has the length Q(logn) for each graph of this subclass.

At first, we define a set of graphs G = {G,,/m > 2}. For a fixed in-
teger m, m > 2, the graph G,, is constructed from the graph K,, with
vertex set V(K,,) = {v1,...,u,} (the complete graph on m vertices) as
follows: we add a new node s to K,, and we join it to every node of
Ky,. Next we subdivide every edge €;; = (v;,v;) € E(K,,) by a new
node u; ;. Formally, G,, = (Vj,, F},) is an undirected graph with the ver-
tex set Vi, = {s,v1,...,un} U{uj|1 < i < j < m} and the edge set
B =A{(s,v3)|1 < i <m} U{(vi, uig), (vj, uig)|1 < i < j <mj.

With respect to the source node s, the graph G, can be partitioned into
layers Lo = {s}, L1 = {vi|l < i < m} and Ly = {u;;|1 < i < j < m}.
Each layer forms an independent set. Obviously, the radius of GG,, is 2. Since
every node, except the source s, has degree at most 2, the graph G, is a
2-degenerate graph with (m? + m + 2)/2 nodes.
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Figure 2.4: Graph G4 with small nodes constructed by subdivision of edges
of K4

In the following lemma, we show that it is not possible to complete radio
broadcasting in the graph G,, with the source s in less than |logn| + 1
rounds.

Lemma 2.4.7 ([A]). Any radio broadcasting schedule for the graph G, with
respect to the source s € V(G,,) has the length at least [logm] + 1, i.e.,
mintime(s, Gp,) > [logm] + 1.

Proof. We fix a radio broadcasting schedule IT = (Ry,..., R,). Since Ry =
{s}, only the source s transmits in the first round. This transmission informs
all nodes belonging to the layer L;. Hence the rest of the schedule informs
only the nodes of the layer Ly = {u; ;|1 <i < j < m} by the transmissions of
nodes of the layer L;. According to the schedule IT we can associate a binary
sequence s; = (s!,...,s7") of length ¢ — 1 with each node v; € L;. We set
s; to 1 if and only if v; € R,+1. Otherwise we set s} to 0. It is easy to see
that a node wu;; € Ly receives a message exactly in each round r such that
it # s7 1. Since IT is a radio broadcasting schedule, every node u;; € Ly is
informed and it receives a message in at least one round. Thus for each i, j,
i # j, the binary sequences s; and s; should differ in at least one position,
i.e., s; # s;. It implies that there are exactly m = |L,| different sequences
associated with nodes of the layer L;.

Clearly, we can construct at most 29-! different binary sequences of the
length ¢ — 1. Suppose now that ¢ — 1 < [logm]. It implies that 2971 <
gllogm] < glogm — 4y j e 2071 < m. The inequality contradicts the fact that
we have m different binary sequences of the length ¢ — 1. O

Theorem 2.4.8 (|A]). There is a subclass C of the class of 2-degenerate
graphs with radius 2 such that:
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(1) for every integer n, n > 9, there is a graph G € C such that |V (G)| = n,
and

(2) for every graph G € C there is a node s € V(@) such that every radio
broadcasting schedule with respect to the graph G and the source s has
the length Q(logn), where n = |V (G)| is the number of nodes.

Proof. Fix an arbitrary real number ¢ € (0, %) For each n > 9, we show

that there are 2-degenerate graphs on n nodes with the radius 2 for which
every radio broadcasting schedule has length at least |c - logn| rounds. It
is easy to see that the chosen ¢, n and m = [n¢| satisfy the inequality
n—(m?>+m+2)/2>0.

Let G = (V, FE) be a graph with n nodes constructed from the graph
G, where m = [n¢], by adding n — (m* +m + 2)/2 new nodes and joining
them to the node s € V(G,,). Then G has the vertex set V(G) = V(Gy,) U
{wi, ... Wn—(m24mt2)/2} and the edge set F(G) = E(Gy,) U {(s,w;)|1 <@ <
n — (m? + m + 2)/2} and obviously graph G is 2-degenerate graph with
radius 2. Let s € V() be the source. Since there are no edges between
V(Gm)\{s} and (V(G)\V(Gpn))\{s}, the broadcast operation is performed
in the subgraph (,, separately. Previous lemma implies that it is not possible
to complete broadcasting in G, (and also in () in less than |logm| + 1 >
logn® > |c-logn]| rounds. O

Note that in the previous proof there are more ways how to construct a
graph (' satisfying desired properties. In more general construction we add
n — (m? 4+ m + 2)/2 new nodes to the graph G,,. Next we add new edges to
the graph GG between the nodes of the set W = (V(G) \ V(Gp)) U {s} (i.e.,
between newly created nodes and the source s) in such a way that the induced
graph H = (W), is connected 2-degenerate graph satisfying eccy(s) < 2.

Since Dy C Dy, C Dy for each k > 2 (see [52]), the following holds:

Corollary 2.4.9 (|A]). Let k be a positive integer, k > 2. There is a subclass
C of k-degenerate graphs with radius 2 such that:

(1) for every integer n, n > 9, there is a graph G € C such that |V (G)| = n,
and

(2) for every graph G € C there is a node s € V(@) such that every radio
broadcasting schedule for G with respect to the source s has the length
Qlogn), where n = |V (G)| is the number of nodes.
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Chapter 3

Known Radio Networks with
Long-range Interference

In the standard graph model, a node v can transmit messages only to the
nodes which are located within its transmission range Rp(v). A transmission
range of v is a set of network nodes that are located at positions where the
signal transmitted by v is intensive enough and quality enough to be suc-
cessfully decoded. All nodes of a radio network operate on the same radio
frequency band. Due to properties of the radio communication medium, si-
multaneous transmissions of two or more nodes cause interference in the area
that is in the range of those transmitted signals. I.e., the nodes can receive
and decode at most one message in a given time. The intensity and qual-
ity of the signal transmitted by network nodes vary. They depend directly
on distance from the transmitting node and properties of the surrounding
environment (e.g., presence of large obstacles, signal reflexes, etc). Obvi-
ously, the effect of interference depends significantly on the power of signals
causing the interference at a given node. Observe that the standard graph
model assumes that a transmitted signal can cause interference only inside
its transmission range. Le., it is assumed that the effect (power) of a signal
transmitted by a node v is negligible outside of its transmission range Ry (v).
However, in some real-world settings, a transmitted signal can reach an area
where decoding of the signal is not possible due to its low intensity, but the
signal is intensive enough to interfere with other simultaneous transmissions
(i.e., to cause an interference). As noted in [60], the interference range of a
node is usually at least twice as large as its transmission range. In a more
realistic setting, effect of a transmitted signal can even depend on the actual
set of simultaneously transmitting nodes in the whole network.

In this chapter, we introduce and formalize new graph model of radio
networks. This model generalizes the standard graph model and adds the
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notion of a long-range interference. We investigate centralized broadcasting
in radio networks modelled by the proposed model.

3.1 Introduction

In distributed computing, particular assumptions about a model of com-
munication environment play crucial role when designing an efficient com-
munication protocol. Therefore, finding a proper models of communication
environment is one of most challenging issues. Note that more models can be
adequate for one communication environment. Their adequacy may depend
on properties of real-world communication network and considered applica-
tion. Generally, with a model closer to reality, it is much more difficult to
achieve rigorous theoretical analysis. Hence, our main objective is to focus on
models that are similar to abstract, simply, and intensively studied standard
graph model of radio networks.

3.1.1 Interference Reachability Graphs - IRGs

Central notion of the standard graph model is the transmission range of a
node. In the proposed model, we consider and add a new notion describing
properties of a signal transmitted by a node more precisely. An interference
range R;(v) of a node v contains all nodes at which a signal transmitted from
v causes interference either on its own or together with other simultaneously
incoming signals. We say that a node w belongs to the interference range
R;(v) of a node v, i.e., w € R;(v), if and only if any transmission of v can
interfere with other transmissions reaching the node w. Note that if the
transmitted signal is strong enough to be decoded, it is also strong enough
to interfere, i.e., Rp(v) € Rjy(v). Therefore, if w € R;(v) \ Rr(v), any
transmission from v causes interference at the node w, but the node w cannot
receive any message from v directly.

In our proposed model, a radio network is represented by an undirected
(symmetric) graph G = (V, E' = Er U Ej) called an interference reachability
graph IRG. The set of vertices V' of the I RG corresponds to the network
nodes. The set of edges F in the [ RG G is partitioned into two disjoint sets
of edges: a set of transmission edges Er and a set of interference edges Fy.

An edge (u,v) € Er if and only if the node v is located in the transmission
range of the node u, i.e., (u,v) € Er < v € Rp(u). In this case, the node u
is called a transmission neighbor of the node v. The induced subgraph G =
(V, Er) on the set of transmission edges is called a transmission subgraph.
We denote the diameter of Gy as Dy, the eccentricity of s in G as ecer(s),
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and the degree of v in G as degr(v). Any path along transmission edges is
called a transmission path. We denote by dr(u,v) the smallest integer such
that there is a transmission path with dp(u,v) edges between the nodes u
and .

An edge (u,v) € Fy if and only if the node v belongs to the interference
range of the node u but not to its transmission range, i.e., (u,v) € F; <
v € Rr(u)\ Rr(u). In this case, the node u is called an interference neighbor
of the node v. We denote the number of incident to v interference edges in
IRG as deg;(v).

We assume that the transmission subgraph is connected, i.e., a message
can be delivered from arbitrarily chosen source node to any other network
node. Note that a crucial difference between transmission and interference
edges is that we cannot transfer a message via an interference edge.

Since we shall often consider a set of nodes in the same distance from a
distinguished node s in the transmission subgraph G, we introduce a notion
of layers for I RGs.

Definition 3.1.1. Let Gy = (V, Er) be the transmission subgraph of an
undirected | RG G = (V, Ep U E;) with the source node s € V. The i-th BFS
layer of G is defined as L; = {v € V|dy(s,v) = i}.

Communication process in the standard graph model can be generalized
for interference graph model as follows. In each communication round, a
node can be in one of two operation modes. The node works either as a
transmitter or as a receiver. If a node transmits, the transmitted signal
reaches all its transmission and interference neighbors. A node, working
as a receiver, receives a message if and only if a set of transmitting nodes
contains exactly one of its transmission neighbors and none of its interference
neighbors.

It is easy to see that the proposed interference graph model generalizes the
standard graph model. Indeed, a radio network modelled by the standard
graph model corresponds to the case when for each node v it holds that
Rr(v) = Ry(v). It follows that any algorithm designed for [ RGs can be
applied also in networks modelled by the standard graph model.

Finally, note that a directed variant of interference reachability graphs
(when I RG is a directed graph) can be defined and investigated as well.

3.1.2 Difficulty of Fast Broadcasting in [ RGs

The broadcasting task can be always completed during at most n rounds
where n is the number of network nodes. Indeed, a simple scheduling mech-
anism realizes it. In each round, we choose an arbitrary informed node that
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Figure 3.5: Interference reachability graph G

is a transmission neighbor of at least one uninformed node. The chosen node
is the only transmitting node in this round. Since it is the only transmitting
node in this round, all uninformed nodes in its transmission range receive
the source message and become informed. Obviously, each node transmits
at most once and after at most n rounds all network nodes are informed.

On the other hand, there is an I RG with eccentricity of the source equal
to 2 such that the broadcasting time is bounded by (n) rounds. Let us
define a (2 - m + 1)-node graph G,, = (Vy,, Er U E;) as follows:

o V(Gn) ={s,a1,as,...,am,b1,ba, ..., by}
o [ip(G) = {(5,a:), (a;, b)|1 < i < m}
o Fi(Gn) = {(a;bj)|1 <i#j<m}

Now, consider the node s as a source of the broadcasting. Each node q;
becomes informed after first transmission of s. A node b; can be informed
only by a transmission of a;. However, if a node a; transmits, no other node
b;j, j # i, can receive the message due to the presence of interference edges.
It follows, that at least m + 1 = Q(n) rounds are necessary to complete the
broadcasting.

The previous example shows that trivial broadcasting schedules are asymp-
totically optimal in [ RGs. Moreover, it shows €2(n)-round lower bound for
I RG's with a constant eccentricity of the source. In contrast, broadcasting in
radio networks with a constant eccentricity of the source can be completed
in O(log®n) rounds in the standard graph model.

Intuitively, the slow broadcasting is caused by large density of interference
edges. Therefore, in order to study the time complexity of the broadcasting
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task in the proposed interference model, we should consider other parameters
of TRGs and introduce new appropriate parameters reflecting the presence
of interference edges in an [ RG. Then, we can express the time complexity
of a broadcasting schedule much finer with respect to these parameters.

3.1.3 Related Work

Unfortunately, there is no widely adopted model of radio networks with a
long-range interference, i.e., in the case when the transmission range and the
interference range of a node differ. A radio network is usually modelled on
a geometric basis (transmission and interference ranges are defined in terms
of Euclidian distance) or designed algorithms are probabilistic.

There are two models that are much closer to reality due to reflecting
physical propagation of radio signal. Comparing to other models, they con-
sider physical carrier sensing. The older of them, presented in [44]| by Kotha-
palli et al., is called a Sensing-Interference-Transmission (SIT) model. The
model is probabilistic and introduces different transmission and interference
ranges via a cost function that is based on Euclidian distance between nodes.
Particularly, a cost of connection between two nodes u and v, denoted as
c(u,v), is an arbitrary number such that c(u,v) € [(1 —¢) - d(u,v), (1 +9) -
d(u,v)], where d(u,v) is the Euclidian distance between nodes u and v, and
5 € [0,1) is a constant depending on the properties of the communication en-
vironment. Moreover, it is required that the cost function is symmetric, i.e.,
c(u,v) = ¢(v,u). With respect to transmission power P, there are defined to
monotonic functions r(P) and r;(P) defining a transmission range and an
interference range respectively. A node v transmitting a message with the
power P can cause interference at a node w with high probability in the case
when c(v,w) < r;(P). A node w successfully receives a message transmitted
by a node v, if ¢(v, w) < ry(P) and there is no other simultaneously transmit-
ting node v such that c(v', w) < r;(P). Observe that if we do not consider the
probabilistic aspect of this model, each radio network modelled by this model
can be modelled by an interference reachability graph as well. However, the
STT model adds the notion of physical carrier sensing. This feature can be
used by communication algorithms very effectively. The model defines two
monotonically growing functions rg (7, P), called a carrier sense transmis-
sion range, and 7 (T, P), called a carrier sense interference range, where the
parameter P is transmission power and 7' is a sensing threshold. Interpreta-
tion of those functions is the following. If a node v transmits a message with
the power P, a node w is sensing with a threshold T, and ¢(v, w) < rg(T, P),
then w is sensing a message transmission with high probability. Further, if
a node w senses a transmission with a threshold 7', then there is at least
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one node v that transmits a message with power P and c(v, w) < rg (T, P).
Observe that a transmitting node in the carrier sense transmission range of
a node always causes carrier sensing with given threshold at this node (with
high probability). On the other hand, a transmitting node in the carrier sense
interference range may cause carrier sensing. A transmitting node outside
of the carrier sense interference range never causes carrier sensing. To con-
clude description of the ST model, note that the broadcasting and spanner
construction in this model were investigated by Onus et al. in [60].

The newer model considering physical carrier sensing is an extended Signal-
to-Interference-plus-Noise-Ratio SIN R model based on interference model
from [40] and proposed by Scheideler et al. in [64]. In this model, a message
sent by a node u is received by a node v if and only if

P, (u)
N + ZweS PU(ZU)

where P,(y) is received power of a signal transmitted by a node y at the node
x, N is the background noise, S is a set of currently transmitting nodes with
exemption of the node u, and 3 is a constant which depends on technical
properties of receivers. Note that the model based on interference reachabil-
ity graphs can be seen, comparing to the STNR model, as a static model.
Indeed, in the STN R model decoding (transmission and interference ranges)
of a message depends on actual set of simultaneously transmitting nodes in
the whole network. In contrast, successful receiving of a message in a radio
network modelled by interference reachability graphs depends only on the
set of simultaneously transmitting nodes which contain the receiving node in
their statically predefined transmission and interference ranges. The physical
carrier sensing in the extended STN R model is defined as follows. A node v
senses carrier with threshold T"if and only if N + > o P,(w) > T. Finally,
note that most recent explorations of models reflecting physical propagation
of signal include a study on characteristics of efficient local broadcasting in
SIN R model, see work of Goussevskaia et al. in [39], and study on connec-
tivity and interference in log-normal shadowing radio propagation model by
Muetze et al. in [57].

A communication model based on graphs in which the interference range
of a node is larger than its transmission range was considered by Bermond et
al. in [4]. The authors studied time complexity of the gathering task in known
topology radio networks. They defined transmission and interference range
of a node with respect to distances in an underlying communication graph.
Particularly, let us denote the length (the number of edges) of a shortest path
between nodes u and v in the graph G as dg(u, v). Fix the numbers dr and d;.
In their model, the number dy, dr > 1, is called a transmission distance and

> p
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the number d;, d; > dp, is called an interference distance. The transmission
range Rp(v) of a node v is defined as Ry(v) = {w|dg(v,w) < dr} and the
interference range R;(v) of a node v as R;(v) = {w|dg(v,w) < d;}. Note
that the standard graph model corresponds to the case when dy = d; = 1.
It is easy to see that there are such settings where the model introduced
by Bermond et al. is not appropriate, e.g., due to large obstacles or signal
reflexes. It means that there are settings for which it is difficult or even
impossible to express transmission and interference ranges of the nodes with
respect to distances in an underlying communication graph. On the other
hand, each radio network modelled by the model introduced by Bermond et
al. can be described by an [RG. It implies that interference reachability
graphs are more general. In particular, this model is more general than the
standard graph model, called also a packet radio network model, but less
general that modelling radio networks by interference reachability graphs.

3.2 Interference Selective Families

Following the work of Clementi et al. [18], which is devoted to selective
structures related to the standard graph model of radio networks, we define
the notion of an interference selective family. Later, we show some useful
properties of interference selective families. As we will discuss later, they
are closely related to the interference graph model of radio networks. In
the case when a considered collection of set-pairs satisfies a specific property
(defined later), we show the existence of small interference selective families
by a probabilistic argument. Finally, we design a deterministic polynomial-
time algorithm that computes small interference selective family for a given
input collection of set-pairs. Algorithms presented in this section generalize
the work [18] of Clementi et al.

Selective families are related to intensively studied combinatorial struc-
tures called selectors (see, e.g., [5], [11], or [42]). One of their applications is
in communication algorithms for radio networks modelled by the standard
graph model [15] in the case when the nodes are not aware of the network
topology. The k-selectors, defined and investigated by Chrobak et al. in [15],
can be seen as a weaker variant of interference selective families (with respect
to interference) introduced in this section.

Definition 3.2.1. Let F = {(T1, 1), (T3, I3), ..., (Tm, Im)} be a collection
of set-pairs such that T, N 1I; = O and T; # 0, for alli = 1,...,m. Denote
UF)=U~, TiUl. A family S = {S1,Ss,...,Sk} of subsets of U(F) is
said to be selective for F if and only if for any (T}, I;) there is a set S; such
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that |T; N'S;| = 1 and I; NS; = 0. We say that the set S; is selective for

There is a relationship between interference selective families and the
information dissemination in bipartite / RG. Let Vg be the informed part of a
bipartite I RG G = (VsUVpg, E) and Vi be the uninformed part. Interference
selective families can be utilized to construct a schedule of transmissions such
that all nodes in Vz become informed by transmissions of nodes in the set
Vs. Indeed, consider a collection F = {(T}, I,)|v € Vr} such that T, = {u €
Vslv € T'(u)} and I, = {u € Vglv € I(u)}. Note that U(F) C Vs. Let S =
{S1,Ss, ..., Sk} be an interference selective family for F. Observe, that if the
set of transmitting nodes in the i-th round of a schedule is the set S;, all nodes
in Vi become informed in at most k& = |S| rounds. Hence it seems useful
to search for small selective families. Obviously, we can always construct a
selective family of the size min{|F|, |U(F)|} by a trivial construction. On the
other hand, for any n, there is an instance F, |F| = |U(F)| = n, such that
it is not possible to construct interference selective family of the size smaller
than n. These instances correspond to the example of "slow" I RG in Section

3.1.2. It follows that a new parameter providing a better characterization of
the collection F should be defined.

Definition 3.2.2. Let F = {(T1, 1), (T3, I3), ..., (Tm, Im)} be a collection
of set-pairs such that TyN1; = 0 and T; # 0, for alli = 1,...,m. We say
that r is an interference ratio of the pair (T;, I;) if and only if |I;| < r - |T;|.
Analogously, we say that r(F) is an interference ratio of the collection F, if
and only if |I;] < r(F)-|Ti|, for alli=1,...,m.

Intuitively, an interference ratio is introduced in order to reflect the ratio
of the interference edges to the transmission edges of a node, i.e., the local
density of interference edges. Now, using a probabilistic argument, we show
that there are small interference selective families.

Theorem 3.2.3 ([D]). Let F = {(T1, 1), (T3, I3), ..., (Tm, Im)} be a collec-
tion of set-pairs such that TyN 1; =0, Ty # 0, and Apin < T3] + | L] < Aoz,
for alli = 1,...,m. There is a family S of the size O((1 + r(F)) - ((1 +
log(Amaz/Amin))) - log | F|) that is selective for F.

Proof. Let us define ' = {(T;,1;) € F,|T;| + |I;| = 1}. Since T; # 0, we
have that |T;| = 1 and |/;| = 0, for all members of F’. It is easy to see that
the set So = Uz, 1,y Ti is selective for F'. Therefore, in what follows we
assume that A, > 2.

For each j € {[log Aminl,---, [log Apaz ]}, let us consider a family S,
of [ sets, where an unknown parameter [ will be determined at the end of
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the proof. Each set S € S; is constructed by picking each element of U(F)
independently with the probability 1/27.

Fix a pair (T}, I;) € F. Let j be an integer such that 277! < |T;|+|[;| < 27.
Consider a set S € §,. Let us estimate the probability that the set S is
selective for (T3, [;):

1 1 [ T3]+ 1] =1
PHTOS| = 1A LNS =0 =T (1_§>

RSN (PR S N
AT 25 ) T 2.(r(F)+1) 2 ) =8 (r(F)+1)
The inequality (1) holds because 2/~ < |T;| + |I;| < (r(F)+1)-|T;|. The
inequality (2) follows from the fact that (1 — %)t > 1 for ¢ > 2.
The sets in S; are constructed independently. Thus the probability that

none of [ sets of the family S; is selective for (T3, I;) is upper-bounded by the
expression

1 ! N
] — < 8-(r(F)+1)
( 8'<r<f>+1>> =°

due to the inequality (1 —x)¥ < e ¥ for 0 <z <1 and y > 1.

Finally, let us define a family S as the union of the families S;, for j €
{[log Apin |, - - -, [log Az |} Now we estimate the probability that S is not
selective for F:

Pr[S is not selective for F| < Z Pr[S is not selective for ((7;, I;))]
(Ti,li)ef

S Z e_m — |f| . e_m
(T, 1;)eF
It follows that the probability of S not being selective for F is less than 1

for I > 8-(r(F)+1)-In|F|. It implies the existence of an interference selective
family S of the size O((1 + r(F)) - ((1 + log(Apmaz/Amin))) - log | F|). O

Using de-randomization method of conditional probabilities, we show that
a selective family of the size O((1 4 r(F)) - (1 +1og(Amaz/Amin))) - log | F|)
can be constructed deterministically in polynomial time.

At first, we fix an ordering of elements of U(F) = {uy,us,...,u,}. For
S C U(F), let us denote 6;(S) = S N {w;, uiy1,...,u,}. Finally, let us fix a
pair (T, 1) € F and let A be a power of 2 (i.e., A = 2/, for some j) such that
A/2 < |T|+|I] < A. For a fixed set S C {uy,ug,...,u;_1}, we define the
conditional probabilities
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Y;(S, (T, 1)) = Pr[SUX U{u;} is selective for (T I)]
N; (S, (T, 1)) = Pr[SU X is selective for (T 1)]

where X is a subset of {u;41, ..., u,} constructed by picking each element
of {u;1,...,u,} independently at random with the probability 1/A, i.e.,
Prlu, € X]=1/A.

Lemma 3.2.4 (|D]). The conditional probabilities Y;(S, (T, I)) and N;(S, (T, 1))
can be computed in O(n) time.

Proof. Evaluation of the conditional probabilities Y;(S, (7', 1)) and N;(S, (T, 1))
is based on the following equalities. In these equalities, we use a to denote

[0;(T)] =+ 16, (1)1
¢ 0;(T)=0

1— LSO g =1ATNS =
Y;(S,(T, 1)) = N;(S,(T, 1)) = { é ») lotherw|ise @

| _fa=-H" (Tunns=9
Y;(Sv (T7 ]>> - { 0 A otherwise

(0 (TUI)NS|>2
ITNS|=0A
INS|=1
a—1 TﬂS =1A
(1-3) | u“ﬂ:o

(TUI)N S| =0A
6,(T)] = 1

(TUI)N S| =0A
16,(7)| > 2

0 (TUI)NS|>2

0 ITNS|=0A[INS|=1

(1-L)*" TNS|=1A1INS]=0
a—2

()%= [runnsi=o



e 5;(T)>1NANu;¢TUI

0 (TUI)NnS|>2
Y;(S.(T, 1)) )0 ITNS|=0AINS|=1
N;(S,(T, 1)) — ) (1-3) TS| =1A[INS]=0

GO-%-(1-%)"" [Tunns =0

]

Utilizing those conditional probabilities, we design an algorithm that com-
putes an interference selective family for a given input collection of set-pairs
F. Algorithm is based on the procedure IASF. It produces an interference
selective family for a given collection F = {(T1, 1), (Ts, I2), ..., (T, Im)}
satisfying the property that there is a power of 2 denoted as A (i.e., A = 27,
for some j > 2) such that the condition A/2 < |T;| + |I;] < A is valid for all
members of F.

Input : A=2, F={(T\, 1), (T, o), .., (Ton, Im)}
Output: S = {51, 5,...,5:}
let n be the number of elements of U(F) = {uq, us, ..., uy};
while F # () do
S «— 0,
for i — 1 ton do
Y — Z(T,J)efyi(& (T,1)) ;
Ni Z(T,I)e]—' Ni(S, (T, 1)) ;
end
F — F\{(T,I) € F|Sis selective for (T, 1)};
S—SuUS;
end
return S

Algorithm 1: Procedure IASF

Lemma 3.2.5 (|D]). Let F = {(T1, 1), (Ts, I2), ..., (T, I;m)} be a collection
of set-pairs such that T, N I; = 0, T; # 0, and A/2 < |T;| + || < A,
for all i = 1,...,m, where A = 27 > 4 is a power of 2. For the input
collection F, the procedure IASF computes an interference selective family S
of the size O((1+r(F)) -log|F|). Time complexity of the procedure IASF is
O(r(F) -log|F| - |F| - [U(F)?).
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Proof. We start with analysis of a single execution of the while loop in the
procedure IASF. Let us denote the content of the variable F before k-th
iteration of the while loop as Fy, i.e., F; = F.

Let W be a set constructed by picking each element of U(F}) indepen-
dently with the probability 1/A. Denote as F(X) the expected number of
set-pairs (T,1) € Fj that are selected by W. Analogously, for a set Y,
Y C U(Fy), and an integer 4, ¢ > 1, satisfying Y N &;(U(F})) = (), we denote
as F(X|(Y,i)) the expected number of set-pairs (T, I) € Fj that are selected
by a random set Wy,;. The set Wy is the union of the set Y and a set of
independently (with probability 1/A) picked elements of the set &;(U(Fy)).
Clearly, it follows from the proof of Theorem 3.2.3 that

_ | Fi|
E(X[(0,1)) = B(X) > NECAFSIE

Now we prove by induction on 4 that the inequality E(X|(S,i+ 1)) > E(X)
is valid after ¢ (i € {0,...,|U(Fy)|}) iterations of the for loop in TASF":

e For i =0, it holds S = (). Since E(X|(0,1)) = E(X), the claim is true.

e Assume that the claim is true for all j, j < i. Denote S = S\ {u;},
i.e., S’ is the content of the variable S after i — 1 iterations of the for
loop. Due to the definition of the expected value, it holds for i > 0
that

B(X|(S, 1)) = %-E(X|(S’U{ui},i+1)) L1 %) CB(X|(S' i+ 1)),

Obviously, A = ¢B+(1—q)C = A < mazx{B,C}, for A, B,C > 0 and
0 < ¢ < 1. Thus it follows

E(X|(S,4) <mazx{E(X|(S"U{u;},i+ 1)), B(X|(S,i+ 1))}

Moreover, definition of the expected value implies Y; = E(X|(S" U
{u;},i+ 1)) and N; = E(X|(S",i + 1)). The choice between adding
the element u; to S or not depends on the values Y; and ;. Since the
larger value is chosen, it follows that E(X|(S,i+ 1)) = maz{Y;, N;} =
max{E(X|(S"U{u;},i+ 1)), BE(X|(S,i+ 1))} > E(X]|(5,7)). Finally,
the inductive hypothesis implies

E(X|(S,i+1)) =2 E(X[(5,4) = E(X).

The previous claim for i = |U(F})| implies that in each iteration of the

while loop such a set S is computed that at least [%1 set-pairs of Fy
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are selected S. Since r(Fy) < r(F), we get |Fpq] < (1 - ﬁ) | |-
It implies that after k iterations of the while loop, the number 0 unselected
set-pairs can be upper-bounded by the expression (1— W) -|F|. Since,

for z > 1, it holds In (1 — 1) < —2, this expression is lower than 1 for k at
least (8-7“(}") 1)-In|F]|. Thus, at most O((r(F)+ 1) -log|F]) iterations of
the while loop are sufficient to select all set-pairs of the collection F. Hence
the interference selective family computed by the procedure IASF has the
size O((1 4 r(F)) - log | F|).

The time complexity of the computation immediately follows from the
proof above and Lemma 3.2.4. O

On the basis of the procedure IASF, an algorithm for an arbitrary input
collection F can be constructed.

Theorem 3.2.6 ([D]). Let F = {(T1, 1), (T3, I3), ..., (Tm, Im)} be a collec-
tion of set-pairs such that T, N I; = 0, T; # 0, and Apin < |Ti| + |I;] <
Aoz, for all i = 1,....m. There is a deterministic algorithm that for
the given collection F generates an interference selective family S of size
O((1+7(F))- (1 +log(Amaz/Amin))) - log |F|). Computation takes polyno-
mial time O((1 +10g(Amaz/Amin)) - 7(F) -log | F| - |F| - [U(F) ).

Proof. Let us define F; = {(T;, I,) € F|27 < |T;| + |I;] < 2"'}. Obviously,
F = U{F;lllog Apin] <7 < |log Apaz]}, i-e., the collection F is a union of
disjoint subcollections F;. We compute an interference selective family S; for
each collection F; separately. Then, the resulting interference selective family
for the collection F is a family S = [J{S;|[log Amin] < Jj < |log Apaz] }-
For 7 = 0, the computation of Sy is trivial. Otherwise, we utilize the
procedure TASF with inputs F; and A = 27*! in order to compute the family
S;. Time complexity of the algorlthm and the size of the computed family
S follows from Lemma 3.2.5. O

Note that ad-hoc selective families defined and investigated by Clementi
et al. in [18| are the special case of interference selective families with inter-
ference ratio equal to 0. In this case, I = {) for each (T, 1) € F.

Interference selective families can be directly transformed to transmission
schedules for information dissemination in bipartite I RGs. The most simple
approach is to use them in the layer-by-layer dissemination of a source mes-
sage from a source node s. The source message is disseminated in phases.
During i-th phase, the source message is received by all nodes of the i-th layer
L; = {v|dr(s,v) = i} owing to transmissions of the nodes in the layer L; ;.
Particularly, for each node v of L;, we construct a set-pair (T, I,) such that
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T, = {w € Li1|(w,v) € Er} and I, = {w € L;_1|(w,v) € E;}. Further-
more, for a collection F' = {(T,, I,)|v € L;}, an interference selective family
S = {Si,..., 8¢} is obtained by the algorithm presented in Theorem 3.2.6.
Finally, transmissions of the phase i are scheduled in such a way that in the
j-th round of the phase i exactly the nodes of S; C L;_; transmit the source
message. Therefore, the i-th phase takes totally | S| rounds.

Theorem 3.2.7 (|D]). Let G = (V, Ep U E;) be an [RG. There is a deter-
ministic polynomial-time algorithm that for a given source node s produces
a radio broadcasting schedule with length O((1 + log(Amaz/Amin)) - R(s))
rounds, where R(s) = S 2T (1 4 (F1)) - log | F7)).

Note that there are I RG's for which layer-by-layer information dissemi-

nation approach is not suitable. For instance, consider the following [ RG
G = (V, Er U E}), where

o V ={s,0,...,0m,W1,..., Wy}
o Epr={(s,v), (v, w;)|i =1,...,m}U{(v;,v), (wi,w;)|1 <i#j<m}
o Er={(vi,wj)|l <i#j<m}

Observe, that for each node of the constructed graph G,, the ratio of the
incident interference edges to the incident transmission edges is at most 1. It
is easy to see that it is not possible to accomplish the broadcasting task from
the node s in less then m + 1 rounds realizing the layer-by-layer approach.
Indeed, all nodes of the layer L1 = {vy,...,v,} have to transmit in separate
rounds. However, broadcasting from the source s can be completed in 3
rounds:

1. the source s transmits and informs all nodes of the layer L;
2. the node v, transmits and informs the node w;
3. the node w; transmits and informs the remaining nodes.

The previous example shows that interference selective families cannot
be directly used as a subroutine in algorithms which generate broadcasting
schedules for arbitrary I RGs. Moreover, it shows that interference ratio is
not an appropriate parameter for reflecting global presence and structure
of interference edges in arbitrary I RGs. Indeed, interference ratio is not a
hereditary property. l.e., it is not propagated from graphs to subgraphs. On
the other hand, we believe that careful combination of interference selective
families with some graph analysis and heuristics can lead to algorithms which
generate radio broadcasting schedules of a sufficient length.
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3.3 Information Dissemination in Bipartite / RGs

In this section, we focus on two algorithms generating transmission sched-
ules completing information dissemination in bipartite I RG's. In both cases,
length of a produced schedule is upper-bounded by an expression containing
the maximum degree A and the number of network nodes n. Since these
parameters are not increasing in subgraphs, designed algorithms are use-
ful as subroutines for broadcasting in arbitrary [ RGs. Moreover, generated
schedules are 1-shot transmission schedules.

3.3.1 O(A?%-round Algorithm

The first algorithm for information dissemination in bipartite I RGs is based
on a simple idea of proper vertex coloring.

Theorem 3.3.1 (|D]). Let G = (Vs U Vg, Ex U Ey) be a bipartite I RG and
let A be the mazimum degree in the IRG G, i.e., A = max{degr(v) +
degr(v)|v € Vs UVR}. There is a polynomial-time algorithm which generates
1-shot transmission schedule realizing information dissemination in the bipar-
tite | RG' G with the informed part Vs and the uninformed part Vz. Length of
the schedule is at most A* rounds. Moreover, in the case when degr(v) =1
for all v € Vi, length of the generated schedule is at most 2+ A — 1 rounds.

Proof. Observe that we may assume that for each node v € Vg it holds
degr(v) = 1. And indeed, if degr(v) > 2, we can change all transmission
edges incident to the node v to interference edges. We define an undirected
collision graph G, = (V., E.). The vertex set of GG is the set of informed
nodes Vg, i.e., V. = Vs. An edge (u,v) € F,. if and only if there is a node
w € Vg such that (u,w) € Er and (v,w) € E;. Hence, two nodes of Vg are
connected by an edge in GG, if and only if they have a common neighbor in
Vx that is a transmission neighbor of one node and an interference neighbor
of the other node. Since each node in Vg has at most A neighbors in Vi and
each of them has at most A—1 different neighbors in Vg, the maximum degree
of the graph G, is at most A - (A — 1) < A2 Therefore, we can efficiently
compute a proper coloring of vertices in (. that uses at most A? colors.
Denote a color assigned to a node v as color(v). Let us consider a schedule
of transmissions in which a node v € Vg transmits exactly in the round
color(v). The length of such a schedule is at most A% rounds and each node
transmits exactly once. Observe that the schedule informs all nodes in V;.
On the contrary, assume that a node w € Vg is not informed after realizing
the transmission schedule. Each of its neighbors in Vg transmits in one of
rounds. Let v € Vg be a node such that (v, w) € FEp, i.e., v is a transmission
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neighbor of w. The node v transmits in the round color(v). Assume that
another neighbor u € Vg of the node w transmits in the round color(v). It
follows that color(u) = color(v). Since the node u is an interference neighbor
of the node w, (u, w) € E;. However, it implies that (u,v) € GG and therefore
color(u) # color(v).

In the case when degr(v) = 1 for all v € Vg, notice that the maximum
degree of the graph G. is at most 2 - (A — 1). Indeed, the only transmission
neighbor of a node v can bring to the node v at most A —1 different neighbors
in G.. FEach of remaining A — 1 interference neighbors of the node v is
incident to exactly one transmission edge. Therefore, interference neighbors
of the node v bring to the node v at most A — 1 additional neighbors in G..
Summarily, the node v has at most 2 - (A — 1) neighbors in G.. It implies
that the vertices of GG, can be colored by at most 2 - A — 1 and the claim
follows. O

3.3.2 O(A -logn)-round Algorithm

The O(A?)-round algorithm is efficient for networks with small maximum
degree. Now, we present an algorithm that generates shorter schedules in
the case when A = w(logn). Similarly as the O(A?)-round algorithm, it is
based on the idea of the collision graph.

Lemma 3.3.2. For any set of natural numbers {dy,ds, ..., d,}, s.t., d; >0
and Y1 d; < h-n, it holds that |{d;|d; <2 h}| > n/2.

Proof. Assume contrarily that |{d;|d; < 2 - h}| < n/2 which is equivalent to
|{d;|d; > 2-h}| > n/2. This implies >_"" ; d; > 2- h-% which contradicts one
of the assumptions of the lemma. O

Theorem 3.3.3 ([F|). Let G = (Vs U Vg, Er U E}) be a bipartite I RG.
Assume that all nodes in Vs are informed, i.e., they know the source message,
and the nodes in Vi are uninformed. If degr(v) > 1, for all v € Vg, there
18 a linear time algorithm that generates a 1-shot schedule of transmissions
informing all nodes in Vi. The length of the schedule is O(A-log |Vs|) rounds.

Proof. Without loss of generality, we may assume that each node v € Vg
is incident to exactly one transmission edge (i.e., degr(v) = 1) and each
node v € Vg is incident to at least one transmission edge (i.e., degr(v) >
1). And indeed, if degr(v) > 1 for a node v € Vg, we keep one of its
incident transmission edges and consider all other incident transmission edges
as interference edges. Furthermore, we remove each node v € Vs such that
degr(v) = 0. These modifications do not improve chances of nodes in Vi to
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be informed earlier. Thus, in view of the transmission subgraph, the graph
(7 is a collection of disjoint stars of transmission edges with centers in Vs and
terminal nodes in Vi. Each interference edge connects the center of a star
with some terminal node of another star. We define the sets of nodes and
edges in an undirected graph G, as follows:

b V(Gc> = Vg,
o F(G.) ={(u,v)|Fw € Vg, (u,w) € Ep A (v,w) € Er}.

The graph G is a graph whose nodes correspond to stars, where two nodes
are connected by an edge in G, if and only if there is an interference edge
joining the center of one star and a terminal node of the other. Observe
that each edge in GG, corresponds to a path of the length 2 in G. The path
consists of an interference edge and a transmission edge. Since degr(v) = 1,
for each v € Vg, it follows that an interference edge in G can introduce at
most one new edge to G.. Hence, |E(G.)| < |E/| < |E(G)] < A - |Vs).
Denote the degree of a node v € Vg in the graph G. as deg.(v). It follows
that > v dege(v) = 2+ |E(G.)] < 2-A-|Vs]. Applying h = 2- A to
Lemma 3.3.2 we get [{v € Vs|deg.(v) < 4-A}| > |Vs|/2. Le., at least half
of the nodes in Vg have their degree in GG, lower than 4 - A. Now, we remove
all nodes with the degree strictly greater than 4 - A from G, obtaining G".
Since the maximal degree in G, is less than 4- A, we can color efficiently [69]
the nodes in G, using at most 4 - A + 1 colors. Finally, observe that if the
nodes in V(G%) transmit in rounds corresponding to the assigned colors, all
their transmission neighbors will be successfully informed. And indeed, if
there is a node w € Vi and two nodes u,v € V(G.), s.t., (u,w) € Er and
(v,w) € Ey, then (u,v) € E(GY). Tt follows that color(u) # color(v), i.e., the
nodes u and v transmit in different rounds. Summarizing , at least half of the
nodes in Vg inform all their transmission neighbors during at most 4 - A + 1
rounds. These nodes can be removed together with already informed nodes
in Vg from the graph (G. And iterating this process at most log |Vs| times, we
obtain a O(A - log |Vs|)-round schedule of transmissions informing all nodes
in VR.

Finally note that each node in Vg is prompted to transmit at most once
in the schedule. This is due to the fact that each node in Vg acts as a node
of G, in at most one iteration of the algorithm and during each iteration,
each node transmits at most once. Thus we obtained a 1-shot schedule of
transmissions. O

For this algorithm, we provide also more detailed time complexity anal-
ysis.
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Lemma 3.3.4. The algorithm from Theorem 3.3.3 computes a transmission
schedule in linear time.

Proof. Assume that the input graph is represented by a list of its edges. We
denote an instance of G, in the i-th iteration of the algorithm by G*. Observe
that for any iteration ¢ > j, we have G° = GJ[V(G?)]. Le., G is an induced
subgraph of G on a given subset of nodes. In other words, G can be
obtained from G by removing appropriate nodes and all edges incident to
them.

In what follows we identify all nodes in G with unique numbers from the
set {1,...,|V(G)|}. Initially, we construct the graph G, using nodes in V.
During the first iteration over the list of edges of (G, we move certain edges
from Fr to I in order to satisfy condition that each node in Vg is incident
to exactly one transmission edge. Simultaneously, we determine the center
of a star, denoted as p(v), for each node v € Vg, i.e., a unique node such
that (p(v),v) € Ep. Later, we iterate over all edges in F;. For each edge
(u,v) € Er where u € Vg and v € Vi, we add a new pair (u, p(v)) (or (p(v), u),
for p(v) < u) to alist L of pairs. Note that |L| < |F;|. We can order all pairs
in time O(|V(G)|+|E(G)|) utilizing the Counting sort algorithm [21] (stable
sorting) twice: first time according to second elements of pairs and second
time according to first elements in each pair. Upon the completion of sorting,
we remove duplicate pairs using single iteration over the list of pairs. Observe
that these pairs correspond to edges of Gi1. Finally, searching through the list
of pairs, we build a double-linked list of incident edges for each node v € Vy
and compute its degree. It follows that the construction of G} including all
related data structures takes time O(|V(G)| + |E(G)]) = O(|E(G)]).

Now, we describe the computation during the i-th iteration of the algo-
rithm (i > 1), i.e., the processing of G and the construction of Gt Let
V; be the list of nodes in the graph G% (V; = V(G.)). Initially, Vo = V.
Two lists V; and V/ are created during single iteration over the list V;_;.
The nodes in V;_; with degree smaller than 4 - A get inserted to the list V/
and the remaining nodes to the list V;. An extra information that v € V/
is stored in the data structure associated with v. Later, we go along the
list V and calculate for each node v € V/ its color, the transmission round.
In order to compute a specific color for each node v, we have to pick up a
color color(v) € {1,...,4- A + 1} which is not used by any adjacent node
of v in V/. Note that a round number during which the node v transmits
in the generated schedule is (i — 1) - (4 - A + 1) 4 color(v). To finalize the
coloring of a node in time proportional to the number of incident edges, we
use an additional array of integers U of length 4 - A + 1. The array U is
initialized only once with zeros. The node v visits all its incident edges. If
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(v,w) is an edge incident to v, w € V', and w has already an assigned color
color(w), then we set Ulcolor(w)] to v. This is to make a note that the color
color(w) is used in the considered V/-neighborhood of the node v. Note that
Ulc] # v when ¢ is a color unused in the neighborhood of v. Moreover, if
there is at least one used color in the V/-neighborhood of v (which can be
easily verified), there must exist an unused color ¢ such that U[c+ 1] = v or
Ulc—1] = v. Le., an unused color which is larger or smaller by one in relation
to the used color. Hence, during further iteration over all edges incident to
v, we are able to determine an unused color in considered neighborhood of
v and this color is assigned to the node v. After the colors (transmission
rounds) of all nodes in V; are computed, we remove the nodes together with
all edges incident to them from the maintained graph data structure. Later,
we go along the list of nodes in V; and for each node along its double-linked
list of incident edges. Each edge is removed from the graph and degrees of
incident nodes are decremented respectively. Each edge can be removed in
O(1) time utilizing the double-linked list of incident edges provided at each
node. Since |V;| < |[V(G)|/2" and > |V/| = |[V(G)], the total time devoted
to V; and V! lists is O(|V(G)|). Finally, since each edge is processed in O(1)
time the total processing time in this case is O(|E(G)]).

The thesis of the lemma follows. O

Observation 3.3.5. Since an [ RG without interference edges corresponds
to a reachability graph in the standard graph model, the presented algorithm
can be used to generate 1-shot schedules for radio networks modelled by the
standard graph model. Produced O(A-logn)-round schedules is an alternative
to O(y/n)-time schedules generated by the algorithm in [33].

3.4 General Schema for Broadcasting in [ RGs

In the rest of this chapter, we focus on broadcasting in arbitrary [RGs.
Observe that the transmission subgraph of an I RG corresponds to a com-
munication subnetwork that is very close to radio network modelled by the
standard graph model. One approach to generate short broadcasting sched-
ules for arbitrary I RGs is adaption of known broadcasting algorithms de-
signed for the standard graph model. In particular, a known algorithm can
take into account only transmission subgraph during computation of a broad-
casting schedule. Naturally, presence of interference edges can cause that the
produced schedule does not inform all network nodes. Therefore, we should
carefully modify known ideas and algorithms in such a way that they will
work properly even in the case when there are interference edges in the net-
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work. In this section, we present a schema that is based on ideas of the
schema in Theorem 2.2.7 and works correctly for arbitrary I RGSs.

Let Ar and Ag be algorithms that generate transmission schedules for
information dissemination in bipartite I RG which are subgraphs of an input
I RG G. Difference between Ap and Ag is that the algorithm Ap accepts as
input only such a bipartite I RG' G, = (Vs U Vg, Er U E;) that degr(v) = 1
for all v € V. Therefore, Ar can generate much shorter schedules for these
input I RGs. Let us denote the maximum length of a schedule generated by
the algorithm Ap for an arbitrary vertex induced bipartite subgraph (sat-
isfying the property that each informed node has exactly one uninformed
transmission neighbor) of the graph G as timer(G). Similarly, denote the
maximum length of a schedule generated by the algorithm Ag for an arbi-
trary vertex induced bipartite subgraph of the graph G as timeg((). Since
the network topology is known, the resulting broadcasting schedule is com-
puted by simulating communication in the network. In certain moments
of the communication process, the algorithms Apr and Ag are applied to
compute schedule of transmissions for some number of subsequent commu-
nication rounds. Input graphs for these algorithms are determined at the
moment when these algorithms are applied and depend on the actual config-
uration of the network (sets of informed and uninformed nodes). Recall that
algorithms Ay and Ag produce schedules for I RGS, i.e., produced schedule
work properly even when there is interference caused by interference edges.
All transmissions realized as a result of a schedule computed by the algo-
rithm Ay are called fast transmissions. Transmissions realized as a result of
a schedule produced by the algorithm Ag are called slow transmission.

The broadcasting schema relies on properties of the gathering-broadcasting
spanning tree (G BST) computed for transmission subgraph G of an I RG
(. Construction and properties of gathering-broadcasting spanning trees can
be found in Section 2.2.1. In what follows, we assume that GBST of trans-
mission subgraph and ranks of all nodes are already computed. Basic ideas
of the broadcasting schema are similar to ideas of the schema from Theo-
rem 2.2.7. However, we should schedule transmission of nodes in a different
way in order to properly treat presence of interference edges.

Broadcasting is realized in consecutive composite rounds. Each composite
round consists of two rounds, one reserved for fast transmissions (generated
by Ar) and the other reserved for slow transmissions (generated by Ag).
This time multiplexing strategy eliminates interference between fast and slow
transmissions which realize different communication patterns. Schedules for
fast and slow transmissions are computed independently. Both subschedules
work in stages. The length of one stage of fast transmission is timer(G) com-
posite rounds and the length of one stage of slow transmissions is timeg(G)
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composite rounds. Notice that stages can have different length, i.e., stages
of fast and slow transmissions are not synchronized, it may happen that
timep(G) # timeg(G).

Communication pattern of slow transmissions is computed in the follow-
ing way. At the beginning of each stage, the network nodes can be partitioned
into two sets: a set of informed nodes and a set of uninformed nodes. Let
Vs be a set of informed nodes which have at least one uninformed transmis-
sion neighbor. Further, let V a set of all uninformed transmission neighbors
of nodes in the set Vg. These two sets Vg and Vg induce a bipartite I RG
G‘€37VR which is subgraph of the input graph GG. Note that we do not consider
edges among nodes of the same part since their presence does not effect the
communication process. Further, we apply the algorithm Ag to compute
transmission schedule for information dissemination in the bipartite graph
G, v, With Vg as the informed part and Vz as the uninformed part. The
length of generated schedule is at most timeg(G) rounds, i.e., the schedule
fits in one stage of slow transmissions. During the whole stage, all net-
work nodes follow this generated schedule of transmissions. Observe that all
transmission neighbors of nodes which are informed at the beginning of the
stage of slow transmissions become informed at the end of this stage due to
properties of the schedule generated by Ag.

Communication pattern realized in the segment of fast transmissions is
computed in the similar way as for slow transmissions. A bipartite subgraph
is constructed at the beginning of each stage. Let Vi be a set of all unin-
formed nodes that have informed parent with the same rank. Ie., Vp = {v €
F|v is informed A parent(v) is informed}. A set of parents of nodes in the set
Vg is denoted as Vg, i.e., Vg = {parent(v)|v € Vr}. We construct a bipartite
subgraph G7_ . = (Vs U Vg, Ef U E) where Ef = {(v, parent(v)|v € Vp}
and EI' = {(v,w)|lv € VR Aw € Vg Aw # parent(v) A (v,w) € Er U Er}.
Notice that the edge set of the graph G{%VR contains all edges that join a
node in the informed part Vg with a node in the uninformed part Vz. How-
ever, we move each transmission edge which does not join a node with its
parent in the G BST to the set of interference edges. After this change, each
node in Vi has a chance to become informed by transmission of its parent.
Owing to this change, each node v € Vy in the bipartite I RG Gf,_ . satisfies
the property that degr(v) = 1. Indeed, the properties of GBST imply that
each node, except the source, has exactly one parent and each parent has at
most one child with the same rank, i.e., at most one child from the set F'.
Notice that the graph G{;S’VR is a valid input bipartite I RG for the algorithm
Ap. Applying algorithm Ap, we get a schedule of transmissions informing
all nodes in V. The length of the schedule fits in one stage of fast transmis-
sions. Similarly as in the case of slow transmissions, all network nodes follow
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the computed schedule during this stage.
The following lemma provides crucial description how fast the source
message is disseminated in the network.

Lemma 3.4.1. Let v be a node with the rank i and in the distance k from
the source s in the transmission subgraph Gr, i.e., rank(v) =i and v € L.
The node v is informed in the composite round 2-k-timer(G)+2- (rank(s) —
i) - times(G) at the latest.

Proof. The proof is done by induction on the layer number of a node. For
the source, the claim trivially holds. Now, we prove the claim for a node
v € L N R; under assumption that induction hypothesis holds. Since the
node v is not the source s, it has a parent in the GBST. In the transmission
subgraph, the parent of the node v is closer to the source than the node v, i.e.,
parent(v) € Li_1. Denote a composite round in which its parent parent(v)
becomes informed as Tp. There are two possible cases. Either the node v
has the same rank as its parent in the GBST or not.

Let us analyze the former case, i.e., the case when v € F. The induction
hypothesis implies that Tp < 2-(k—1)-timer(G)+2-(rank(s)—i)-times(G).
Communication pattern for fast transmissions prescribes that if the node v is
not informed at the beginning of the nearest stage of fast transmissions which
comes after the composite round Tp, both the node v and its parent parent(v)
participate in this stage of fast transmissions. The node v participates as a
node of the uninformed part of a bipartite / RG which is constructed for this
stage, and its parent parent(v) as a node of the informed part. Since the
schedule computed for this stage by algorithm Az informs all nodes in the
uninformed part, the node v becomes informed at the end of this stage at
the latest. After the round Tp, we wait at most timep(G) composite rounds
for the beginning of next stage of fast transmissions. Thereafter, the node v
becomes informed during at most timep () subsequent composite rounds. It
follows that the node v is informed in the composite round Tp+2-timer(G) <
2-k-timep(G)+ 2 (rank(s) — i) - timeg(G) at the latest.

In the complementary case, we have that v € S. Lemma 2.2.1 implies that
rank(parent(v)) > rank(v). According to designed communication pattern
for slow transmissions, if the node v is not informed at the beginning of the
nearest stage of slow transmission, both the nodes v and parent(v) participate
in this nearest full stage of slow transmissions. The node parent(v) is a
node of the informed part and the node v of the uninformed part. Schedule
generated by the algorithm Ag informs the node v during this stage. Notice
that we wait for the beginning of the next stage of slow transmission at
most timeg(G) composite rounds. Thereafter, it takes at most timeg(G)
composite rounds to inform the node v. Hence, the node v is informed in the
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composite round Tp+2-timeg(G) at the latest. The induction hypothesis for
the node parent(v) implies that Tp < 2- (k — 1) - timep(G) + 2 - (rank(s) —
rank(parent(v)) - times(G). Since rank(parent(v)) > rank(v), Tp + 2 -
times(G) < 2-k-timep(G) + 2 - (rank(s) — i) - timeg(QG). d

Theorem 3.4.2. For an arbitrary given [RG G = (V, Ex U Ey) and two al-
gorithm Ag and Ap, a radio broadcasting schedule with length O(timerp(G) -
ecer(s) + timeg(G) - logn) can be generated in polynomial time. Moreover,
if the algorithm Ap generates kp-shot schedules of transmissions and the al-
gorithm Ag kg-shot transmission schedules, generated broadcasting schedules
are (kr + kg)-shot broadcasting schedules.

Proof. Lemma 2.2.1 implies that rank(s) < logn. Therefore, the upper-
bound on the length of generated broadcasting schedules follows immediately
from Lemma 3.4.1.

Observe that each node participates as a node of the informed part, i.e.,
as a transmitter, in at most one stage of slow transmission and in at most one
stage of fast transmissions (each node has at most one child with the same
rank). This implies that generated schedules are (kg + kg)-shot broadcasting
schedules. O

Corollary 3.4.3. For an arbitrary given IRG G = (V, Er U E}), a 2-shot
radio broadcasting schedule with length O(A- Dp+A?-logn) can be generated
in polynomial time.

Proof. The claim follows from Theorem 3.4.2 applying the second algorithm
from Theorem 3.3.1 as Ay and the first algorithm from the same Theo-
rem 3.3.1 as Ag. O

Corollary 3.4.4. For an arbitrary given I|RG G = (V, Er U Ey), a 2-shot
radio broadcasting schedule with length O(A - (Dp +1log®n)) can be generated
in polynomial time.

Proof. The claim follows from Theorem 3.4.2, if we use the second algorithm
from Theorem 3.3.1 as Ar and the algorithm from Theorem 3.3.3 as Ag. [

3.5 Emergy and Time Efficient Broadcasting in
IRGs

All previously designed algorithms devoted to communication in [ RGs re-
flect the presence of interference edges by the combined maximum degree A.
In the case of interference selective families, we have considered interference
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ratio as another parameter. Intuitively, if we take into account more parame-
ters, we get finer upper-bounds on lengths of broadcasting schedules. In this
section, we introduce and investigate another parameter reflecting structure
and presence of interference edges - an interference distance of an I RG. We
say that a network (represented by an [RG) has the interference distance
dy if dy is the smallest integer, s.t., for any interference edge e € E; there
exists a transmission path along at most d; transmission edges connecting
the endpoints of e.

In real-world scenarios, if there is an interference edge between two nodes,
we expect that these nodes are relatively close to each other. Therefore,
we expect that there is a connection (transmission path) between these two
nodes which uses small number of transmission edges. Hence, we may assume
that interference distance of an underlying [ RG' is small comparing to size of
the network (for instance, O(1) or O(logn)). Note that reachability graphs
of the standard graph model correspond to I RGs with interference distance
equal to 1.

The algorithm presented in this section is designed with respect to mini-
mization of energy consumption. In particular, broadcasting schedules pro-
duced by this algorithm are not only fast, but they are also 1-shot broad-
casting schedules.

3.5.1 Overview of the Algorithm

Our next algorithm generating broadcasting schedules adopts an approach
in which the set of transmissions is divided into fast and slow transmissions.
As we have seen, this universal paradigm is used with various modifications
in almost all algorithms generating broadcasting schedules in known radio
networks. In this approach, a source message is disseminated along branches
of a BFS tree-like subnetwork using fast transmissions pipelined along se-
lected simple paths and a limited number of slow transmissions based on
propagation of information in bipartite graphs. In our approach we utilize,
with required modifications, the clustering mechanism presented by Gaber
and Mansour in [31], however, the presence of interference edges imposes cer-
tain structural changes. A notable difference is that the constructed clusters
do not form a connected subgraph, although there is a short transmission
path between any two nodes of the same cluster. Another difference refers to
the lack of short transmission paths between the clusters of the same color
(rather than the lack of direct edges) that enables efficient dissemination
mechanism in radio networks with long-range interference. Finally, whereas
fast transmissions are realized on the basis of the tree-like communication
subnetwork, slow transmission are executed in successive stages in the form
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of a flooding mechanism where information is disseminated between collec-
tions of informed and neighboring uninformed nodes of dynamically evolv-
ing bipartite / RG. Note that the slow and fast transmissions despite being
treated separately, they must be neatly coordinated to enable energy efficient
1-shot communication protocol.

3.5.2 Construction of Clusters
Layers and super-layers

The broadcast schedule designed for I RG's utilizes a partition of the input
graph GG into BF'S layers, super-layers and a collection of overlapping clusters
constructed on the basis of the transmission subgraph G in G. Due to Defi-
nition 3.1.1, the input IRG G consists of eccr(s)+1 layers Lo, L1, . .., Lecep(s)
with respect to the source node s.

In what follows, = denotes a parameter whose value will be determined
later in Lemma 3.5.10.

Definition 3.5.1. For eachi = k-x < eccp(s)+1, the layer L; of G is called
a k-th inter-communication layer. The union of layers Ly = J{Li|k -z <
i < min(ecer(s), (k+1)-x)} forms the k-th super-layer of the IRG G. The
layers Ly, and Lyin(ecer(s),(k+1)-2) Jorm the highest and the lowest layers in
the k-th super-layer respectively.

The last definition implies that each super-layer consists of  + 1 layers
and exactly two inter-communication layers: the highest and the lowest layer
of the super-layer. The exemption is the most distant super-layer that might
have smaller number of layers.

Clusters, pre-clusters and pre-cluster graphs

The clusters are built in each super-layer of G independently. Each cluster
is a union of carefully crafted pre-clusters defined as follows. For each node
v € Lg, C Ly we define a pre-cluster as a set of nodes S(v) = {ulu €
LiyyiNdrp(v,u) =iAN0 <i < zx}. Note that the pre-cluster S(v) contains all
nodes in the same super-layer that are reachable from v along transmission
edges used in the direction away from the source. The node v is called the
top node of S(v).

We define an undirected pre-cluster graph G for a given super-layer L
as follows:

o V(Gy) = Ly,
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o F(Gy) = {(u,v)|F, v : v € S(u)Av' € S(v)ANdp(u',v") < di(G)+1}.

The nodes in (G}, correspond to the top nodes of pre-clusters located in the
k—th super-layer. For any pair of nodes u,v € V(Gy) there is an edge
connecting them in F(Gy) if and only if there is a transmission path of length
not exceeding d;(G) + 1 that connects some node in S(u) with some node in
S(v). The structure of GGy, guaranties, e.g., that there are no interference edges
between nodes from different pre-clusters whose top nodes are not connected
by an edge in GGj. In fact, the structure of GG implies also several other
powerful properties that are summarized in Lemma 3.5.3.

The system of clusters

The following theorem is due to Gaber and Mansour, see [31].

Theorem 3.5.2 ([31]). Let G = (V, E) be an undirected graph. There exists
a clustering C = {C1,...,C,} of G with the following properties:

1. V(@) =U{Glt<i<r}
2. G[Cy] is a connected subgraph of G with a diameter at most 2-log |V (G)|

3. There is a proper coloring of clusters with at most [log |V (G)|] colors.
The proper coloring of clusters satisfies

(u=vV(u,v) € E(G))Au € CiAv € C;Ni # j = color(Cy) # color(CY).

4.1 < [V(G)]
In addition, the clustering can be constructed in O(|E(G)|-log |V (G)|) time.

Let C = {C1,...,C,} be a clustering of the pre-cluster graph G/ ob-
tained by application of the clustering procedure from [31]. A clustering
Cck) = {C1(k), ey Cﬁk)} of pre-clusters in the k-th super-layer £ is defined as
™ = J{SW)|v € LiaAv € C;}. Note that a color assigned to a cluster C*
is the same as the color assigned to the cluster C; in the clustering C of Gj.
It also follows that coloring of C®) uses at most [log |V (G%)|] < [log |Lk|]
colors.

Lemma 3.5.3 (|F|). The clustering C*) has the following properties:
1oLy=U{cPn<i<|e®])

2. Yu,v € V(G) :u,v € CF = dp(u,v) <6+ (di(G) + z) - log | L4l
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3. Yu,v,w e V(G) :u € C,-(k)/\v € C](k)/\z' # j/\color(Ci(k)) = color(C](k))/\
(u,w) € Er = (v,w) ¢ Er UE;

Proof. The property (1) is a consequence of property (1) in Theorem 3.5.2
and the definition of C(®.

The property (2) says that for any pair of nodes u, v € C'l-(k) there exists a
transmission path in G of a length less than 6-(d;(G)+z)-log |Lk|. Note that
this transmission path can go through nodes located outside of the cluster
c®. Hence, any two cluster nodes are connected in G, but not necessary in

G [Ci(k)], i.e., the cluster Ci(k) can be disconnected. From the definition of Ci(k)
one can conclude that there are two nodes uy, vy, € Cy, s.t., u € S(up) and
v € S(vy). Recall that C; is a cluster defined on the pre-cluster graph GGy that
determines the content of the cluster Ci(k). The property (2) of Theorem 3.5.2
implies that there exists a path P = (u, = wy, wy, ..., w; = vp,) connecting
nodes uy and vy, in the pre-cluster graph GGy. Moreover, this property implies
that the length of P is at most 2-log |V (Gy)| = 2-log |Lk|. From the definition
of Gy one can conclude that there is a path of a length at most d;(G) + 1
from a node in S(w;) to a node in S(w;y1) in the transmission subgraph Gr,
for any i = 1,...,t — 1. We denote this path by P(w;, w;1), its first node
by w!" and the last node by w’ . Since w!" € S(w;), we get dp(w;, w}) < z.
Similarly, from wk ; € S(w;;1) we obtain dr(w;y1,w}, ;) < z. Hence, there
is a walk from w; to w;y; in G consisting of three parts: a path from w;
to wf, the path P(w;,w;y1) from wf to wf,, and a path from wk, to
wiy1. The total length of the walk is at most z + (d;(G) + 1) + . Now,
we are ready to construct a walk from u to v in Gp. The walk starts with
a path from u to w, = w;. Further, it continues by a sequence of walks
from w; to w1, for all ¢ = 1,...,¢t — 1. The walk concludes with a path
from w; = v, to v. The total length of the constructed walk is at most
r+2-log|Lil - (z+ (d/(G)+1)+2)+ 2 <6-(d;(G) + x) - log|L|. Hence,
there exists a transmission path in GG from u to v of length not exceeding
6 (d/(G) + z) - log | Ly|.

The property (3) is proved by showing that there does not exist a trans-
mission path in G of length smaller than d;(G) + 1 that joins two nodes
u,v in two different clusters with the same color. I.e., we must show that
dr(u,v) > d;(G)+ 1. If there is no transmission path from u to v, dr(u,v) =
00. And indeed, for any node w € V() connected to u by a transmission
edge, i.e., (u,w) € Ep, the inequality dr(u,v) > d;(G)+ 1 > 2 implies
that dp(w,v) > d;(G). Hence, due to the definition of d;(G), we get that
(w,v) ¢ Epr U E;. We show now that dp(u,v) > d;(G) + 1. Assume oppo-
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site, i.e., a transmission path from u to v exists and dp(u,v) < d;(G) + 1.
Since u € C'i(k), there is a node u, € Lg,, s.t., u € S(up) and u, € O,
where (; is one of the clusters in (. Similarly, v € Cgk) implies that
there is a node v, € Lgg, st.,, v € S(v,) and v, € ;. Recall that
we assumed dp(u,v) < d;(G) + 1. From the definition of Gy, it follows
that (up,vp) € E(Gy) and from the clustering construction we know that
color(C;) = color(()i(k)) = color(C;k)) = color(C}). However, this leads to a
contradiction since the coloring of clusters in iy is a proper coloring. lLe.,
(un,vp) € E(Gy) implies that color(C;) # color(C}).

Finally, the property (4) follows directly from the property (4) in Theorem
3.5.2. U

Observe that the clustering C; does not contain necessarily only inter-
nally connected clusters. In other words, a transmission path connecting
two nodes of the same cluster can traverse through nodes outside of pre-
clusters contributing to the cluster. On the other hand, the property (2)
in Lemma 3.5.3 implies that the nodes of each cluster in C; are connected
in the graph GG by relatively short transmission paths. Note that one can
modify the clustering mechanism of Theorem 3.5.2 to obtain a clustering Cy
that consists of internally connected clusters. The key idea of the modifica-
tion lies in a way, how pre-clusters are gradually introduced to the currently
constructed cluster. Instead of adding all unused neighboring pre-clusters of
the currently constructed cluster, we insert unused pre-clusters containing at
least one node which is connected by a transmission path of a length at most
d;(G) + 1 to some node of the currently constructed cluster.

3.5.3 Construction of Ranked Trees of Clusters

The tree of clusters defines a parent-child relationship between clusters in
neighboring super-layers and vice-versa. It is built in consecutive steps from
the lowest (the most distant from the source) super-layer towards the highest
super-layer with an index 0. During the bottom-up construction we process
each cluster (' such that we:

e provide a rank rank(C') to the cluster,

e choose a node, called a representative of the cluster, in the highest layer
of the cluster,

e select a unique leading representative in the lowest layer among repre-
sentatives of cluster children of ', and
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e define the cluster path as any shortest transmission path from the rep-
resentative of ' to the leading representative of its cluster children.

The tree of clusters is built on the basis of an arbitrary BF'S tree formed
of cluster nodes in consecutive super-layers. I.e., for each cluster, we choose
a cluster in the neighboring higher super-layer, which will stand as its parent
in the constructed tree of clusters. In what follows we show how each cluster
in the k-th super-layer is processed in due course. Assume that all clusters in
the (k+ 1)-th super-layer have been already processed and that we currently
process the cluster Ci(k). Let child(Ci(k)) C C*+1) he a (possibly empty) set of
clusters in C*+1) whose parent is C’l-(k). In the case when chz’ld(C’i(k)) = (), the
rank mnk(Ci(k)) of the cluster Ci(k) is set to 0 and an arbitrary node in the
highest layer of the cluster is chosen as the representative of the cluster. In
this case we do not define the cluster path and the leading representative due
to the lack of cluster children. If, however, child((]i(k)) # (), i.e., the cluster
Ci(k) is a parent cluster of one or more clusters at the (k+1)-th super-layer, we
process the cluster as follows. Let e = maz{rank(C)|C € child(C*)}
be the maximal rank among all ranks of its cluster children. If at least
two cluster children in chz‘ld(Ci(k)) have ranks with value 7,4, i.e., [{C|C €
chz’ld(C’i(k)) A rank(C) = rmaz t| > 2, the rank of C’l-(k) is set t0 74, + 1 and
the leading representative is chosen arbitrarily among representatives of the
cluster children. Otherwise, the rank is set to r,,,, and the representative of
the cluster child with the rank r,,,, is chosen as the leading representative
of the cluster. Let u be the chosen leading representative. Since each cluster
is a union of pre-clusters, there is a node v € L., N C'l-(k) and a pre-cluster
S(v), s.t., u € S(v). We choose v as the representative of Ci(k) and one of
the shortest transmission paths from v to u is set as the cluster path. Since
u € S(v), the length of the cluster path is 2. Note that certain clusters with
the rank 0 can be formed of less than = + 1 layers. In such shallow clusters
cluster paths are not defined. Finally, the parent of the cluster is an arbitrary
cluster of the (k — 1)-th super-layer C*~Y) that contains the representative v
of the cluster Ci(k).

The following lemma follows directly from the construction of the cluster
tree.

Lemma 3.5.4 ([F]). The cluster tree has the following properties:
1. If C’;k_l) is a parent cluster of C’i(k), it holds mnk(C'J(k_l)) > mnk(C’.(k)),

(3

2. For any cluster Cl-(k), it holds that |{C|C € chz’ld(C’i(k)) A rank(C) =
rank(CiV)}| <1,
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3. Let Ci(k) be a cluster and Cj(-kﬂ) € chz’ld(Ci(k)) be a cluster child of
C’i(k), s.t., Tank:(C’i(k)) = mnk‘(C’;kH)). Then, there is a cluster path
of the length x in Ci(k) that connect the representative of C7;(k) with the
representative C’;kﬂ), which s the leading representative of C’i(k).

We define a reverse rank of a cluster Ci(k) as rank*(Ci(k)) = rank:(CéO)) -

mnk:(C,,;(k)). The following properties of (reverse) ranks in the tree of clusters
follow from discussion in [31, 36].

Lemma 3.5.5 ([F|). The greatest rank in the cluster tree is assigned to the
root and its value is at most logn. The greatest reverse rank of a cluster is
also at most logn. FEach simple path from the root to any other cluster forms
a non-increasing (non-decreasing) sequence of (reverse) ranks.

3.5.4 Building the Broadcasting Schedule

The broadcasting schedule is implemented as a concurrent (interleaved) ex-
ecution of two communication patterns of fast transmissions and slow trans-
missions. As we will explain later, it is important that fast transmissions do
not interfere with slow transmissions and vice versa. Thus transmissions com-
ing from different patterns are executed in disjoint time steps. A produced
schedule consists of consecutive composite rounds, in which the first round is
reserved for fast transmissions and the second one serves slow transmissions.

Pattern of fast transmissions

The main aim of fast transmissions is to disseminate the source message from
the cluster representative to the leading representative in the same cluster
along the cluster path. In order to avoid interference of simultaneous fast
transmissions coming from clusters with different colors, the transmissions
are scheduled according to the distance from the source and colors of clusters.
In fact, a node on a cluster path has a licence to transmit only in very specific
composite rounds. We may picture this permission to transmit as a (time)
wave emitted by the source s and descending gradually along the consecutive
BFS layers of the input IRG G. Let t, = d;(G) + 2 be a period of this
wave, i.e., the frequency of issuing the permission. Further, consider a node
v € L, = Liyyy, for some 0 <y < . Let Cp(v) € C%® be a collection of all
clusters in C®), s.t., the node v belongs to their cluster paths. Note that we
exclude here the nodes of the layer Lii1).. = L N Ly, i.e., the lowest layer
of the k-th super-layer, from cluster paths of clusters in C*). The node v has
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a license to transmit during ¢-th composite round, as a part of the pattern
of fast transmissions, if and only if t = (2 4+ ¢ - t.) (mod ¢, - [logn]), where
¢ € {color(C)|C € Cp(v)}. Le., cis a color of a cluster containing v on its
cluster path.

Summarizing, a node v contributes to fast transmissions in a composite
round ¢ if:

(1) v is already informed,
(2) v has an uninformed transmission neighbor,

(3) v has enough energy to transmit (e.g., in k-shot protocols v transmitted
at most k — 1 times so far),

(4) t=(z2+c-t.) (mod t, - [logn]), where ¢ € {color(C)|C € Cp(v)} (v is
allowed to transmit).

Critical composite rounds

The notion of a critical composite round refers the round when a node is
prompted by the broadcast schedule to transmit during fast transmission
pattern.

For a cluster Ci(k) € C™ we define a critical composite round as

tee(C) = color(CP) -t +2 - k-t - [logn] + K (CY),

where K (Ci(k)) is the smallest integer, s.t.,
o K(CMY>7.(di(G)+2)- logn -t rank*(C™), and
o K(Ci(k)) =0 (mod t. - [logn]).

The parameter ¢, corresponds to the length of one stage of slow transmissions
and it will be established later. Concerning other parameters the following
upper bounds can be established:

. color(Ci(k)) -t is the maximum number of composite rounds during
which the representative of a cluster has to wait before it starts passing
the source message along its cluster path,

e k-t.- [logn] is the maximum number of composite rounds wasted by
cluster representatives in ancestor clusters while waiting for the first
chance to transmit along their cluster paths,
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. mnk*(Ci(k)) is the maximum number of times the representatives of
ancestor clusters were not chosen as the leading representative of their
parent clusters, and

e 7. (di(G) 4 z) - logn is the maximum number of stages with slow
transmissions (each stage being of length ¢,) in which the cluster rep-
resentative waits for the source message from its parent cluster in the
case when its parent cluster has a different rank.

Finally, a critical composite round t.(v) for the node v (v € L,) is defined as
follows:
to(v) = min{z + te(C*|C® € Cp(v)}.

Pattern of slow transmissions

Recall that the main purpose of slow transmissions is to disseminate the
source message from informed cluster representatives and cluster paths to
all other nodes in their clusters. Slow transmissions are performed in stages
where each stage consists of a fixed number of composite rounds. During
each stage, all nodes which are informed pass the source message on all their
uninformed transmission neighbors. Hence, one stage of slow transmissions
can be seen as information dissemination in a bipartite I RG.

Fix an algorithm A4, for information dissemination in bipartite I RGs. Let
t, be the maximal length of the schedule generated by A, for an arbitrary
bipartite [ RG which is a subgraph of the ITRG (. The k-th stage of slow
transmissions, for k£ > 0, starts in the composite round k - ¢, and finishes in
the composite round (k + 1) - £, — 1, i.e., each stage lasts through exactly
1, composite rounds. In the first composite round of each stage we consider
a bipartite I RG G, for which a schedule of transmissions is computed by
the algorithm A,. The first part of (G, contains all informed nodes with
uninformed transmission neighbors with the exception of all nodes whose
critical composite rounds occur during this stage of slow transmissions. As
we show later, if a node transmits in the pattern of fast transmissions, all its
uninformed transmission neighbors become informed. However, this is not
true for transmissions contributing to the pattern of slow transmissions. In
particular, slow transmissions only guaranty that all uninformed transmission
neighbors become informed at the end of the stage. But this could be too slow
and inconsistent with the main aim of fast transmissions. The second part of
the graph G} is formed by all uninformed nodes connected by a transmission
edge to a node in the first part.
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3.5.5 Analysis of the Broadcasting Schedule

Lemma 3.5.6 (|[F|). Any fast transmission results in informing all trans-
mission neighbors of the transmitting node.

Proof. Fast and slow transmissions do not interfere due to adopted time
multiplexing strategy.

Hence, the only case, when a transmission neighbor w of a transmitting
node u € L,, does not receive a transmitted message from u in a composite
round ¢, is the case when there is a node v € L, transmitting simultaneously
in the same round, s.t., an edge (v,w) € Epr U E;. Let ¢, be the color of a
cluster C,, which determines transmission of « in the composite round ¢. Note
that the cluster C', must contain u in its cluster path and u is not the last node
on this path. Similarly, let ¢, be the color of a cluster C', which determines
transmission of v in the composite round ¢. The scheduling mechanism for
fast transmissions implies that

L= (zy+cu-te) =(2p+ ¢y te) (modt, - [logn]).

If ¢, # ¢y, we get |z, — z,| > t. using the fact that ¢, ¢, < [logn]. Thus,
dr(u,v) > te = d;(G) + 2. Since w is a transmission neighbor of u, the
inequality dp(u,v) > d;(G)+ 2 implies dr(w,v) > d;(G)+ 1. Hence, there is
no edge (w,v) € Er U E} that contradicts the assumption (w,v) € Ep U FE.

For ¢, = ¢, the scheduling mechanism for fast transmissions implies z, =
2, (mod t.-[logn]). If 2, # z,, we get |z, —2z,| > te-[logn] > t. = d;(G)+2.
In this case we also get contradiction with the assumption (w,v) € Ep U E.
Hence, it remains to consider the case when z, = z, and ¢, = ¢,. Recall
that the fact that a node is a last node on a cluster path does not influence
its activity in the pattern of fast transmissions. l.e., the activity of a node
depends only on time and cluster colors in exactly one super-layer. Thus,
there exists k such that C,, C, € C%). Since ¢, = color(C,,) = color(C,) = c,,
the property (3) of Lemma 3.5.3 implies that (v, w) ¢ Ep U E;, which also
contradicts the assumption. O

An important implication of Lemma 3.5.6 is the property that each node
transmits in the pattern of fast transmissions at most once.

Lemma 3.5.7 ([F]). Let S be a set of all informed nodes of the graph G at the
beginning of a stage of slow transmissions. Fach node that is a transmission
neighbor of a node in S is informed by the end of this stage.

76



Proof. 1t is enough to only consider the nodes that have an uninformed trans-
mission neighbor at the beginning of the stage of slow transmissions. Initially,
all such nodes form an informed part of a bipartite / RG for this stage of slow
transmissions with the exception of nodes whose critical composite rounds
are scheduled during the stage of slow transmissions. Since every excep-
tional node has an uninformed transmission neighbor, Lemma 3.5.6 implies
that it did not transmit during any of previous composite rounds. The node
is informed. Thus, according to scheduling mechanism for fast transmis-
sions, the node will transmit during its critical composite round at the latest.
And Lemma 3.5.6 guaranties that its transmission neighbors will become in-
formed. Finally, a schedule of slow transmissions constructed for this stage
guaranties that transmission neighbors of all other nodes in the uninformed
part become informed. O

Lemma 3.5.8 ([F]). Assume that the algorithm A, that generates sched-
ules for stages of slow transmissions, produces k-shot schedules, i.e., where
each node of informed part transmits at most k times. Then, a broadcast-
ing schedule produced by the algorithm for IRG G is a k-shot broadcasting
schedule.

Proof. We already know that every node acts as a transmitter in at most one
stage of slow transmissions, where the schedule for that stage is produced by
the algorithm A,. Thus if A, produces a k-shot schedule, a node that acts
during this stage as a transmitter transmits at most k times. In only prob-
lematic case when such a node is also due to contribute to fast transmission
interleaved with slow transmissions of this stage, it simply never executes the
schedule for slow transmissions. It awaits the round with the fast transmis-
sion and then informs all its transmission neighbors instantly. Since every
node transmits in the pattern of fast transmissions at most once the limit of
transmissions per node is also not exceeded in this case. O

Lemma 3.5.9 ([F]). All transmission neighbors of a node v that belongs to
a cluster path are informed by the end of its critical composite round t.(v).

Proof. The proof is done by induction on the layer number of the node.
First, we analyze the base case, i.e., the claim for a source s € Ly. A
reverse rank of the source’s cluster is 0. If ¢, < t.(s), the informed source
participates in the first stage of slow transmissions. From Lemma 3.5.7, all
its transmission neighbors become informed by the end of the first stage. In
the complementary case, when ¢, > {.(s), the source does not participate
in the first stage of slow transmissions. Since t.(v) is a composite round
when the source has a permission to transmit, the source transmits and
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all its transmission neighbors get informed due to Lemma 3.5.6. Hence, in
both cases, all transmission neighbors of the source are informed during the
composite round {.(v) at the latest.

Now, we prove the claim for a node v € L, under assumption that in-
duction hypothesis holds, i.e., that the claim is true for every node u € L,,
where y < z. We consider two cases: (1) when the node v is not a cluster
representative, and the complementary case (2).

Lets analyze case (1) first. Let C' be a cluster from Cp(v), s.t., t.(v) =
2+4t..(C') (see definition of the critical composite round). Recall that the node
v lies on the cluster path in C'. Since the node v is not a cluster representative,
it has a predecessor u € L, 1 on the cluster path in C. Since C' € Cp(u)
we also get t.(u) = min{(z — 1) + t.(C)|C" € Cp(u)} < (2 — 1) + t.(C) <
2+ 1ee(C) = t.(v). Thus, t.(u) < t.(v). The induction hypothesis, for u €
L., implies that by the end of the composite round ¢.(u) all transmission
neighbors of u are informed. The node v is a transmission neighbor of w.
Therefore, the node v is informed by the end of composite round ¢.(u). If
between composite rounds ¢.(u) and ¢.(v) there is room for at least one full
stage of slow transmissions, it follows from Lemma 3.5.7 that all transmission
neighbors of v are informed by the end of composite round ¢.(v). Otherwise,
according to the scheduling mechanism for fast transmissions, the node v
transmits in the composite round ¢.(v) at the latest. Hence, by Lemma 3.5.6,
all transmission neighbors of v are informed by the end of composite round
te(v).

It remains to analyze the case when the node v € L, is a cluster represen-
tative. Since v is a cluster representative, it holds that z = k£ -z and k£ > 1.
Let C' be a cluster from Cp(v) € CW®), s.t., t,(v) = 2z + t..(C). Further, let
C" € C**=1) be the parent cluster of the cluster C, i.e., C' € child(C"). From
property (1) of Lemma 3.5.3, it follows that rank(C') < rank(C"). Next, from
the definition of reverse rank, we get rank*(C') > rank*(C"). Two subcases
emerge: rank*(C') = rank*(C") and rank*(C) > rank*(C").

Assume first that rank*(C') = rank*(C") and compare critical composite
rounds t.. of both clusters. Ranks of both clusters are the same, C' € C%),
and " € C*=1). Therefore, we have holds t..(C') — t..(C") = (color(C) —
color(C")) -t + 2 - t. - [logn] >t - [logn]. The last inequality follows from
the fact that any cluster color is a number smaller than [logn]. Further,
property (3) in Lemma 3.5.4 implies that v is the leading representative of
the parent cluster C’. Hence, there is a predecessor u of the node v on the
cluster path of the parent cluster C. Since ¢ € Cp(u) C C*~1, it also holds
that t.(u) < (2 — 1) +te(C"). Therefore, t.(v) —t.(u) > (2 +te(C)) — ((z —
1) +1ee(C") > 1+ (tee(C) — tee(C")) > 1 4+t - [logn]. Note, that from the
induction hypothesis for u it follows that at the end of composite round ¢.(u)
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all transmission neighbors of the node u, including v, are informed. Since also
te(v) —t.(u) > 1+t.-[logn], the node v has at least 1+t.- [logn] composite
rounds to inform all its transmission neighbors after a composite round, when
it becomes informed, is finished. If this time interval contains at least one full
stage of slow transmissions, it follows from Lemma 3.5.7 that all transmission
neighbors of v become informed by the end of the composite round ¢.(v).
In the complementary case, we observe (see the scheduling mechanism for
fast transmissions) that this time interval is longer than ¢, - [logn]. It also
contains a composite round when the node v is allowed to transmit in the
pattern of fast transmissions according to the color of C'. From Lemma 3.5.6,
all transmission neighbors of the node v become informed.

Finally, assume rank*(C) > rank*(C"). Let w € L(;_1y, be the repre-
sentative of the parent cluster C’. By the induction hypothesis, all trans-
mission neighbors of the node u are informed by the end of the compos-
ite round ¢.(u). Now, we estimate the length of a time interval between
a composite round when all transmission neighbors of u are informed and
a composite round when all transmission neighbors of v have to be in-
formed. Since rank*(C') — 1 > rank*(C"), one can show that t.(v) — t.(u) >
7-(d;(G) + x) -logn - t,. The node v is the representative of the cluster C.
Therefore, it belongs to the parent cluster C” of cluster C, i.e., v € C’. Also
property (2) of Lemma 3.5.3 implies that dp(u,v) < 6 - (d;(G) + z) - logn.
Certainly, there exists a transmission neighbor u’ of the node u such that
dr(u',v) + 1 = dp(u,v). For any transmission neighbor v’ of the node v,
it holds that dp(u/,v") < dp(u',v) + 1 = dp(u,v) < 6- (d;(G) + x) - logn.
Since the node v’ is a transmission neighbor of the node u, it gets informed
by the end of the round ¢.(u). Observe also, that the time interval between
te(u) and t.(v) contains at least 6 - (d;(G) + x) - logn complete stages of
slow transmissions. And indeed, t.(v) — t.(u) > 7 (d;(G) + ) - logn - t, >
(6 - (di(G) + x) - logn) - t, + tp. Since dp(u',v") < 6+ (d;(G) + x) - logn,
Lemma 3.5.7 (iterated 6 - (d;(G) + x) - logn times) implies that the node ¢,
a transmission neighbor of the node v, becomes informed in the composite
round ¢.(v) at the latest. O

Lemma 3.5.10 ([F]). Let G be a given undirected I RG and s € V(G) be
a given source node. Let Ay be a polynomial-time algorithm which produces
schedules of transmissions of length ty, for information dissemination in bi-
partite I RG's that are subgraphs of G. There is a polynomial-time algorithm
that generates schedules of transmissions with length

4 -ecep(s) + O(d(G) -log*n - ).

Moreover, if Ay, generates k-shot schedules in bipartite I RG's, then generated
schedules for arbitrary [ RGs are also k-shot schedules.
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Proof. Lemma 3.5.9 implies that each cluster representative v is informed
in the composite round ¢.(v) at the latest. Since ranks of clusters are
at most logn and the number of super-layers is [%], it follows that

maz{t.(v)lv € V(G)} < ecer(s) + 3 - ['MT;&} e - [logn] + O((d(G) +
z) - log?n - t,). Thus, all cluster representatives are informed during this
composite round at the latest. From property (2) in Lemma 3.5.3 we can
conclude that the transmission distance between a node and the nearest clus-
ter representative is at most 6 - (d;(G) + z) - logn. Thus, by Lemma 3.5.7,
all nodes in the network become informed after at most 6 - (d;(G) +x) - logn
subsequent stages of slow transmissions. These stages take in total at most
O((d;(G)+z)-logn-t,) composite rounds. Therefore, all nodes in the network
can be informed in at most eccr(s) +3 - [%] “le- [logn]| +O((d/(G) +
z) - log?n - t,) composite rounds. Now choosing = = 3 - t, - [logn] we get
3 [%1 te-[logn]| = ecer(s)+O(t.-logn). Note also that ¢, = d;(G)+2.
Hence, the total length of the schedule is eccp(s)+(ecer(s)+O(d (G)-logn))+
O((d(G) + (d;(G)+2) -logn) -log* n-t,) = 2-ecer(s) +O(d(G) -log* n - ty).
Finally, since each composite round consists of two rounds, the thesis of the
lemma is proved.

Preprocessing phase (construction of pre-cluster graphs, clustering, clus-
ter tree, cluster paths, etc.) is realized in time O(n*) utilizing Floyd-Warshall
algorithm, BF'S traversals and the clustering algorithm from [31]. The broad-
casting schedule is generated by round-by-round simulation of communica-
tion patterns (fast and slow transmission). I.e., when we simulate a round,
we compute a set of transmitting informed nodes with respect to defined
rules and then we determine new set of informed nodes due to known net-
work topology. The simulation time of one round is bounded from above by
O(n?) + T(A,), we simulate at most O(n -log®n - t;) rounds, and ¢, = O(n).
It follows that the time complexity of the algorithm is polynomial. O

The main result of this paper follows from Lemma 3.5.10 and Theo-
rem 3.3.3.

Theorem 3.5.11 ([F]|). Let G be a given undirected | RG G where s € V(G)
15 the source node. There is a polynomial-time algorithm generating 1-shot
schedules of transmissions that accomplishes broadcasting task in time

4 -ecep(s) + O(A - di(G) -log*n) =4 - Dy + O(A - di(G) - log* n).

Note that by applying this algorithm to radio networks with no interfer-

ence edges the time of the broadcasting schedule from [33] is improved in
NG

log*n

graphs with A = o ). The 1-shot broadcasting algorithm proposed in
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[33] relies heavily on the concept of internal ranks that impose currently an
Q(y/n)-time bottleneck in the broadcasting schedule.

3.6 Lower Bound on Broadcasting Time

We conclude this chapter devoted to communication in radio networks mod-
elled by I RG's with a lower bound on broadcasting time. We show that even
for networks with the interference distance d; = 2 any broadcasting schedule

requires at least Dy + Q (A . llgggg) rounds. Note that in view of this lower
bound, broadcasting schedules generated by algorithm from Theorem 3.5.11

are almost optimal for d; polylogarithmic in n.

Theorem 3.6.1 ([F|). There exists an IRG G = (V, Ep U E;) with n nodes,
d;(G) =2, an even mazimal degree A > 4, and the eccentricity of the source
in the transmission subgraph eccy(s) satisfying 72 < 6-11;’% <ecer(s) <nj/2,

logn
log A

s.t., any broadcast schedule requires ecep(s) + €2 (A : rounds.

Proof. Consider a simple network structure that contributes a (A/2 — 1)-
round slowdown to the time complexity of information dissemination. Let
an IRG G' = (V', El. U E}), where:

o V' ={s}UV,UV,UV,, where V, = {ay,...,an}, Vo = {b1,...,bn},
and V., ={c1,...,cnt

o I ={(s,a:),(aibi), (bi,ci)|L < i <m}pU{(ai,a5)|1 <i##j<m}
o Iy ={(ai,b))[1 <i#j<m}

Note that the subgraph induced by the nodes in V, is a complete graph. It
follows that dp(a;,b;) = 2, for any i and j (¢ # j). Hence, d;(G") = 2.
One can observe that any radio broadcasting schedule with the node s as the
source requires at least m -+ 2 rounds to be accomplished. And indeed, all
nodes in V, are informed after the first round, when the source s transmits.
However, if two or more nodes in V, transmit simultaneously, no node in V,
receives a message due to presence of interference edges. Hence, it is not
possible to inform all nodes in V}, in less than m consequent rounds. Finally,
we need one extra round to inform all nodes in V.. Therefore, the total time
required is 1 +m 4+ 1 rounds. In comparison to a naive 3-round broadcasting
for the case without interference edges, we obtain a (m — 1)-round slowdown.

Further, we extend this argument to networks with a larger eccentricity
of the source. Let T, ), be a perfect r-nary tree of height h. All internal nodes
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Figure 3.6: Transformation of a node v and its children vy, vy, v3 in Ts, to a
set of nodes and edges in Ty,

of T, », have exactly r children i.e., their degree is 7+ 1. The total number of

nodes in the tree 7}, is © _1 We turn atree T, into an IRG 7T, h as follows.
First, we insert new nodes v and v, including corresponding edges, between
each internal node v and its child v;, for i = 1,...,r. More precisely, the edge
(v,v;) in T,.p, is replaced by transmission edges (v, v}), (v}, v}), and (v}, v;) in

T} - Next, we add an interference edge (v;, vj) to T}, for each 1 < 7é j<r.
These newly added interference edges contribute to the slowdown, because
neither pair of nodes v; and v is allowed to transmit simultaneously in order
to inform nodes v; and vy Flnally, we add a transmission edge (vj,v;) to
17, for each 1 < # j < r These edges do not improve the communlcatlon
process. In fact, they impose the interference distance 2 in the IRG. A
similar argument (as we used for the IRG G’) implies that in any given radio
broadcasting schedule (with s as the source), each internal node v € T},
has a descendant node v; (a child in 7, ;) which does not get the message
earlier than r 4+ 2 rounds after v becomes informed. Hence, using inductive
argument, any radio broadcasting schedule in 77, requlres 3 h +h-(r—1)

transmission rounds. The resulting IRG 77 ;, consists of 3- o —1—2nodes and

the eccentricity of s is 3-h. In order to Change the eccentricity of the source to
more arbitrary value eccy(s), we add a simple path of length ecer(s)—3-h to
»n- One end of the path gets connected with the current location of s in T,
while the other end becomes the new source s. This new network, denoted
by T} ), ceen(s)> COnSists of n(h) =3 h+1 L — 2+ ecer(s) — 3+ h nodes. In this
network, any radio broadcasting schedule requires at least eccp(s)+h-(r—1)
rounds.
In the following, consider only IRGs T; hecer(s)? where r = A/2. Let
hm be an integer such that n(h,,) < n < n(h + 1). Now assuming that
ogn

ecep(s) > 6 - g A» One can show that for any h > 2 satisfying the inequality
n(h) < n we get 3-h < ecer(s). Also, the inequalities n(h, + 1) > n
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and eccr(s) < n/2 imply that h,, > G?ffgz. Since 36 - h,, > 6 -

72 = 36 - 2, we get h,, > 2. It implies that 3 - h,, < eccp(s). Thus the

construction of T’y /9, ecer(s) is correct. The IRG T /9, ecor(s) is an IRG

with n(h ) nodes, the eccentricity of the source eccy(s), the maximum degree

A, di(T) J9hm ecer(s )) = 2, and the broadcasting time at least eccp(s) + hp,
(A/2-1) > ecer(s >+61;’§gg (A/2—1) = ecer(s) + 0 (A- loggg) . It remains

to transform the IRG T} /2 hm ccep(s) VO A1 IRG G with n nodes and satisfying
all required properties. Observe that only a relatively small number of nodes
is not in T\ /2 hmsecen(s)” Indeed, we can bound from above the number of
remaining nodes by n — n(hy) < n(hm + 1) — n(hy,) < (A/2)rn 3,

The number of nodes in a (A — 1)-nary tree with the height at most
3+ hy,, — 1 is bounded from above by %ﬁml For h,, > 2, this expression
gives a value greater than (A/2)"»*3 which is an upper bound on the number
of remaining nodes. Since the source of the IRG T /2. hmecer(s) 1S degree at
most A — 1 (it has at most A/2 children and no parent), We can arrange
the remaining n — n(h,,) nodes into a complete (A — 1)-nary tree rooted in
a newly created child of the source of T} 5, ... The newly constructed
IRG constitutes GG from the thesis of the theorem. Recall that eccy(s) > 3-h,,
and the height of the complete tree formed of the remaining nodes is at most
3 - h;, — 1. Therefore, broadcasting in the tree of remaining nodes can be
completed separately and independently from any broadcasting process in

A2 ccep(s) QUIING at most ecer(s) rounds after first transmission of the
source. The thesis of the theorem follows. O
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Chapter 4

More Complex Tasks in Unknown
Radio Networks

It is known that particular assumptions about initial knowledge of network
nodes and their communication capabilities influence how effectively commu-
nication tasks can be accomplished. Unlike all other chapters, this chapter
is devoted to communication in radio networks in the case when the network
topology is not included in initial knowledge of network nodes. This setting
is often referred to as a fully distributed setting or an unknown radio net-
work. In this setting, it is usually assumed that initial knowledge of a node
is limited only to its unique identifier (ID). Most of works assume that iden-
tifiers are unique integers upper-bounded by O(n), where n is the number
of network nodes. Moreover, a node does not possess any information about
network in its neighborhood (e.g., identifiers of its neighbors). Note that the
lack of knowledge about network topology makes realization of communica-
tion tasks very difficult. Designed communication protocols must properly
treat not only interference of simultaneous transmissions, but also a lack of
knowledge about activity of neighboring nodes.

We focus on communication tasks that are not in the center of investiga-
tion related to communication in unknown radio networks modelled by the
standard graph model. Our main objective is to study how effectively more
complex tasks can be realized by a combination of standard communication
primitives (e.g., broadcasting and gossiping) and other non-standard com-
munication protocols working on the network level. We understand tasks
like a maximum finding, a computation of some characteristics of an under-
lying reachability graph, and a computation of grid coordinates under the
term "more complex tasks". Also, we investigate the impact of general infor-
mation about the network topology (for instance, the fact that the network
nodes form the grid topology) on efficiency of communication protocols.
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4.1 Introduction

This chapter focuses on several communication tasks in slightly different
models of radio networks. Although, the models are different, they share
some common properties. In our investigation, we consider communication
in the fully distributed setting where

e initial knowledge of a node is (at most) its unique identifier,

e spontaneous transmissions are not allowed, i.e., a node is allowed to
transmit only after successful receiving of a message or a signal from
one of its neighboring nodes,

e internal clocks of nodes are synchronized, but it is not guaranteed that
they show the same time, and

e there is one distinguished node (an initiator or a source) that initiates
execution of a communication protocol in the whole network.

We adopt the standard graph model of radio network. Here, the network
topology is described by an undirected reachability graph. The reachability
graph is unknown for the network nodes. Contrary to the centralized setting
investigated in previous chapters, a communication protocol is a set of rules
(a function) that prescribes activity of a node for each communication round.
In each round, activity of a node depends on initial knowledge of the node
and whole history of received messages and signals up to this round. I.e.,
we consider adaptive communication protocols. Though these protocols are
adaptive, all our designed protocols require only small memory to store most
significant aspects of communication history. Since we focus on communica-
tion complexity, we do not count time taken by any internal computation of
a node.

4.1.1 Related Work

Communication in unknown radio networks (fully distributed setting) mod-
elled by the standard graph model has been intensively investigated in the
context of broadcasting and gossiping problem. Apart from these problems,
some attention has been paid to other (closely related) problems like syn-
chronization and wake-up problem.

First distributed algorithms for unknown radio networks were presented
by Diks et al. in [25]. The authors considered a restricted class of net-
works having the nodes situated on a line. Moreover, they assumed that
each node could reach directly all nodes within a certain distance. Note
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that for unknown (ad-hoc) radio networks an initial knowledge of a node
is limited to its own (unique) identifier. Systematic study of deterministic
distributed broadcasting was initiated by Chlebus et al. in [10]. In this
work, a standard collision-free broadcasting algorithm called Round-Robin
was presented. It works in stages. In the i-th round of a stage, the node
with the identifier ¢ that is already informed, i.e., it received the source
message, transmits the source message. Obviously, all nodes of the net-
work become informed after ecc(s) stages. Hence, it completes broadcasting
in O(n - ecc(s)) rounds for an arbitrary radio network. If no parameters
of the radio network are known in advance, one can modify Round-Robin
to O(n?)-round broadcasting algorithm using a doubling technique. The
authors constructed better algorithm completing the broadcasting task in
O(n'/) rounds, which is based on the notion k-selective families. In [55], De
Marco and Pelc presented O(n®?-log® n)-round broadcasting algorithm. The
upper bound was improved to the broadcasting time O(n-log®n) rounds due
to Chrobak et al. in [15]. Kowalski and Pelc brought a further improvement
in work [47]. They constructed an algorithm completing the broadcasting
task in O(n-logn -log D) rounds. Czumaj and Rytter [22] improved this re-
sult and showed an algorithm that accomplish the broadcasting task in time
O(n-log® D) rounds. Very recently, De Marco in [54] proposed an algorithm
completing the broadcasting in O(n-logn-loglogn) rounds. We should note
that all known O(n - log®n) algorithms are non-constructive. They utilize
combinatorial structures (a kind of selective families) with certain desired
properties. Existence of these structures is shown using a probabilistic ar-
gument, however, no efficient (polynomial-time) constructions are known.
Therefore, it is assumed that such a structure is a part of the implicit knowl-
edge of a node (it does not depend on the topology of radio network and it
is the same in each node). The best known constructive algorithm (utilizing
polynomially constructible combinatorial structures) was presented by Indyk
[42]. It realizes the broadcasting task in O(n'*°M)) rounds.

Several lower bounds were proved in the literature. In [10], Chlebus et
al. showed Q(D -logn)-round lower bound. This bound was improved to the
currently best lower bound Q(n-log D) rounds due to Clementi et al. in [19].

In the case when underlying reachability graph is symmetric, i.e., ra-
dio networks is modelled by a undirected graph, more efficient broadcasting
algorithm were constructed. If spontaneous transmissions are allowed (the
network is globally synchronous and a node can transmit before being in-
formed), Chlebus et al. [10] developed an algorithm which broadcasts a
source message in O(n) rounds. On the other hand, if spontaneous trans-
mission are not allowed, Bruschi and Del Pinto |7| proved Q(D -logn)-round
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lower bound. In [46], Kowalski and Pelc gave Q(n - 982 7)-round lower

log (n/D
bound for symmetric radio networks and designed O(n -?é)g/n)—round broad-
casting algorithm.

Broadcasting was studied by Chlebus et al. [10] also in the model of
radio networks that assumes availability of collision detection mechanism,
i.e., the network nodes can distinguish between the interference noise and
the background noise. Clearly, all previously mentioned upper bounds remain
valid in this setting. Again allowing spontaneous transmissions, the authors
proposed algorithms which complete the acknowledged radio broadcasting
task in O(n-ecc(s)) rounds for strongly connected radio networks and in O(n)
rounds for symmetric radio networks. In the case when a source message can
be encoded by a binary sequence with length |M|, they showed algorithm
that completes radio broadcasting in O(ecc(s) - |[M|) rounds. Okuwa et al.
[59] provided an improvement based on pipelining technique that results in
O(ecc(s) + |M|)-round acknowledged broadcasting algorithm for symmetric
radio networks.

Considering random radio networks, Elsisser and Gasieniec [28] devel-
oped a distributed algorithm completing the broadcasting task in O(Inn)
rounds with probability 1 — o(1/n)

The gossiping problem was mostly studied in the context of ad-hoc ra-
dio networks under the assumption that initial knowledge of a node is lim-
ited only to its own identifier. Gossiping can be completed by the standard
collision-free communication procedure Round-Robin (already mentioned as
a broadcasting procedure). It runs in stages. In i-th round of a stage the
node with the identifier ¢ transmits its whole knowledge. It easy to see that
the gossiping task is completed after at most D stages, i.e., Round-Robin
is a deterministic O(n - D)-round gossiping algorithm. In the case when
the parameter D is unknown in advance, we obtain O(n?)-round gossiping
algorithm.

In |[15], Chrobak et al. proposed a method to construct a gossiping algo-
rithm from a broadcasting algorithm. Let B(n) be the time complexity of
an oblivious broadcasting algorithm. Their method constructs a gossiping
algorithm that completes the task in O(y/B(n) - n - logn) rounds. Utiliz-
ing the broadcasting algorithm which was proposed in the same paper and
whose time complexity is O(n - logZn) rounds, i.e., B(n) = O(n - log*n),
one can obtain an algorithm accomplishing the gossiping task in O(n%/?
log?n) rounds. This algorithm was the first deterministic gossiping algo-
rithm with sub-quadratic time complexity. For appropriate (small) values of
D or A, Clementi et al. [20] showed a faster gossiping algorithm working
in O(D - A% -1og®n) rounds. Similarly, Gasieniec and Lingas [34] presented
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algorithms completing the gossiping task in O(v/D - n -log®n) and O(D -
A3/ .10g® n) rounds respectively. It should be noted, that O(n*/? - log®n)-
and O(v/D -n-log® n)-round gossiping algorithms require identifiers of nodes
to be linear in n. Therefore, Gasieniec et al. [35] focused on gossiping
in radio networks with polynomially large identifiers. The authors proposed
O(n®/?-1og® n)-round deterministic gossiping algorithm in directed radio net-
works and O(n*/? - log® n)-round deterministic gossiping algorithm for undi-
rected radio networks. These results were improved due to Gasieniec et al.
in [38|, where an algorithm completing the gossiping task in O(n*/? - log" n)
rounds was constructed, even in the case when identifiers are polynomial in
n.

In all previous algorithms a node transmits its whole knowledge. Under
assumption of bounded size messages, the gossiping problem was studied by
Christersson et al. in [14]. They showed that 1-gossiping (i.e., gossiping
with unit messages) can be in symmetric radio networks completed deter-
ministically in time O(n*? - log®n) rounds. Furthermore, they proposed
a randomized protocol for 1-gossiping in symmetric ad-hoc radio networks
whose time complexity is O(n - log® n) rounds.

Chlebus et al. [12| studied average time complexity of the gossiping prob-
lem. Under the assumption of combined messages, they developed a gossiping
protocol with average time O(n/logn) rounds and showed its optimality. For
1-gossiping, an algorithm having the optimal average running time O(n-logn)
rounds was developed.

4.2 Communication in Anonymous Radio Net-
works with Collision Detection

In this section, we deal with communication in radio networks with collision
detection capability. In such a network, each node operating as a receiver
can recognize 3 types of activity in its neighborhood:

e none of its neighbors transmits (the \-signal is received),

e exactly one of its neighbors transmits (the p-signal is received and the
transmitted message is successfully decoded), and

e two or more its neighbors transmit (the u-signal is received and no
message is decoded).

Our primary focus is on design of a communication protocol for computing
the maximal value among the values associated to network nodes. In this

88



setting, we have given a distinguished node called the initiator (we shall
denote it by s throughout this chapter) and we assume that each node of
the network possesses a positive integer value. In some round, the initiator
starts the algorithm that computes the maximum. The remaining nodes do
not know this starting round.

Our problem is motivated by the following real-world situation: Consider
a multihop radio network with a distinguished central node. Every node is
able to perform a measurement of a physical quantity. Sometimes, in order
to perform a specific operation, the central node must find out the maxi-
mal (or minimal) value in the network. One can collect all values into the
central node (e.g., by performing a gossiping algorithm), but up to now no
efficient suitable algorithm is known. We provide an algorithm that works
in pipelined manner and, due to appropriate arrangement of transmissions,
reduces the time necessary for completing the task. As a by-product of our
main objective, we construct algorithms for computing some parameters of
an underlying reachability graph. Namely, we present algorithms for com-
putation of initiator’s eccentricity and for computation of nodes’ distances
from the initiator.

Designed algorithms show another aspect of collision detection capabil-
ity - how to encode information into collisions. Thanks to this encoding,
algorithms presented in this section work even in anonymous radio networks
consisting of nodes without initial knowledge. I.e., network nodes have no
information about the network topology, the number of network nodes, and
even the nodes do not have identifiers. In contrast, deterministic broad-
casting cannot be realized in anonymous radio networks without collision
detection capability [61].

Finally, note that similar problem of finding the maximum among real
values associated to nodes of a multiple access broadcast network was studied
by Martel in [56]. Randomized algorithm designed in that paper was used for
solving the selection problem. The problem of finding the maximum among
integer values associated to nodes of a radio network was treated by Chrobak
et al. in [15], too.

We start this section with pipelined version of the algorithm ENCODED-
BROADCAST called RBEM and presented by Okuwa et al. in [59]. We use
this algorithm as important sub-routine. Moreover, it shows basic ideas how
to combine pipelining and encoding information into collisions. We continue
with two algorithms which focus on computation of some properties of an
underlying reachability graph. First of them computes eccentricity of the
initiator. Second of them computes a distance of each node to the initiator
in a distributed manner. After these two algorithms are executed in the
network, all nodes have sufficient knowledge to run algorithm that computes
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maximum among values stored in network nodes.

4.2.1 Broadcasting

Okuwa et al. in [59] presented the pipelined version of an algorithm called
ENCODED-BROADCAST and originated in [10]. Their algorithm is called
RBEM. Similarly as other broadcasting algorithms, it adopts the idea of
layer-by-layer information dissemination approach. All nodes of a reachabil-
ity graph G can be partitioned into layers according to their distances from
the source (initiator) s. Hence, we define the sets

Li={veV(G):d(s,v)=1}, i=0,1,..., ecc(s).

Let v be a neighbor of w such that v € L;;; and w € L; for some i. We
say that v is a (41)-neighbor of w and w is a (—1)-neighbor of v. Algorithm
RBEM does not broadcast the source message as one unit, but as a sequence
of bits. Basic idea of the algorithm RBEM is to encode the source message
into u- and A-signals using transmissions of contact messages. The contact
message is a message that can be distinguished from all other messages trans-
mitted during work of algorithm.

Theorem 4.2.1 ([59]). The algorithm RBEM broadcasts a source message
M with binary length |M| in O(ecc(s) + |M|)-rounds, where ecc(s) is the
eccentricity of the source s.

Proof. Let M be a source message and (mq,ms, ..., m,) be a sequence of bits
forming the message M (r = |M]). Initially, the message M is transformed
into a sequence of bits M’ = (1,1,0,my,0,ms,...,0,m,, 1,1) with the length
44 2-r. Observe that the sequence M’ can be easily transformed back to
the original message M. Moreover, encoding of M’ allows properly recognize
borders (beginning and end) of the sequence.

Now, we describe rules of the broadcasting protocol. A node v starts its
activity in the first round in which it receives the p-signal, i.e., at least one
of its neighbors transmits. The node v sets its round counter RC'(v) to 0,
i.e., the subsequent round has the local round number 1. The round counter
is incremented in each round. In all subsequent rounds, the node v behaves
according to the following set of rules:

e RC(v) mod 3 = 1 (transmission round): If the p-signal was received
in the previous round, the node transmits the contact message. Oth-
erwise, it works as a receiver (no message is transmitted).

e RC(v) mod 3 = 2 (sleep round): The node works as a receiver. Any
signal received in this round is ignored.
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e RC(v) mod 3 =0 (receive round): The node works as a receiver.

The transmission schedule for the source s is different. The source node
s transmits the contact message in the round 1 4 3 - (j — 1) if and only if
j-th bit of the sequence M’ is equal to 1. Since the first bit of M’ is 1, the
source transmits the contact message in the round 1. Note that we count
round numbers from 1.

At first, we show by induction on the layer number that for any v € L;
it holds RC'(v) = RC(s) —i. For all nodes in L; the claim follows. Let us
assume that the induction hypothesis holds for all nodes in the layer L;_;.
Let w € L;_; be an arbitrary (-1)-neighbor of the node v. Due to induction
hypothesis, RC'(w) = R(s)— (i —1). It implies that the node w received the
p-signal in the round i — 1. According to the first rule of the algorithm, the
node w transmits the contact message in the i-th round. Therefore, the node
v receives the p-signal in this round. Moreover, no node in [; | transmits
before the round ¢ — 1. It follows that the p-signal received in the round i is
the first u-signal received by the node v. Hence, RC(v) = RC(s) — i.

According to rules of the algorithm, a node v € L, transmits contact
messages only in rounds when RC(v) mod 3 = 1. Since RC(v) = RC(s) —
i, simultaneously transmitting nodes in different layers are in layers with
distance at least 3. It follows that a node v can receive the p-signal in a
receive round (RC'(v) mod 3 = 0) only in the case when at least one of
its (—1)-neighbors transmits the contact message. Similarly, the contact
message (the p-signal) transmitted by a node v in a transmission round
(RC'(v) mod 3 = 1) is received and taken into consideration only by its
(+1)-neighbors.

To formally prove that the algorithm completes the broadcasting task,
we have to show that a node v € [; receives the pu-signal in the round
i+3-(j—1) if and only if the j-th bit of the sequence M’ is equal to 1. For all
nodes in Ly, the claim immediately follows from the rules of the broadcasting
algorithm. Let us fix j and consider a node v € L;. Assume that inductive
hypothesis holds for all nodes in L; ;. Let w € L;_; be a (—1)-neighbor of
the node v. The induction hypothesis implies that the node w receives the
p-signal in the round (i — 1) + 3 - (j — 1) if and only if the j-th bit of M’ is
equal to 1. Note that in the round RC(s) = (i — 1) +3-(j — 1), we have
RC(w) = R(s)—(i—1)=3-(j—1) and RC(v) =3-(j —1)—1. Le., in this
round RC(w) mod 3 = 0 and RC(v) mod 3 = 2. In the subsequent round
RC(s) =i+3-(j — 1), we have RC(w) mod 3 =1 and RC(v) mod 3 = 0.
Due to rules of the algorithm, the node w transmits the u-signal in this round
if and only if the j-th bit of M’ is 1. Since only the nodes in L;_; satisfy the
condition which allows them to transmit, the claim is proved.
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Notice that a sequence of signals received in rounds RC'(v) mod 3 = 0 can
be transformed into bits of the sequence M’. Since borders of the sequence M’
are easily recognizable, a node can stop its participation in the algorithm after
the last bit of the sequence M’ is forwarded. Finally, observe that all network
nodes receive all bits of the sequence M’ in the round ecc(s)+3- (|M'|—1) =
O(ecc(s) + |M]) at the latest. O

In the following algorithms, we shall apply the algorithm RBEM to broad-
cast parameters (integer values) computed in the initiator to all network
nodes.

4.2.2 Computation of Eccentricity

In this section, we propose an algorithm called FFC - FEccentricity Fast
Counting. This algorithm computes the eccentricity of the initiator s. How-
ever, only the initiator s knows the value of the eccentricity after accomplish-
ing the algorithm. Let us start with a rough description of the algorithm.

We remind that communication in the network is arranged into synchro-
nized rounds. According to our algorithm, each node can be either active
or inactive in one round of the algorithm. Initially all nodes, except the
initiator, are inactive. During the work of the algorithm, every active node
knows its distance from the initiator modulo 3. The work of the algorithm is
split into phases. Only the initiator is informed about the number of current
phase. But every active node has information about the number of current
round within the actual phase (it has its own counter of rounds that is initi-
ated in an appropriate moment). Each phase consists of two parts. First part
has 4 rounds and the second one takes 6 rounds. In the first part, the active
nodes that have been activated in the previous phase attempt to activate
their (+1)-neighbors. An inactive node becomes active whenever it receives
the p-signal in two consecutive rounds. In the second part, active nodes de-
tect whether they have some active (+1)-neighbor. If an active node does not
detect any active (+1)-neighbor, it changes its state and becomes inactive.
In order to avoid simultaneous transmissions in the consecutive layers, the
transmissions in the second part are scheduled in a such a way that only the
nodes in layers with mutual distance 3 transmit simultaneously.

Now, we are going to describe the phases of the algorithm EFC more
precisely. The algorithm is initiated by the initiator s. At that moment
only the initiator is active and we consider it to be a node activated in the
previous phase. The initiator starts with the tasks prescribed for the first
round of first phase of EFC.
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Part 1 (4 rounds). In this part, only the active nodes which were activated
in the previous phase transmit. In the first two rounds they transmit contact
messages. If an inactive node receives the p-signal in two consecutive rounds,
it becomes active and sets its counter of the current round within the phase
to 2. As it is shown below, an inactive node can become active if and only if
it has an active (-1)-neighbor which transmits the contact messages during
the first two rounds of a phase. Let 0 < i < ecc(s) and v € L; be an active
node transmitting in this part of current phase. Since v is active, it knows its
distance d = ¢ mod 3 from the initiator. If d = 2 then the node v transmits
the contact message in the round 3 of actual phase. If d = 1 then v transmits
the contact message in the round 4. During the rounds 3 and 4, a node that
has been activated in the current phase acts as receiver in order to learn
its distance from the initiator. If the p-signal is received in the round 3 or
4, then it knows that its distance from the initiator is 0 or 2 respectively.
Otherwise, it knows that its distance is 1. (The values are considered with
respect to modulo 3.)

Part 2 (6 rounds). The second part of the phase is divided into 3 couples
of rounds. Since Part 1 consists of 4 rounds we number the round of this
part by 5,6,...,10.

If an active node v belongs to a layer L; for some i, it transmits the
contact message in the round with number 5 + (¢ mod 3) - 2. It means that
within Part 2 transmissions occur only in rounds with numbers 5,7 and 9 of
current phase. If an active node v belonging to L; receives the p-signal in
the round 5+ ((¢ + 1) mod 3) - 2 then it remains active in the next phase. If
a node was activated during Part 1 of current phase then it will be active at
the beginning of the next phase too. All the others nodes will be inactivated.

Now we are going to show that if C' stands for the number of the first
phase in which the initiator is inactive then C' = 2 - ecc(s) + 2 (the first
phase of the work of the algorithm is numbered as 1 and we recall that the
initiator knows the numbers of phases). In order to simplify the forthcoming
consideration, we introduce two new concepts.

Definition 4.2.2. A path (v, v1,...,vx) is called an active path whenever
vy 18 the initiator, v; € L; and v; is active for all j, 0 < j < k.

Definition 4.2.3. An active path (vg,v1,...,vx) is called an active path in
the phase i whenever it is active in the beginning of the first round of phase 1.

The following lemma provides an information about the structure of ac-
tive paths in a network during the work of K FC.
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Lemma 4.2.4 ([B]). Let d be a length of a longest active path in the phase
i. Then for every positive integer i, 1 < i < ecc(s) + 1, and for every node
v € L;_q there is an active path in phase i of the length d ending in the node
v. Moreover, in the first round of phase i, each active node belongs to an
active path.

Proof. We shall proceed by induction with respect to the number of phase
i. For i = 1 the claim is true, because in the first round of phase 1 only
the initiator is active. For ¢ = 2 the claim follows immediately from the
description of the algorithm. Suppose now, that the assertion is valid for all
positive integers less than a fixed number j > 1. We are going to prove that
it is valid also for the phase j. According to the induction hypothesis, for
i =7 —1every v € L 5 is the end of a longest active path in phase j — 1.
It implies that all nodes from L; 5 are active and all nodes from L;_; are
inactive in beginning of the phase j — 1. Further, for i = 7 — 2 we know that
all nodes in L;_s became active in the Part 1 of the phase j — 2, i.e., they
transmitted in the Part 1 of phase j — 1. Therefore all nodes in L;_; are
active in the first round of phase j. The rules defined for Part 2 of the phase
j — 1 ensure that if there is an active path in the phase 7 — 1 ending in node
v; € Lj_5 and v; has at least one (+1)-neighbor, then all the nodes of this
path remain active in the first round of the phase j. By the combination of
these two facts we immediately have that the assertion of lemma, is true for
i = 7 too and the proof is complete. O

It is not very difficult to see that in the Part 1 of phase i, 1 < i <
ecc(s), there are activated exactly the nodes of layer L;. The following lemma
describes the active paths for phases with number at least ecc(s) + 1.

Lemma 4.2.5 (|B]). Every longest active path in the phase ecc(s)+ i, where
1 <i<ece(s)+1, has the length ecc(s) —i+ 1. Moreover, no node from the
layer L;, j > ecc(s)—i+1, is active in the first round of the phase ecc(s)+i.

Proof. We proceed by induction on the number ¢ that is related to the num-
ber of considered phase of the algorithm. For ¢ = 1 the assertion follows from
the previous lemma applied for the phase ecc(s)+ 1. Moreover, Lemma 4.2.4
implies that for every node v there is a phase k, k < ecc(s) + 1, such that v
is active in the phase k. From the construction of the algorithm it is easy to
see that a node transmits in the Part 1 of some phase only once. Further, if
an active node has became inactive, then it remains inactive for the rest of
the work of EF'C'. Suppose now, that the assertion of lemma is true for some
positive integer ¢ and consider 7 = ¢ + 1. From the induction hypothesis it
follows that in the first round of the phase ecc(s)+ (j — 1), there is an active
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path ending in a node of the layer Lec.s)—j+2 and no node is active in the
upper (more remote from the initiator) layers Ly for k > ecc(s) —j+2. Con-
sider an arbitrary longest active path P = (vg, v1, ..., Vece(s)—j+1, Vece(s)—j+2)
in the phase ecc(s) + (7 — 1). Since there is no active (+1)-neighbor of the
n0de Veee(s)—jt2, the node veee(s)—j12 becomes inactive in the next phase of the
algorithm (see the description of the rules for Part 2 of FF('). All the other
nodes of the path P receives the u-signal. Therefore, they remain active and
P — Vece(s)—j+2 s an active path in the phase ecc(s) +j. Note that this active
path is simultaneously a longest active path in the phase ecc(s) + j. This
completes the proof. O

An application of Lemma 4.2.5 for i = ecc(s) + 1 yields that the initiator
has no active (+1)-neighbor in the phase 2 - ecc(s) + 1. Since the initiator
is active also in all the previous phases, the initiator is inactive for the first
time at the beginning of the phase 2 - ecc(s) + 2. Using these facts we can
formulate the following result.

Theorem 4.2.6 (|B|). The algorithm EFC computes eccentricity ecc(s) of
the initiator in O(ecc(s)) rounds.

We remind that after finishing the algorithm FF'C' only the initiator
knows its eccentricity. Now we need to distribute this information to the
remaining nodes. In order to broadcast the computed eccentricity of the ini-
tiator, we use the algorithm RBEM (Theorem 4.2.1). This algorithm broad-
casts a message of binary length r in O(r 4 ecc(s)) rounds. In our case, the
computed eccentricity of the initiator can be binary encoded to a message
with length log ecc(s). The algorithm RBEM completes broadcasting of this
message in O(ecc(s)) rounds. In general, the algorithm RBEM is not ac-
knowledged, but the initiator knows the value of the parameter ecc(s), and
therefore it has an implicit information when this task is completed. The
algorithm FF'C' equipped with the previously described broadcasting ability
we shall refer as Ex EFFC - extended FI'C'.

4.2.3 Computation of Distance from the Initiator

The main objective of algorithm presented in this section is to compute dis-
tance from the initiator for each network node. We assume that all network
nodes know eccentricity of the initiator s (it can be computed by the pre-
viously proposed algorithm). After the completion of this algorithm, every
node v knows its exact distance from the initiator that uniquely determines
the layer L; containing v. The basic idea of the suggested algorithm is that
the nodes belonging to L; transmit concurrently binary encoded number i+ 1
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(using p and A-signals) to their (+41)-neighbors, i.e., to nodes belonging to
Lii1. In order to decrease the time complexity of this task, we realize it in
the pipelined fashion. We use the fact that knowing k& lowest bits of a num-
ber i (i.e., the suffix of the binary code of 7), we also know the k lowest bits
of the number 7 + 1. In order to realize the goal, we modify the algorithm
RBEM. Particularly, we shall dynamically change the broadcasted message.
In the following, we refer this modified algorithm as D DC-Distributed Dis-
tance Counting. Moreover D DC' has one useful property. If the eccentricity
ecc(s) of the initiator is known for all nodes of the network, it allows us
to use this algorithm for a “synchronization of the nodes”. It means that
the nodes can make an agreement about the round when they would start
simultaneously some other task.

Theorem 4.2.7 (|B|). The algorithm DDC computes the distance from the
initiator to each node of the network in O(ecc(s)) rounds. Moreover, by
an application of the algorithms ExEFC and DDC we can “synchronize” the
network in O(ecc(s)) rounds.

Proof. We show how to modify the algorithm RBEM. Let M! be a binary
sequence transmitted by nodes of ;1 to their (+1)-neighbors and received
by nodes in L;. Initially, M] = (1,1,0,1,1,1). This sequence informs nodes
in L that their distance to the initiator is 1. Let us denote j-th bit (element)
of a sequence M/ as M][j]. A sequence M;,, transmitted by a node v € L; is
computed as follows. Assume that first £ bits of M/ are already received by
the node v. The k-th bit of M, is computed according to first received k
bits of M/. In particular, M/, ,[1] = M/,,[2] = 1. When the node v receives
the third bit of M/, it initializes a carry bit « to 0. Further, unless the node
recognizes that M/[k] = 1 for an odd k& > 3, M/, [k] is computed by this
rule:

o for odd k, M!,,[k] = M[k] =0, and

o for even k, M/ k] = (M][k] + a) (mod 2) and the carry bit « is set
to 1 if M![k] + a = 2, and to 0 otherwise.

Finally, the last bits of M/, , are determined by the current value of the
carry bit . If @ = 0, we finish the sequence M/, with (1,1). Otherwise,
the sequence M/, is finished with the sequence (0,1, 1, 1). In the latter case,
the forwarded message is extended, and particularly |M/ | = |M]| + 2.

Notice that the sequence M uniquely encodes the number ¢. Indeed, the
bits M[[|M]| — 2], M![|M]| — 4] ..., M/[4] correspond to the number i in the
binary notation. Therefore, each node in L; knows after receiving M/ its
distance from the initiator. In the algorithm RBEM, it holds for the local
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round-counter RC(v) of a node v € L; that RC(v) = RC(s) —i. Since we do
not modify first three bits of forwarded sequences and local round-counters
are initialized in the first round when the p-signal is received, this property
remains valid in DDC as well. Utilizing this property, each node can easily
compute the number of rounds from the beginning of the work of algorithm
after determining the value i, i.e., to compute actual value of RC(s).

After application of the algorithm FxEFC (as a preprocessing algorithm)
the nodes know the eccentricity ecc(s) of the initiator. Using this knowledge
and actual value of RC(s), the nodes can compute the last round of DDC. It
allows us to use this algorithm for mentioned “synchronization of the nodes”,
i.e., the nodes can make an agreement about the round when they would start
simultaneously some task. Similarly, as in case of the algorithm RBEM, one
can show that the algorithm DDC is accomplished in the round ecc(s) + 3 -
([log ece(s)] — 1). This value evidently determines also the time complexity
of the algorithm DDC.

Note that we can use even unary encoding of layer numbers in transmit-
ted sequences without affecting total asymptotical time complexity of the
algorithm. O

4.2.4 Computation of Maximal Value

Now, we design an algorithm CMYV that computes the maximum of the con-
sidered values among all nodes in the network. The algorithm consists of
three logical parts. In the first step, the initiator estimates the maximal
value by determining the minimum number of bits necessary for its binary
encoding. In the second step, the initiator broadcasts the estimation to all
other network nodes and initiates the computation of the exact value, which
forms the third logical part of the algorithm. At the end of the computation,
the initiator knows the desired value.

Estimating the maximal value

As we have already mentioned, we suppose that every node of the network
possesses a positive integer value. In what follows, we show how to compute
the estimation of the maximal value among them. More precisely, for the
unknown value Mazx, the searched maximum, we want to compute the value
Binaw such that 2Bmaz=1 < Mgz < 2Bmaz - Obviously, the value B,,q, specifies
how many bits we need to store an arbitrary value associated to a node of the
network. We assume that algorithms FzFEFC and DDC have been already
performed and every node knows the eccentricity ecc(s) of the initiator, it
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knows its distance from the initiator and the nodes are synchronized (they
know the starting round of the algorithm computing the estimation).

Our algorithm, called EMV, works as follows. Every node performs in
the loop 3 segments: receive, transmission and sleep. Every segment consists
of only one round. (We use concept of segments only in order to use uniform
terminology in description of algorithms.) For any node v, belonging to the
layer L;, 0 < i < ecc(s), let us denote by V, the value associated to v and let
B, be the positive integer satisfying 25~! <V, < 2B,

In the first round of the algorithm, the nodes perform an activity that
depends on their layer. The nodes belonging to the layers L;, where ¢ =
ecc(s) — 3k for some integer k > 0, realize transmission segment. The nodes
from the layers L; for i = ecc(s) —3-k—1, k > 0, realize activities prescribed
for receive segment and the remaining nodes realize sleep segment.

A node v € L; transmits the contact messages according to two rules:

(1) The contact message is transmitted in all rounds r, where r = ecc(s) —
i+1,ecc(s)—i+4,...,ecc(s) —i+3- (B, —1)+ 1. (Note that these
rounds are the rounds of the transmission segment.)

(2) The contact message is transmitted in every transmission segment fol-
lowing the receive segment during which the node v received u-signal.

Let R be the round of the first receive segment with number at least ecc(s)
in which the p-signal is not received by the initiator. It is possible to prove
that R is well defined and moreover (R — ecc(s))/3 is the maximum among
all values B, with exemption of the value B,. It results in the following
theorem.

Theorem 4.2.8 (|B|). Let Max be the mazimal value among the positive
values associated to the nodes. The algorithm EMYV computes the value B,y
such that 2Bma==1 < Max < 2Bmes ijn O(ecc(s) + log Max) rounds.

Proof. Consider an arbitrary node v # s of the network. Let ¢ be positive
integer such that v € L;. Firstly, note that v transmits the contact message
in at least one round (transmission segment), because B, > 1 and, according
to the first rule, v transmits in the round ecc(s) — i+ 1. Secondly, it follows
from the second rule of the algorithm that if v transmits the contact message
in the transmission segment in a round 7, r > ecc(s) —i+ 1, then the p-signal
is received by the initiator s in the round r 4+ ¢ — 1. This is not difficult to
verify (by induction on the distance from s or the layer number), because the
nodes lying on a shortest path from v to s sequentially transmit the received
u-signal toward s.
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Let 1 < j < ecc(s) and w € L; be a node such that B, = max{B,|v €
V,v # s}. From the first rule we have that the node w transmits the contact
message in the round ecc(s) — j 4+ 3 - (B — 1) + 1. Therefore, the initiator
receives the p-signal in the round ecc(s) +3 - (B, — 1).

Suppose now that the initiator receives the u-signal in the round ecc(s) 4+
3+ (By — 1)+ 3. It could happen only if there is a (+1)-neighbor v; € L; of
the initiator transmitting the contact message in this round. Since B,, < B,
this transmission can be realized only according to the second rule. Further,
vy could receive p-signal in the round ece(s)+3- (B, —1)+2 only in the case
if there is a (+1)-neighbor vy € Lo of the node v; transmitting the contact
message in this round. This transmission can be again done only due to the
second rule. By a repeated application of such arguments we can show, that
there is a node vece(s) € Lece(s) transmitting the contact message in the round
ecc(s)+3-(By—1)+4—ecc(s) = 3- (B, —1)+4. Again, since B,__, < By,
this transmission can be approved only by the second rule. But this is not
possible, because veee(s) € Lece(s) has no (+1)-neighbors.

It implies that B, = (R — ecc(s))/3, where R is the round of the first
receive segment after the round ecc(s), in which the u-signal is not received
by the initiator. After computing B,, the initiator puts By, = max{Bs, B,}
and the proof is complete. O

Computing the maximal value

After finishing EMV, the value By, is known only for the initiator s. Before
performing the computation of Max, we have to distribute its estimation
Binaz to the remaining nodes of the network. We can again utilize the al-
gorithm RBEM which takes O(ecc(s) + log Mazx) rounds. After finishing
RBEM, all nodes of the network are informed how many bits are needed to
store Maz. Therefore, the nodes can unify the representation of their values
as binary sequences of the length |log Max| + 1 = Bpa. In CMV each
node v computes the value F, which is its estimation of Max. According
to CMV, the nodes that recognize that they cannot improve the calculated
value Max eliminate themselves from the process of computation. Similarly
as EMYV, the algorithm CMYV is working in the loop and repeatedly perform
3 segments: receive, transmission, and sleep. The difference is that every
segment consists of two rounds. During work of the algorithm, the nodes can
be in one of two states: active or inactive.

Now we are going to describe CMV in more details. At the beginning,
all nodes are active and the value F, of each node v ¢ Le..(s) is set to 0. We
shall work with binary representation of E, and therefore F, can be viewed
as a finite sequence of fixed length B,,,, consisting of 0’s and 1’s. During the
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work of the algorithm we improve the value of E, by the modification of the
particular bits. It means that initially F, = (0,0,...,0). Moreover, during
initialization phase, if v € Lecc(s) then E, is set to V,,.

In the first round of the algorithm, the nodes perform an activity that
depends on their layer. The nodes belonging to the layers L;, where ¢ =
ecc(s) — 3k for some integer k > 0, realize transmission segment. The nodes
from the layers L; for i = ecc(s) —3-k—1, k > 0, realize activities prescribed
for the receive segment and the remaining nodes realize sleep segment.

The inactive nodes cannot transmit. The transmission of an active node
v € L, 1 <i<eccs),is prescribed by the following rules:

(1) The node v transmits the contact message in all rounds r, where r = 2-
(ecc(s)—i—2+3-j)—1 for some j satisfying j € {1,..., Bz}, Whenever
j-th highest bit of binary encoding F, is 1, i.e., the bit corresponding
to 2Bmaz=J js 1,

(2) If the p-signal is received by the node v in the round r, where r =
2. (ecc(s) —i—2+3-7) for some j, s.t., 7 € {1,..., Bz}, and the
node v has not been transmitted in the round r — 1, then the node v
becomes inactive.

(3) If in the round r, where r = 2+ (ecc(s) —i — 34 3-j) — 1 for some
j satisfying j € {1,..., Biaz}, the node v receives u-signal or the j-th
highest bit of binary encoding of V, is 1 and V,, > FE,,, then the node
sends the contact message in the following round r + 1 and sets the
j-th highest bit of the binary encoded value F, to 1.

Note that the first and the second rule are related to the rounds that
belong to the transmission segment of the node v. The third rule concerns
rounds of the receive segment of the node v.

The rules can be also interpreted as follows. In the first round of the
transmission segment, an active node v transmits according to j-th highest
bit of the value F,, where j is determined by the rules for the given round.
Furthermore, all active nodes belonging to the same layer work with the j-
th highest bit. Simultaneously a (-1)-neighbor receives the p-signal during
the first round of its receive segment if and only if it has at least one active
(+1)-neighbor which has j-th highest bit equal to 1. In the following round
these (-1)-neighbors announce to their (+1)-neighbors how they set their j-th
highest bits. After this round, every node knows whether its activity in the
previous round has influenced some its (-1)-neighbors, i.e., whether its active
(-1)-neighbors set their j-th highest bits according to its j-th highest bit. If a
node detects that no (-1)-neighbor set its F, according to its information, it
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becomes inactive. That is why no value F, that can be potentially computed
by this node cannot be larger than the value which would be computed in
one of its active (-1)-neighbors. The next lemma shows that the computed
value F, matches our expectations.

Lemma 4.2.9 ([B|). After the round r = 2+ (ecc(s) —3+ 3 Bpax), the value
Ly of the initiator s is equal to the mazimal value Max among the values
associated to the nodes.

Proof. Note that we can encode the values of the nodes by binary sequences,
each of them of the same length, because we have already applied the algo-
rithm EMYV that computes the value B,,4,.

The following proposition provides relatively straightforward properties
of binary sequences utilized for encoding integer numbers. It says that by a
comparison of the highest k£ bits of two numbers we can obtain an important
information about the size of these numbers.

Proposition: Let [, A, B be positive integers and A, B have binary rep-
resentations A = (aias...a;)s and B = (biby...by)s respectively. If A < B
then for any k, 1 < k < the following inequality (aias . . . ax)s < (biby ... bg)s
holds.

Using previous proposition one can easily check that the following two
invariants are true during the work of the algorithm C'MV'.

(1) At the end of any round r = 2. (ece(s) —i — 3 + 3 - j), where j,
1 < j < B, for each node v € L; holds the following: FE, > V,
and the highest 7 bits of the binary encoded value F, remain the same
during the rest of the algorithm and they are equal to the highest j
bits of the value F,,, where w is an arbitrary active (+41)-neighbour of
the node v.

(2) If an inactive node v € L; has an active (-1)-neighbor, then there is an
active (-1)-neighbor w € L;_1 of v satistying E,, > F,.

Since the initiator has no (-1)-neighbors, it is active in every round. After
the round r = 2 - (ecc(s) — 3 + 3 - Biaz), any active path consists only of
nodes with estimations of Max equal to F, because from the first invariant
we have that all bits of F, remain unchanged.

Consider now a node w such that V,, = Max. It is easy to see that in
every round, every prefix of the binary encoded value FE,, is equal to the prefix
of the binary encoded value V,,. From the rules of the algorithm it follows,
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that in every round there is an active path ending in the node w. Indeed,
this is true because the prefix of F,, is successively distributed and computed
bit by bit in all nodes belonging to an active path ending in w. Therefore
all nodes belonging to the considered active path remain active in every next
round (there is no greater prefix during the work of the algorithm). Thus,
in the considered round r = 2 - (ecc(s) — 3 + 3 - Bpaz), the value E of the
initiator s is equal to the value F,, = V,, = Max. O

As a consequence of the previous results, we immediately get the following
theorem.

Theorem 4.2.10 (|B|). Algorithm CMV computes the value Max (in the
initiator) in O(ecc(s) + log Max) rounds.

Algorithm CMYV computing the maximal value among values possessed
by the network nodes can be applied to realize other communication tasks.

Computation of the minimal value among values possessed by the network
nodes can be realized in O(ecc(s) + log Max) rounds in the following way:

(1) compute the maximal value applying algorithm CMV in O(ece(s) +
log Maz) rounds and let Max be the computed maximum,

(2) broadcast the value Maz applying algorithm RBEM in O(ecc(s) +
log Maz) rounds, and

(3) considering Max — V, as a value possessed by a node v, where V, is
the original value possessed by the node v, compute the maximal value
applying algorithm CMV in O(ecc(s) 4+ log Max) rounds. If Maz' is
the computed maximum, the minimum value among values possessed
by network nodes is Max — Max'.

Algorithm CMYV can be utilized to compute logical functions A (1 if the
minimum is 1, 0 otherwise) or V (1 if the maximum is 1, 0 otherwise).

4.2.5 Lower Bound for Maximum Finding

In this section we show that the algorithm CMV (Theorem 4.2.10) is asymp-
totically optimal. In particular, we reduce the problem of broadcasting in
symmetric geometric radio networks (shortly GRN) with collision detection
to our problem of maximum finding. Model of GRN differs from our model
of radio networks in two properties: nodes have an additional initial in-
formation about their positions and a reachability graph of a GRN should
satisfy restrictions resulting from geometric locations of nodes. Note that
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broadcasting algorithms for GRN utilize unique identifiers for every node of
the network (the existence of such identifiers follows for example from their
geometric locations).

Theorem 4.2.11 (|B|). For any mazimum finding algorithm with colli-
ston detection there exists a symmetric radio network of diameter 2 and

such an assignment of values associated to nodes that the algorithm requires
Q(log Mazx) rounds.

Proof. Dessmark and Pelc showed in [24]| that for every broadcasting algo-
rithm with collision detection there exists a class of symmetric geometric
radio networks with eccentricity of the source node equal to 2 for which this
algorithm requires Q(logn) rounds, where n is the number of nodes. More
precisely, for a given n, this network has the following form: nodes of the
network are labelled 1,...,n, node 1 is the source and node n is the sink.
The set {2,...,n—1} is partitioned into sets X and Y, where |Y'| = 2. Nodes
1,...,n—1 form a complete graph. Nodes from Y are connected to the sink
n. We shall refer to such a network as a network of class H.

In what follows we show how to utilize a maximum finding algorithm in a
broadcasting algorithm for networks of class H. Now, let A be an algorithm
for the maximum finding in symmetric radio networks with collision detection
and G be a n-node network of the class H. An associated broadcasting
algorithm (to the algorithm A) for the network GG works as follows: In the
first round, the source (node 1) transmits the source message. Nodes in the
distance 1 from the source become informed. Next, we perform algorithms
EzEFC (Section 4.2.2) and DDC (Theorem 4.2.7) with the node 1 as the
initiator. After O(1) rounds, we can distinguish the sink n (a node in the
distance 2 from the initiator 1). In order to distinguish the nodes of the
set Y, the sink n transmits the contact message in the following round. All
nodes, except the nodes of Y, set their values to 1. Two nodes of the set Y
set their associated values to their identifiers. Performing algorithm A for
maximum finding problem, we compute a label of one node from the set Y
in the initiator 1 (a label of the node in Y with larger label). After that
the initiator transmits a message containing the computed label of one node
from Y. In the following round, only the node with this label transmits the
source message and the sink n become informed.

Obviously, the asymptotical time complexity of the associated broad-
casting algorithm is the same as the complexity of algorithm A. Since
Mazx € O(n), the previously mentioned result from [24] implies that time
complexity of A is Q(log Mazx). O

Combining the previous result and the trivial lower bound Q(ecc(s)) we
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obtain that the algorithm CMV is asymptotically optimal in the view of
parameters ecc(s) and Mazx.

4.3 Communication in Grid Radio Networks

In the rest of this chapter, we focus on communication in a radio grid, i.e.,
an underlying reachability graph of the radio network is a grid graph. Our
aim is to model radio communication in a real-world setting when the nodes
(network stations) are spread in a region in a regular way. Namely, we assume
that network nodes are located at all grid points of a square mesh and the
transmission radius of each node is equal to 1.

Definition 4.3.1. For p,q > 1, an undirected graph G, , is called a grid
graph if and only if:

V(Gye) = {(@7)0<i<p0<j<q}
E(Gpq) = {((E9), (5
(' =iNj =i+ D)VE =it1Af =75}

We consider the model of radio networks without collision detection, i.e.,
the nodes cannot distinguish between background and interference noise. It
follows that a receiving node cannot distinguish whether none of its neighbors
or more than one of its neighbors transmit in a given communication round.

In this section, we pay attention to both complexity measures: time and
energy complexity. Unlike previous algorithms focusing on k-shot schedules,
we investigate the total number of transmission in the whole network, i.e.,
the sum of all transmissions realized by individual network nodes. The com-
plexity of an algorithm is upper-bounded by a function of three parameters
of radio network: the number of nodes (denoted as n), an unknown upper
bound of identifiers assigned to the nodes (denoted as N), and the largest
distance from the source s to any other node of the network (denoted as
ecc(s)).

Throughout this section, we focus on the deterministic distributed algo-
rithms in unknown radio networks with the grid topology. Initial knowledge
of a node is limited only to its unique integer identifier (label). The node
is not aware of its position in the grid. Moreover, neither the size of an
underlying reachability graph (the number of nodes) nor an upper bound of
identifiers are known to the nodes. Most of previous works deal with the
assumption that N = O(nP), for a constant p > 0. In this section, we con-
sider that there is no relationship between N (an upper bound of identifiers)
and n (the number of nodes), except trivial N > n. It models the case
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when each network station possesses a unique factory identifier (e.g., MAC
address) from very large set of possible identifiers, but the number of nodes
forming a network is relatively small. Note that the considered setting is
not a typical real-world case, since the network topology is fixed to a spe-
cific graph topology. On the other hand, all considered assumptions reflect
the case immediately after appropriate arrangement of nodes (with only fac-
tory initial knowledge) in an area. In this sense, presented algorithms can
be seen as algorithms computing auxiliary information that serves also for
establishment of a fast communication mechanism.

Radio communication in networks with grid topology was investigated by
Kranakis et al. in [51]. The authors discussed fault tolerant broadcasting in
known topology radio grid networks (each node knows its coordinates and
dimensions of the grid graph). Bermond et al. [4] considered modified model
of communication in know topology radio grid networks that follows from a
problem proposed by France Telecom.

4.3.1 Broadcasting

This section is devoted to the broadcasting task in unknown radio networks
whose underlying reachability graph is a grid graph G/, 4, for p,q > 1. Con-
sidering this setting, we design a deterministic distributed broadcasting al-
gorithm that completes the task asymptotically optimal in O(ecc(s) +1log N)
rounds. The algorithm consists of three parts. The source selects one of
its neighbors during the first part. The goal of the second part is to com-
pute the initialization information, which is later used in the third part of
the broadcasting algorithm. We shall compute the initialization information
only in neighbors of the source and in nodes that have in their neighbor-
hood two neighbors of the source. Finally, the third part of the algorithm
disseminates a source message in the network. Simultaneously, the control
information, similar to the initialization information, is computed for newly
informed nodes.

Definition 4.3.2. A node is referred to as a 2-neighbor of the source if and
only if it is adjacent to two neighbors of the source.
Common subroutines and techniques

In this subsection, we present some supplementary techniques that are ap-
plied in the first and the second part of the broadcasting algorithm.

Definition 4.3.3. Let v be a node with identifier I D(v) > 0 and (aq, ..., ax)s
be a binary representation of the number I D(v). An infinite binary sequence
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Lag, ap—1,...,a2,a1,0,0,... 18 called a transmission sequence corresponding
to the identifier 1D (v).

Example. The transmission sequence corresponding to the identifier 11 =
(1011)5 is 1,1,1,0,1,0,0,0, . . ..

Note that the previous definition implies that transmission sequences cor-
responding to different identifiers differ in at least one position.

Consider the following case. A node u has at least one and at most two
active (participating) neighbors, say v and w, that become informed in some
unknown rounds (possibly different). We have to deliver the information
from one of participating neighbors to the node u as soon as possible. This
task can be easily solved applying previously defined transmission sequences.
Suppose that a participating neighbor becomes informed in the round 0. In
the ¢-th round, it transmits its information if and only if the i-th element of
the transmission sequence corresponding to its identifier is equal to 1. This
subroutine is referred to as TAI (transmission according to identifier). We
show that at most O(log Max(ID(v), I D(w))) rounds are enough to inform
the node u by one of its participating neighbors.

Lemma 4.3.4 (|[C]). The TAI-subroutine completes the prescribed task in at
most O(log Max(ID(v), I D(w))) rounds. The total number of transmissions
is O(log Max(ID(v), I D(w))).

Proof. Suppose that the node v is informed in a round ¢ and the second
participating neighbor w (if exists) is not already informed in this round.
Since the first element of the transmission sequence is always 1, v transmits
in the round i+ 1 due to the TAI-subroutine. The node w does not transmit
in the round i + 1 and thus u becomes informed. Now suppose that v and w
are informed simultaneously in a round i. According to TAI they transmit
in the round 7 + 1, but the interference causes that « is not informed. Since
ID(v) # ID(w), the transmission sequences corresponding to [/ D(v) and
ID(w) are different. Hence, there must be an index j such that j-th elements
of their binary transmission sequences are different. It implies that exactly
one participating neighbor of v transmits in the round corresponding to the
index 7, i.e., in the round i + j. Therefore, the node u is informed in this
round. O

In order to avoid interaction during a simultaneous execution of several
communication tasks, we use the time division multiplexing strategy. Partic-
ularly, the i-th task from the set of k tasks is executed in each round j, s.t.,
j =1 (modk). In our setting, we do not allow spontaneous transmission, i.e.,
a node (except the source or the initiator) cannot transmit before successful
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receiving of a message transmitted by other node. If we include the num-
ber of actual round modulo £ in each transmitted message, newly informed
nodes can synchronize. Thus all nodes participating in the algorithm can
simultaneously execute the same task in a given round.

Selection of a neighbor of the source

Now, we describe an algorithm that selects one of the neighbors of the source.
We shall utilize the TAI-subroutine. If a message which is transmitted in the
TA-subroutine includes the identifier of the sender, successful receiving of
the message implies that the receiver can select one of the senders. TAI-
subroutine works only in the case when there are at most two participating
senders. On the other hand, the source has at most 4 neighbors in the grid
graph. Hence, a direct application of the TAI-subroutine is not possible.
With the assistance of 2-neighbors of the source, we split the selection pro-
cess into several applications of TAI-subroutine, where at most two nodes
participate in process of transmitting information towards a specific node.
In the first round, the source transmits an initialization message. It is
received exactly by all neighbors of the source. Subsequently, we start 4
simultaneous tasks (each of them in a separate time slot modulo 4). In the
first task, each neighbor of the source tries to inform adjacent 2-neighbors
by its identity. Since exactly two neighbors of the source have to transmit
towards a 2-neighbor, we utilize the TAI-subroutine. After at most O(log N)
rounds, at least one 2-neighbor becomes informed. Note that the nodes are
not aware of the fact whether they are 2-neighbors of the source or not. We
solve this problem by a modification of the TAI-subroutine in such a way
that the first transmission of a node contains a special message. If a node
receives this special message, it knows that it is not 2-neighbor. Indeed, all
neighbors of the source transmit the special message in the second round of
the algorithm (the first round of the TAI-subroutine). Due to interference,
this message cannot be received by 2-neighbors. An informed 2-neighbor
starts its activity during the second task and ignores all messages received
in the rounds assigned for the first task. Particularly, it attempts to send a
message that includes the received identifier of one its neighbor. Again, we
utilize the TAI-subroutine. All nodes, except neighbors of the source, ignore
transmitted messages during execution of this task. Further, a neighbor of
the source that receives its identifier in a round of the second task, starts the
execution of the third task and attempts to send its identifier in a message to
the source utilizing the TAI-subroutine. If a neighbor of the source received
identifier of another node, it finishes its participation in all tasks, expect the
fourth task. Moreover, each node that is active in the third task transmits a
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message in all rounds of the first task. Indeed, it blocks receipt of a message
by its adjacent 2-neighbors. The source acknowledges the receipt of an iden-
tifier of one its neighbor by transmission of a message in the round reserved
for the fourth task. This transmission stops execution of the first and the
third task by all neighbors of the source because the selection task is accom-
plished. Besides, the neighbors ignore all received messages transmitted in
rounds of the second task. The goals of tasks can be summarized as follows:

(1) the first task - neighbors of the source are sending their identifiers
towards 2-neighbors

(2) the second task - 2-neighbors of the source are sending the received
identifier (that was received in the execution of the first task) towards
neighbors of the source,

(3) the third task - neighbors of the source that are informed in a round of
the second task, are sending their identifiers towards the source

(4) the fourth task - the source acknowledges selection of a neighbor

Lemma 4.3.5 (|C|). The source selects one of its neighbors in O(log N)
rounds and using total O(log N) transmissions, where N is the unknown
upper bound of identifiers assigned to the nodes of the network.

Proof. Time and energy complexity of this part of the algorithm are obvious.
Correctness of the algorithm can be shown by the case analysis of all possible
states (and future transmissions due to the algorithm) in the round when a
2-neighbor of the source has received a message at the first time. O

Computation of initialization information

During this part, an initialization process is performed. The goal is to mark
neighbors of the source with distinct labels from the set {A, B, C, D} in such
a way that a node marked by A (B) do not have a common neighbor with
the node marked by C' (D, respectively). Furthermore, we require that each
2-neighbor of the source knows the labels of both adjacent neighbors of the
source. Thus these nodes (2-neighbors of the source) can be marked by
distinct labels from the set {AB, BC,C'D, AD}. Desired initial labelling of
the nodes is described on Figure 4.7.

Note that only neighbors and 2-neighbors of the source participate in this
part of the algorithm. All other nodes ignore transmitted messages.

1. The source transmits an initialization message containing the identifier
of a selected neighbor.
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Figure 4.7: The initial marking of nodes

2. Selected neighbor transmits a message and marks itself with label A.

3. 2-neighbors of the source that received the message in the previous
round retransmit the received message. A neighbor of the source that
does not receive a message in this round marks itself with the label C'.

4. Each unmarked neighbor of the source executes the TAI-subroutine. It
transmits messages containing its identifier as an information content
of the node (in the sense of TAI). Execution of the TAIsubroutine
is interleaved with rounds that are reserved for the source. In one of
these rounds, the source informs the nodes participating on TAI that
an unmarked neighbor is selected. This notification is realized by a
transmission of the identifier of a selected (unmarked) neighbor.

5. Selected unmarked neighbor sets its label to B and the unselected
neighbor (if exists) to D.

6. In one of 4 rounds, each neighbor transmits its label in a round that is
designated for its labels.

7. 2-neighbors of the source set the labels according to labels received in
previous rounds.

It is easy to see that the initialization schema works properly even in the
case when the source has less than 4 neighbors. All steps, except step 4,
require constant number of rounds. The step 4 is accomplished in O(log N)
rounds due to lemma 4.3.4. We summarize the time complexity of this part
that computes initialization information in the following lemma.

Lemma 4.3.6 ([C]). The initialization information can be computed in O(log N)
rounds with the energy complezity O(log N) transmissions.
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Figure 4.8: Scheme of the initial marking computation

Dissemination of the source message

This part of broadcasting algorithm works in phases. The goal of each phase
is to disseminate a source message to the nodes that are in neighborhood
of nodes informed during the previous phase. Furthermore, newly informed
nodes compute auxiliary information that is used to arrange their transmis-
sions in the next phase. The auxiliary information has similar structure
as the initialization information. Particularly, the auxiliary information is
a label of a node. Each node can be marked with a label from the set
{A,B,C,D, A", BT C* D" AB, BC,CD,AD}. The source message is dis-
seminated from the source in a wave that has the shape of square. All nodes
located on one side of square have the same label, however, each side is
marked with different label. The corner nodes are marked with a label from
the set {AB, BC,C'D, AD}. Intuitively, a label of a corner node expresses
that the node belongs to two sides (directions of the broadcasting wave). We
mark the nodes adjacent to the corner nodes with a label containing the +
sign.

Initially, we change labels of nodes in the neighborhood of the source in
such a way that the label A is changed to A™, B to BT, C' to C*, and D to
D, This transformation guarantees that the labels of nodes are compatible
with the semantic description of labels stated above. In the first round of
this part, neighbors and 2-neighbors of the source are considered as the nodes
that were informed in the previous phase.

We assume that each transmitted message contains the source message
and the number of actual round of executed phase. Each phase takes 5
communication rounds:

1. A node informed in the previous phase and marked with the label A,
At AB, AD, C, C*, BC, or C'D transmits a message containing its
label.

110



2. A node informed in the previous phase and marked with the label B,
BT, C, or Ct transmits a message containing its label.

3. The nodes that receive a label in the round 1 or 2 of the phase and
are not yet informed set the label to the received label. These nodes
are referred to as newly informed nodes of given phase. Each newly

informed node that received the label AT, BT, C'", or D* in the round
1 or 2 of the given phase transmits its label.

4. Newly informed nodes marked with label AB, AD, BC', or C'D that
received in the previous round the label AT or C'" transmits their labels
(received in round 1 or 2).

5. Newly informed nodes marked with label AB, AD, BC, or C'D that
received in the previous round the label BT or D+ transmits their labels
(received in round 1 or 2).

At the end of the phase, we change labels of some newly informed nodes.
No communication is required in this step. At first, the nodes with label A™,
BT, C*, or Dt change the labels to A, B, C, or D respectively. Next, the
nodes with label AB, AD, BC', or C'D change the label to a label received in
the round 3. Finally, if a node received messages transmitted in the rounds
4 and b, it sets its label to the received value and is considered as a newly
informed node of the given phase. Note that the labels received in the round
4 and in the round 5 are the same.

It is easy to see that the number of phases is limited by the eccentricity
ecc(s) of the source. Each phase takes constant number of round and thus
the third part of algorithm is completed in O(ece(s)) rounds. Each node
transmits constantly many times. It implies that energy complexity of this
part is O(n) transmissions.

Complexity of the broadcasting algorithm

The time and energy complexity of designed broadcasting algorithm is sum-
marized in the following theorem.

Theorem 4.3.7 (|C|). Consider a radio network such that its underlying
reachability graph is a grid graph. There is a distributed deterministic algo-
rithm that completes the broadcasting task in O(ecc(s) +log N) rounds using
total O(n + log N) transmissions, where n is the number of nodes and N is
the unknown upper bound of identifiers in the network. Moreover, designed
algorithm is asymptotically optimal.
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Proof. The first part of algorithm (selection of a neighbor of the source) takes
O(log N) rounds and uses O(log N) transmissions. Time complexity of the
second part (computation of the initial information) is O(log N) rounds. En-
ergy complexity of this part is O(log N) transmissions. Finally, the third part
of algorithm that disseminates the source message, takes O(ecc(s)) rounds
and uses O(n) transmission. Therefore, the time complexity of the broad-
casting algorithm is O(ecc(s) + log N) rounds. Summing total number of
transmissions in each part of algorithm, we obtain that at most O(n+log N)
messages are transmitted by nodes during the execution of the algorithm.
Note that it is usually assumed that N = O(n?), for a constant p > 0. In
grid graphs, it holds that ecc(s) > v/n > logn for sufficiently large n. Hence
O(log N) = O(logn) = O(ecc(s)). In our setting, parameter N cannot be
bounded in this way. Let us fix a deterministic broadcasting algorithm. One
can show that there is such an assignment of identifiers to the nodes of a
grid radio network G35 that the broadcasting task cannot be completed in
less that 2(log V) rounds. The proof could be obtained by adaptation of the
argument that was used in the proof of the €)(n; loen__)_round lower bound

og (n/D)
on broadcasting time in [46]. O

Algorithm for acknowledged broadcasting

Note that the broadcasting algorithm presented in the previous section is
not acknowledged, i.e., the source is not aware of the round when the broad-
casting task is completed. Furthermore, the source is not able to compute
the duration of the algorithm, because parameters of the radio network are
unknown for the nodes. Presented principles of the constructed broadcasting
algorithm allow to modify the algorithm to an algorithm completing the ac-
knowledged broadcasting task. We present modified algorithm only briefly.
The modification is based on the following. First, we add new labels A*,
B*, C*, and D* to the set of labels that is used to mark the nodes. In each
phase, new labels are used to mark one node, called a progress node, in each
direction of the broadcasting wave. In particular, the progress nodes form a
cross with the center in the source. The nodes forming a limb of the cross
are marked with the same label and each limb of a cross is marked with a
different label. We append a new round to each phase of algorithm. In this
round, each active progress node informs its neighboring progress node which
is closer to the source about the fact that the broadcasting task in the given
direction is not yet accomplished. If an active progress node does not receive
a message in this round during an appropriate phase, it becomes inactive.
Since the nodes located on the border of the grid do not inform new nodes, a
progress node on this border does not receive any message in this round. It
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causes a chain of continuous deactivations of progress nodes. Finally, there
must be a phase in which the source is notified (by silent) about completing
broadcasting in the given direction. If the source is informed that dissemina-
tions of the source message are completed in all direction, it knows that all
nodes are informed. In order to avoid interference during the last round, we
have to schedule transmissions in appropriate manner. Let v be a progress
node that has been informed in the i-th phase (the number of the current

phase must be included in each transmitted message). We define a number
P(v) as follows:

e P(v) = (i mod 3) mod 4, if v is marked with A*

(
e P(v) = (i mod 3+ 1) mod 4, if v is marked with B*
o P(v) = (i mod 3+ 2) mod 4, if v is marked with C*
e P(v) = (i mod 3+ 3) mod 4, if v is marked with D*

An active progress node v transmits a message in the last round of the
j-th phase if and only if j = P(v) (mod4).

It is easy to see that asymptotical time and energy complexity are pre-
served by this modification.

4.3.2 Computation of Coordinates

Since we consider radio networks with a regular topology, it can be assumed
that the radio network is static. It means that the topology of the network
remains unchanged for a long time period. This assumption heads towards
the issue of computation of an communication structure for the collision-free
communication. As we show later, the grid coordinates of nodes can serve
as the basic information for a collision-free communication schema. In this
section we present a distributed algorithm which computes grid coordinates
of each node. The algorithm is a modification of the previously presented
broadcasting algorithm. Particularly, it takes advantage of the auxiliary
information computed during the third part of the broadcasting algorithm.
We assume that the task of computation of grid coordinates is initiated by
a distinguished node, called a initiator.

The algorithm consists of 3 parts. First two parts of the algorithm are
identical to first two parts of the broadcasting algorithm. After this two part,
an initialization information is computed. Now, we assign to the source coor-
dinates [0, 0] and to its neighbor marked with A* (BT, C'*, D) coordinates
[0,1] ([-1,0], [0, —1], [1, 0] respectively). It is easy to see that the assignment
of coordinates is correct. Indeed, it follows from the way how the nodes are
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marked with labels during the second part of the algorithm. Similarly, we
assign to a node marked with AB (BC, C'D, and AD) coordinates [—1, 1]
([-1,-1], [1,—1], and [1, 1], respectively). Notice that, in the broadcasting
algorithm, the labels of nodes store the information about direction in which
the source message is disseminated. We shall use the sense of direction in
order to compute grid coordinates of nodes according to information received
from some their neighbors.

We modify content of messages sent in the third part of the broadcast-
ing algorithm in the following way. Each message that is transmitted in
the round 1 or 2 of the phase, contains coordinates of the sender. During
execution of the third part of the algorithm, we preserve the invariant that
each informed node (in sense of broadcasting algorithm) already computed
its grid coordinates. Thus, the nodes transmitting in first two rounds of a
phase have already computed their coordinates. Moreover, we modify mes-
sages sent in the round 4 and 5 of the phase. We attach grid coordinates
received in one of first two rounds of the phase (in fact it happens in ex-
actly one of those rounds) to the transmitted message. Finally, the newly
informed nodes compute their coordinates at the end of the phase. Let [z, ]
be coordinates which were included in a message received in the round 1, 2,
4, or 5 of a phase. We apply the following rules to set the coordinates of a
newly informed node:

e label of node A or A™: [z,y + 1]

label of node B or B*: [z — 1,y]

label of node C' or C*: [x,y — 1]

label of node D or D*: [z + 1, ]

label of node AB: [z — 1,y + 1]

label of node BC: [z — 1,y + 1]

label of node C'D: [z + 1,y — 1]
e label of node AD: [z + 1,y + 1].

Theorem 4.3.8 (|C|). Consider an unknown radio network such that its un-
derlying reachability graph is a grid graph. There is a distributed determinis-
tic algorithm that computes grid coordinates of each node in O(ecc(s)+log N)
rounds with total O(n+log N) transmissions, where n is the number of nodes
and N is an unknown upper bound of identifiers in the network. Designed
algorithm is asymptotically optimal.
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Proof. Correctness of the algorithm follows from the properties of the broad-
casting algorithm and the rules for computation of coordinates of newly
informed nodes. Since we do not allow spontaneous transmission, i.e., to
participate in algorithm before receiving a message from another node, the
task cannot be accomplished in better time (and energy complexity) than
the broadcasting task. It implies asymptotical optimality of designed algo-
rithm. O

Note that we can design an algorithm in which the initiator of the compu-
tation is notified that the task is completed. It could be achieved by a similar
modification of acknowledged broadcasting algorithm for radio networks with
grid topology that is presented in Section 4.3.1.

Finally, note that the this algorithm for computation of grid coordinates
of nodes can be adapted to compute dimensions of the underlying grid graph.
Another adaptation could be an algorithm that solves the task of assignment
of compact identifiers to the nodes (i.e., the nodes have to be labelled by
unique numbers from the set 1,...,n).

4.3.3 Collision-free Communication Mechanism

In this section, we discuss a collision-free communication mechanism for radio
networks with grid topology. It is based on results concerning 2-distance
coloring of grids that have been proposed by Fertin et al. in [30]. A 2-
distance coloring of a graph is a proper coloring of vertices satisfying that
no vertices in distance at most 2 have assigned the same color. Hence no
vertex has in its neighborhood two vertices with the same color. Applying
algorithm for computing grid coordinates, we may assume that each node is
aware of its grid coordinates.

Definition 4.3.9. Let [z,y] be the coordinates of a node v. The number
TR(v) = (2z +y) modb is called a collision free number of the node v.

Collision free mechanism is defined as follows. A node v is allowed to
transmit a message in the i-th round if and only if i = TR(v) (mod5). Cor-
rectness of this mechanism follows from that fact that T'R(v) corresponds
to a 2-distance coloring of a grid with 5 colors, which is moreover shown to
be optimal in [30]. Thus we can use algorithms that are not primary de-
signed for the communication in radio networks. The slowdown caused by
the presented mechanism is only by a constant factor.
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Chapter 5

Conclusion and Further Work

In this dissertation thesis, we studied time efficient communication algo-
rithms for multihop radio networks. We considered several models of radio
networks that reflect different communication environments and real-world
settings. We took into account also energy complexity of proposed algo-
rithms.

In Chapter 2, we investigated centralized broadcasting in known topology
radio networks in the case when an underlying reachability graph satisfies
certain topology restrictions, i.e., it belongs to a specific class of graphs. It
follows from designed general schema for generating broadcasting schedules
that, in order to get much efficient broadcasting schedules, one can look for
graph classes in which information dissemination in bipartite graphs can be
realized in o(logn) rounds. Another interesting research problem is whether
other approaches (e.g., based on clustering or a sort of generalization of
the algorithm from [49]) allow construct better schemas/algorithms for some
graph classes.

In Chapter 3, we introduced and studied communication in new graph-
based model of radio networks that is much closer to modelling real-world
communication environment than the standard graph model. Moreover, it
generalizes the standard graph model. As we showed, efficiency of algorithms
designed for this model (and for models with long-range interference in gen-
eral) is very sensitive to what parameters reflecting the presence of interfer-
ence are taken into account. Therefore, it is important to define and inves-
tigate other parameters that can better reflect the presence of interference.
Efficiency of schedules generated by all designed algorithms is bounded with
respect to the maximum degree A. It could be interesting to study whether
this parameter can be replaced with another parameter with the same suc-
cess and supporting lower bounds. Obvious open problem is communication
in unknown radio networks with long-range interference. Probably, a sort
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of (interference) selectors should be defined in order to treat this problem
effectively. Graph-based models adopted by algorithmic community are of-
ten criticized because they do not provide adequate modelling for real-world
communication environments, devices, and their properties. A natural issue
arises. How can graph-based models be modified in order to provide better
model for real-world networks without affecting their simplicity ?

In Chapter 4, we focused on communication in radio networks with nodes
unaware of an underlying reachability graph. Especially, we explored the
concept of encoding information into collisions that is possible if the network
nodes are capable of collision detection. Presented results showed that this
concept is very powerful, since many communication problems can be solved
in this setting very effectively even in the case when the nodes are anony-
mous, i.e., they do not have identifiers. We considered communication tasks
that are not in the center of investigation in this area. Generally, all of those
tasks can be solved by a combination of standard communication primitives.
However, a problem of effective combination of those well-studied communi-
cation primitives emerges. More complex communication tasks could define
special (restricted) settings for communication primitives that are worth to
investigate. The concluding part of Chapter 4 considers a setting when the
network nodes do not know an underlying reachability graph, but they know
that this graph belongs to a certain graph class. We explored this setting in
the case of grid graphs. Interesting open problem is to answer the question
what graph classes allow more efficient communication if the nodes have an
information that an underlying reachability graph belongs to a certain graph
class. Note that, unlike the case of planar graphs, such an information is
useful in the case of grid graphs.
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